

Nonparametric Multivariate Density Estimation: A Low-Rank Characteristic Function Approach

Tensors & Probability

Nicholas D. Sidiropoulos (joint work with M. Amiridi and N. Kargas)

December, 2020

December, 2020

``Καὶ γνώσεσθε τὴν ἀλήθειαν, καὶ ἡ ἀλήθεια ἐλευθερώσει ὑμᾶς""And ye shall know the truth, and the truth shall make you free."

December, 2020

Modeling high-dimensional distributions

- Unsupervised learning
 - We need unsupervised models to deal with uncertainty
 - Discover hidden structure in the data
 - Probability Density Function Estimation (PDF) is a fundamental problem in unsupervised ML
 - ✓ Goal: Given training samples, learn the data generating distribution

Modeling high-dimensional distributions

- **PDF Estimation** is a fundamental problem in unsupervised ML
 - Given a dataset $\mathcal{D} = \{ {m{x}}_1, \ldots, {m{x}}_M \}$, where ${m{x}}_i \in {f R}^N$
 - We assume the data has been drawn iid from an unknown data generating distribution: $x_i \sim f_X(x_i)$

- Goal: Estimate $f_{\boldsymbol{X}}(\cdot)$
- Why? If we can learn high-dimensional joint PDFs, we can address ML problems using principled methods
 - Estimating any marginal or conditional distribution, expectation
 - Computing the most likely value of a subset of features conditioned on others
 - Deriving optimal estimators, classifiers

Modeling high-dimensional distributions

- **PDF Estimation** is a fundamental problem in unsupervised ML
 - Given a dataset $\mathcal{D} = \{ {m{x}}_1, \ldots, {m{x}}_M \}$, where ${m{x}}_i \in {f R}^N$
 - We assume the data has been drawn iid from an unknown data generating distribution: $x_i \sim f_X(x_i)$
 - Goal: Estimate $f_{\mathbf{X}}(\cdot)$
 - Challenges
 - 1. Curse of Dimensionality:
 - Modern datasets are high-dimensional and complex, we often operate in the sample-starved regime
 - 2. Incomplete realizations
 - 3. Model identifiability?
 - 4. Expressivity tractability trade-off
 - 5. Sample complexity

- Multidimensional probabilistic models have many applications in ML
 - Problem: Detect new or rare events!
 - e.g. Fraud detection: Legitimate financial transactions vs fraudulent transactions
 - Strategy: Leverage statistical models, detect outliers in the distribution
 - e.g. self driving cars: Use outliers to train more robust models

NIVERSITY

- Multidimensional probabilistic models have many applications in ML
 - Generate high-fidelity images
 - Create realistic and pleasing artwork -- zach Monge, CycleGAN, Zhu et al.

Which face is artificially generated? -- Philip Wang, Flickr-Faces-HQ dataset

- Multidimensional probabilistic models have many applications in ML
 - Text synthesis
 - Generate new Wikipedia-like articles, Smart Reply,

Autocomplete

when is a good time to buy a when is a good time to buy a house when is a good time to buy a home when is a good time to buy a lyrics when is a good time to buy a car	Magda Amiridi to me Do you think the abstract looks okay?	Apr 17
why am i afraid of why am i afraid of the dark why am i afraid of the dead why am i afraid of the dog	Reply I think it's fine. Looks good to me.	► It needs some work.

Smart Reply paper

- Translation
 - Model p(y|x) to generate an English sentence y conditioned on the corresponding Chinese sentence x

- Multidimensional probabilistic models have many applications in ML
 - Upsampling, Speech synthesis
 - Speech recognition
 - Given a joint model of speech signals and language (text), we can infer spoken words from audio signals

Starting point

• **Categorical case:** joint PMF $f(i, j, k, \ell, ...)$

Every joint PMF of a finite-alphabet random vector can be represented by a naïve Bayes model with a finite number of latent states (rank).

 If the rank is low, the high dimensional joint PMF is almost surely identifiable from threedimensional marginals under low-rank conditions

"Tensors, Learning, and Kolmogorov Extension for Finite-alphabet Random Vectors", Kargas, N. D. Sidiropoulos, X. Fu 2018

• Extension to continuous random vectors \rightarrow joint PDF f(x, y, z, v, ...) no longer a tensor!

Starting point

• **Categorical case:** joint PMF $f(i, j, k, \ell, ...)$

Every joint PMF of a finite-alphabet random vector can be represented by a naïve Bayes model with a finite number of latent states (rank).

 If the rank is low, the high dimensional joint PMF is almost surely identifiable from threedimensional marginals under low-rank conditions

"Tensors, Learning, and Kolmogorov Extension for Finite-alphabet Random Vectors", Kargas, N. D. Sidiropoulos, X. Fu 2018

- Extension to continuous random vectors \rightarrow joint PDF f(x, y, z, v, ...) no longer a tensor!
 - One possibility: discretization
 - Coarse vs fine —> discretization error vs statistical accuracy
 - How do we choose a discretization scheme?
 - Loss of identifiability
 - Is it possible to avoid discretization?
 - How can one represent a Probability Density Function through a tensor?

Tensors as universal PDF approximators

We will see that:

- A finite mixture model (approximately) follows from
 - 1. compactness of support
 - 2. continuous differentiability
- Assuming **low-rank in the Fourier domain**, a controllable approximation of the multivariate density is **identifiable**
- High dimensional joint PDF recovery by observing subsets (triples) of variables is possible!

What are tensors? - Canonical Polyadic Decomposition

• An *N*-way tensor $\underline{\Phi} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_N}$ is a multidimensional array whose elements are indexed by *N* indices

• Any tensor can be decomposed as a sum of *F* rank-1 tensors

What are tensors? - Canonical Polyadic Decomposition

• An *N*-way tensor $\underline{\Phi} \in \mathbb{C}^{I_1 \times I_2 \times \cdots \times I_N}$ is a multidimensional array whose elements are indexed by *N* indices

Any tensor can be decomposed as a sum of F rank-1 tensors

➤ We use <u>Φ</u> = [[λ, A₁,..., A_N]] to denote the decomposition
➤ Element-wise view: <u>Φ</u>(i₁, i₂,..., i_N) = $\sum_{f=1}^{F} λ(f) \prod_{n=1}^{N} A_n(i_n, f)$

• *F* is the smallest number for which such decomposition exists

Essential Uniqueness

For a tensor $\underline{\Phi}$ of rank *F*, we say that a decomposition $\underline{\Phi} = [\![\mathbf{A}_1, \dots, \mathbf{A}_N]\!]$ is essentially unique if the factors are unique up to a common permutation and scaling/counter-scaling of columns.

• This means that if there exists another decomposition $[\widehat{A}_1, \dots, \widehat{A}_N]$, then, there exists a permutation matrix and diagonal scaling matrices such that

$$\widehat{\mathbf{A}}_n = \mathbf{A}_n \mathbf{\Pi} \mathbf{\Lambda}_n$$
 and $\prod_{n=1}^N \mathbf{\Lambda}_n = \mathbf{I}$

• There is no scaling ambiguity for the column-normalized representation $\underline{\Phi} = [\![\lambda, \mathbf{A}_1, \dots, \mathbf{A}_N]\!]$

Essential Uniqueness

For a tensor $\underline{\Phi}$ of rank *F*, we say that a decomposition $\underline{\Phi} = [\![\mathbf{A}_1, \dots, \mathbf{A}_N]\!]$ is essentially unique if the factors are unique up to a common permutation and scaling/counter-scaling of columns

Theorem (Chiantini and Ottaviani, 2012)

If $\min(I_1, I_2) \ge 3$ and $F \le I_3$ then, the rank of $\underline{\Phi}$ is F and the decomposition is unique, almost surely, if and only if $F \le (I_1 - 1)(I_2 - 1)$

• In other words: the parameters of the CPD model are identifiable under certain rank conditions

Two main genres:

- **Parametric models**: make strong assumptions about the structure of the data, fragile to model mismatch
 - **GMMs** (Pearson 1894, McLachlan, Basford 1988)
 - Computational and estimation challenges in the high dimensional case

Two main genres:

- Parametric models: make strong assumptions about the structure of the data, fragile to model mismatch
 - GMMS (Pearson 1894, McLachlan, Basford 1988)
 - Computational and estimation challenges in the high dimensional case
- Non-parametric models: make only mild, "universal" prior assumptions about the data, such as smoothness
 - KDE (Rosenblatt 1956, Parzen 1962): estimates the PDF by means of a sum of kernel functions centered at the given observations
 - Computationally intractable for large M,N
 - OSDE (Girolami 2002; Efromovich 2010): approximates a PDF using a truncated sum of orthonormal basis functions
 - Curse of Dimensionality

Density Estimation: Modern methods

Several flavors (for Neural DE models):

- Explicit density estimation: explicitly define and solve for $f_{X}(x)$
 - 1. Auto-regressive neural models for DE
 - e.g. RNADE (Uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time
 - 2. Flow-based neural models for DE

e.g. **NICE** (Dinh, Krueger, Bengio 2014), **Real-NVP** (Dinh, Sohl-Dickstein, Bengio 2016) – Constrained architectures possibly not sufficiently expressive to capture all distributions

- Point-wise density evaluation
- Cannot impute more than very few missing elements in the input
- No identifiability guarantees

Density Estimation: Modern methods

Several flavors (for Neural DE models):

- Explicit density estimation: explicitly define and solve for $f_{X}(x)$
 - 1. Auto-regressive neural models for DE
 - e.g. RNADE (Uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time
 - 2. Flow-based neural models for DE

e.g. **NICE** (Dinh, Krueger, Bengio 2014), **Real-NVP** (Dinh, Sohl-Dickstein, Bengio 2016) – Constrained architectures possibly not sufficiently expressive to capture all distributions

- Point-wise density evaluation
- Cannot impute more than very few missing elements in the input
- No identifiability guarantees
- Implicit density estimation
 - Approximate density
 - e.g. VAES (Kingma and Welling 2014)
 - Frameworks that learn a model that can sample from $f_{X}(x)$ w/o explicitly defining it
 - e.g. GANS (Goodfellow et al. 2014)
 - Mainly used for only one very specific task: generating samples similar to training data
 - Hard to train

Goal: Obtain a PDF estimate that is

- **Expressive**: flexible enough to represent a wide class of distributions
- Tractable and scalable (computationally and memory-wise)
- Principled
- Accurate

Goal: Obtain a PDF estimate that is

- Expressive: flexible enough to represent a wide class of distributions
- Tractable and scalable (computationally and memory-wise)
- Principled
- Accurate
- Given a real-valued random variable X

Fourier transform pair:
$$\begin{cases} \Phi_X(\nu) := \int_{S_X} f_X(x) e^{j\nu x} dx = E[e^{j\nu X}] \\ f_X(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(\nu) e^{-j\nu x} d\nu \end{cases}$$

• Expectation interpretation — estimation via sample averages

A Characteristic Function approach - 1D case

- Every PDF supported in [0,1] can be uniquely represented over its support by an infinite Fourier series, $$\infty$$

$$f_X(x) = \sum_{k=-\infty} \Phi_X[k] e^{-j2\pi kx}, \quad \Phi_X[k] = \Phi_X(\nu) \big|_{\nu=2\pi k}, \quad k \in \mathbf{Z}$$

A Characteristic Function approach - 1D case

- Every PDF supported in [0,1] can be uniquely represented over its support by an infinite Fourier series,

$$f_X(x) = \sum_{k=-\infty} \Phi_X[k] e^{-j2\pi kx}, \quad \Phi_X[k] = \Phi_X(\nu) \big|_{\nu=2\pi k}, \quad k \in \mathbb{Z}$$

• If $f_X \in C^p$, then $|\Phi_X[k]| = \mathcal{O}(\frac{1}{1+|k|^p}) \longrightarrow$ truncated series approximation

$$\tilde{f}_X(x) = \sum_{k=-K}^K \widehat{\Phi}_X[k] e^{-j2\pi kx}, \quad \widehat{\Phi}_X[k] = \frac{1}{M} \sum_{m=1}^M e^{j2\pi kx_m}, \quad k \in \mathbf{Z}$$

A Characteristic Function approach - 1D case

- Every PDF supported in [0,1] can be uniquely represented over its support by an infinite Fourier series,

$$f_X(x) = \sum_{k=-\infty} \Phi_X[k] e^{-j2\pi kx}, \quad \Phi_X[k] = \Phi_X(\nu) \big|_{\nu=2\pi k}, \quad k \in \mathbb{Z}$$

• If $f_X \in C^p$, then $|\Phi_X[k]| = \mathcal{O}(\frac{1}{1+|k|^p}) \longrightarrow$ truncated series approximation

$$\tilde{f}_X(x) = \sum_{k=-K}^K \widehat{\Phi}_X[k] e^{-j2\pi kx}, \quad \widehat{\Phi}_X[k] = \frac{1}{M} \sum_{m=1}^M e^{j2\pi kx_m}, \quad k \in \mathbb{Z}$$

- By Parseval's Theorem $\longrightarrow ||f \tilde{f}||_2^2 = \sum_{|k|>K} |\Phi_X[k]|^2$
 - Error is controllable by the smoothing parameter K

• Given a random vector $\mathbf{X} := [X_1, \dots, X_N]^T$, the joint or multivariate characteristic function of \mathbf{X} is a function $\Phi_{\mathbf{X}} : \mathbf{R}^N \to \mathbf{C}$ defined as

$$\boldsymbol{\Phi}_{\boldsymbol{X}}(\boldsymbol{\nu}) = E\left[e^{j\boldsymbol{\nu}^{T}\boldsymbol{X}}\right], \ \boldsymbol{\nu} := \left[\nu_{1}, \dots, \nu_{N}\right]^{T}$$

• For any given *v*, given a set of realizations $\{\mathbf{x}_m\}_{m=1}^M$, we can estimate $\Phi_{\mathbf{X}}$, using a sample average $\widehat{\mathbf{x}}_m = 1$, $\sum_{i=1}^M \sum_{j=1}^M \sum_{i=1}^M \sum_{j=1}^M \sum_{j=1}^M \sum_{i=1}^M \sum_{j=1}$

$$\widehat{\Phi}_{\boldsymbol{X}}(\boldsymbol{\nu}) = \frac{1}{M} \sum_{m=1}^{\infty} e^{j \boldsymbol{\nu}^T \mathbf{x}_m},$$

• The corresponding PDF can be uniquely recovered via the multidimensional inverse Fourier transform $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^N} \int_{\mathbf{R}^N} \Phi_{\mathbf{X}}(\mathbf{\nu}) e^{-j\mathbf{\nu}^T \mathbf{x}} d\mathbf{\nu}.$

• Every PDF supported in $S_{\mathbf{X}} = [0, 1]^N$ can be represented by a multivariate Fourier series,

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{k_1 = -\infty}^{\infty} \cdots \sum_{k_N = -\infty}^{\infty} \Phi_{\boldsymbol{X}}[\boldsymbol{k}] e^{-j2\pi \boldsymbol{k}^T \boldsymbol{x}},$$

where $\Phi_{\boldsymbol{X}}[\boldsymbol{k}] = \Phi_{\boldsymbol{X}}(\boldsymbol{\nu}) \Big|_{\boldsymbol{\nu} = 2\pi \boldsymbol{k}}, \boldsymbol{k} = [k_1, \dots, k_N]^T$

• Every PDF supported in $S_{\mathbf{X}} = [0, 1]^N$ can be represented by a multivariate Fourier series,

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{k_1 = -\infty}^{\infty} \cdots \sum_{k_N = -\infty}^{\infty} \Phi_{\boldsymbol{X}}[\boldsymbol{k}] e^{-j2\pi \boldsymbol{k}^T \boldsymbol{x}},$$

where $\Phi_{\boldsymbol{X}}[\boldsymbol{k}] = \Phi_{\boldsymbol{X}}(\boldsymbol{\nu}) \Big|_{\boldsymbol{\nu} = 2\pi \boldsymbol{k}}, \boldsymbol{k} = [k_1, \dots, k_N]^T$

• If
$$f_X \in C^p$$
, then $|\Phi_{\boldsymbol{X}}[\mathbf{k}]| = \mathcal{O}\left(\frac{1}{1+||\mathbf{k}||_2^p}\right) \longrightarrow$ truncated Fourier series approximation
 $\tilde{f}_{\boldsymbol{X}}(\mathbf{x}) = \sum_{k=-K_1}^{K_1} \cdots \sum_{k_N=-K_N}^{K_N} \Phi_{\boldsymbol{X}}[\mathbf{k}] e^{-j2\pi \mathbf{k}^T \mathbf{x}}$

• Known approximation error results by Mason 1980, Handscomb 2014 of the truncated series with absolute cutoffs $\{K_n\}_{n=1}^N$

• Every PDF supported in $S_{\mathbf{X}} = [0, 1]^N$ can be represented by a multivariate Fourier series,

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{k_1 = -\infty}^{\infty} \cdots \sum_{k_N = -\infty}^{\infty} \Phi_{\boldsymbol{X}}[\boldsymbol{k}] e^{-j2\pi \boldsymbol{k}^T \boldsymbol{x}},$$

where $\Phi_{\boldsymbol{X}}[\boldsymbol{k}] = \Phi_{\boldsymbol{X}}(\boldsymbol{\nu}) \Big|_{\boldsymbol{\nu} = 2\pi \boldsymbol{k}}, \boldsymbol{k} = [k_1, \dots, k_N]^T$

• If
$$f_X \in C^p$$
, then $|\Phi_{\boldsymbol{X}}[\mathbf{k}]| = \mathcal{O}\left(\frac{1}{1+||\mathbf{k}||_2^p}\right) \longrightarrow$ truncated Fourier series approximation
 $\tilde{f}_{\boldsymbol{X}}(\mathbf{x}) = \sum_{k=-K_1}^{K_1} \cdots \sum_{k_N=-K_N}^{K_N} \Phi_{\boldsymbol{X}}[\mathbf{k}] e^{-j2\pi \mathbf{k}^T \mathbf{x}}$

- Known approximation error results by Mason 1980, Handscomb 2014 of the truncated series with absolute cutoffs $\{K_n\}_{n=1}^N$
- The smoother the underlying PDF, the faster its Fourier coefficients and the approximation error tends to zero

- The truncated Fourier coefficients can be naturally represented by an *N*-way tensor $\underline{\Phi}(k_1, \dots, k_N) = \Phi_{\mathbf{X}}[\mathbf{k}]$
- The number of parameters $(2K_1 + 1) \times \cdots \times (2K_N + 1)$, grows exponentially with *N*

- The truncated Fourier coefficients can be naturally represented by an *N*-way tensor $\underline{\Phi}(k_1, \dots, k_N) = \Phi_{\mathbf{X}}[\mathbf{k}]$
- The number of parameters $(2K_1 + 1) \times \cdots \times (2K_N + 1)$, grows exponentially with *N*
- Focus on the **principal components** of the resulting tensor -- i.e., introducing a rank-*F* parametrization of $\underline{\Phi}$

$$\tilde{f}_{\boldsymbol{X}}(\mathbf{x}) = \sum_{k_1 = -K}^{K} \cdots \sum_{k_N = -K}^{K} \sum_{h=1}^{F} p_H(h) \prod_{n=1}^{N} \Phi_{X_n \mid H=h}[k_n] e^{-j2\pi k_n x_n}$$

- Reduction of parameters from order of $K_1 \times \cdots \times K_N$ to order of $(K_1 + \cdots + K_N)F$
- Further denoise the naive sample average estimates

- The truncated Fourier coefficients can be naturally represented by an *N*-way tensor $\Phi(k_1, \dots, k_N) = \Phi_X[\mathbf{k}]$
- The number of parameters $(2K_1 + 1) \times \cdots \times (2K_N + 1)$, grows exponentially with *N*
- Focus on the **principal components** of the resulting tensor -- i.e., introducing a rank-*F* parametrization of $\underline{\Phi}$

$$\tilde{f}_{\mathbf{X}}(\mathbf{x}) = \sum_{k_1 = -K}^{K} \cdots \sum_{k_N = -K}^{K} \sum_{h=1}^{F} p_H(h) \prod_{n=1}^{N} \Phi_{X_n \mid H=h}[k_n] e^{-j2\pi k_n x_n}$$

- Reduction of parameters from order of $K_1 \times \cdots \times K_N$ to order of $(K_1 + \cdots + K_N)F$
- Further denoise the naive sample average estimates
- Considering for brevity $K = K_1 = \cdots = K_n$, by linearity and separability of the multidimensional Fourier transformation,

$$\tilde{f}_{\boldsymbol{X}}(\mathbf{x}) = \sum_{h=1}^{F} p_{H}(h) \prod_{n=1}^{N} \sum_{k_{n}=-K}^{K} \Phi_{X_{n}|H=h}[k_{n}] e^{-j2\pi k_{n} x_{n}}$$

Mixture of product distributions - Latent variable naive Bayes interpretation

Truncating the multidimensional Fourier series of any compactly supported random vector is equivalent to approximating the corresponding multivariate density by a finite mixture of separable densities

$$\tilde{f}_{\mathbf{X}}(\mathbf{x}) = \sum_{h=1}^{F} p_{H}(h) \prod_{n=1}^{N} \sum_{k_{n}=-K}^{K} \Phi_{X_{n}|H=h}[k_{n}] e^{-j2\pi k_{n}x_{n}}$$
$$= \sum_{h=1}^{F} p_{H}(h) \prod_{n=1}^{N} f_{X_{n}|H}(x_{n}|h).$$

- Yields generative model of the sought density, from which it is very easy to sample from.
- Easy marginalization.
- Easy to compute conditional densities.
- Easy to impute.

- The number of coefficients *K* controls the desired smoothness of the probability model
- The rank F controls the expressivity of the probability model

- Generating synthetic samples from our model
- For fixed K, K=11, given M=2000 samples from toy Circles and Moons 2D datasets

- The number of coefficients *K* controls the desired smoothness of the probability model
- The rank F controls the expressivity of the probability model

• K=10

• Generating synthetic samples from our model, given samples from Weight-Height dataset

A Characteristic Function approach – Uniqueness

• Conversely, assuming that the sought joint PDF is a finite mixture of separable densities

$$\Phi_{\boldsymbol{X}}(\boldsymbol{\nu}) = E\left[e^{j\boldsymbol{\nu}^{T}\boldsymbol{X}}\right]$$

= $E_{H}\left[E_{\boldsymbol{X}|H}\left[e^{j\nu_{1}X_{1}}\cdots e^{j\nu_{N}X_{N}}\right]\right]$
= $E_{H}\left[\Phi_{X_{1}|H}(\nu_{1}|H)\cdots \Phi_{X_{n}|H}(\nu_{N}|H)\right]$
= $\sum_{h=1}^{F}p_{H}(h)\prod_{n=1}^{N}\Phi_{X_{n}|H}(\nu_{n}|h).$

Uniqueness of the Characteristic Tensor CPD

A compactly supported multivariate mixture of separable densities is identifiable from (samples of) its characteristic function, under mild conditions

Proposed approach

1. Estimate
$$\underline{\Phi}[\mathbf{k}] = \frac{1}{M} \sum_{m=1}^{M} e^{j2\pi \mathbf{k}^{T} \mathbf{x}_{m}}$$

2. Fit a low-rank model $\underline{\Phi}[\mathbf{k}] \approx \sum_{h=1}^{F} p_{H}(h) \prod_{n=1}^{N} \Phi_{X_{n}|H=h}[k_{n}]$
3. Invert using $f_{\mathbf{X}}(\mathbf{x}) = \sum_{h=1}^{F} p_{H}(h) \prod_{n=1}^{N} f_{X_{n}|H}(x_{n}|h), \quad f_{X_{n}|H}(x_{n}|h) = \sum_{k_{n}=-K}^{K} \Phi_{X_{n}|H=h}[k_{n}]e^{-j2\pi k_{n}x_{n}}$

• Issues:

1. Fix scaling/counter-scaling freedom in $p_H(\cdot) \rightarrow$ constraints

```
min \|\underline{\Phi} - [\![\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N]\!]\|_F^2
subject to \boldsymbol{\lambda} \ge \mathbf{0}, \mathbf{1}^T \boldsymbol{\lambda} = 1,
\boldsymbol{A}_n(K+1, :) = \mathbf{1}^T, \ n = 1 \dots N
```

2. Allocating memory for the truncated characteristic tensor is a challenge!

Proposed approach

- Allocating memory for the truncated characteristic tensor is a challenge!
 - Model the characteristic tensors of subsets of variables (triples) $\Phi_{ij\ell}$
 - Key observation: lower-order marginals -> also a constrained complex CPD model

$$\underline{\Phi}(k_1, \dots, k_{n'} = 0, \dots, k_N) = \sum_{h=1}^F \prod_{\substack{n=1\\n \neq n'}}^N \Phi_{X_n|H}[k_n] \underbrace{\Phi_{X_{n'}|H}[0]}_{=1}$$
$$= \sum_{h=1}^F \prod_{\substack{n=1\\n \neq n'}}^N \Phi_{X_n|H}[k_n]$$

- Jointly decompose in a coupled fashion, synthesize the full characteristic tensor
 - Significant computational and memory reduction
 - Allows us to work with incomplete realizations

Proposed approach

- Allocating memory for the truncated characteristic tensor is a challenge!
 - Model the characteristic tensors of subsets of variables (triples) $\Phi_{ij\ell}$
 - Key observation: lower-order marginals -> also a constrained complex CPD model
 - Jointly decompose in a coupled fashion, synthesize the full characteristic tensor
 - Significant computational and memory reduction
 - Allows us to work with incomplete realizations
 - We propose solving the following optimization problem:

$$\min_{\boldsymbol{\lambda}, \mathbf{A}_{1}, \dots, \mathbf{A}_{N}} \sum_{i} \sum_{j > i} \sum_{\ell > j} \left\| \underline{\boldsymbol{\Phi}}_{ij\ell} - [\![\boldsymbol{\lambda}, \mathbf{A}_{i}, \mathbf{A}_{j}, \mathbf{A}_{\ell}]\!] \right\|_{F}^{2}$$

subject to $\boldsymbol{\lambda} \ge \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda} = 1,$
 $\mathbf{A}_{n}(K+1, :) = \mathbf{1}^{T}, \ n = 1, \dots, N.$

Instance of coupled tensor factorization

Algorithmic approach

• We propose solving the following optimization problem:

$$\min_{\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N} \sum_i \sum_{j>i} \sum_{\ell>j} \left\| \underline{\boldsymbol{\Phi}}_{ij\ell} - [\![\boldsymbol{\lambda}, \mathbf{A}_i, \mathbf{A}_j, \mathbf{A}_\ell]\!] \right\|_F^2$$

subject to $\boldsymbol{\lambda} \geq \boldsymbol{0}, \boldsymbol{1}^T \boldsymbol{\lambda} = 1,$

$$\mathbf{A}_n(K+1,:) = \mathbf{1}^T, \ n = 1, \dots, N.$$

- Alternating optimization \longrightarrow Cyclically update variables A_n, λ
- The optimization problem with respect to A_i becomes

 $\min_{\mathbf{A}_{i}} \sum_{j \neq i} \sum_{\ell \neq i, \ell > j} \|\underline{\Phi}_{ij\ell}^{(1)} - (\mathbf{A}_{\ell} \odot \mathbf{A}_{j}) \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{A}_{i}^{T} \|_{F}^{2}$ subject to $\mathbf{A}_{i}(K+1, :) = \mathbf{1}^{T}$

Unconstrained complex least squares problem

Algorithmic approach

We propose solving the following optimization problem:

$$\min_{\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N} \sum_i \sum_{j>i} \sum_{\ell>j} \left\| \underline{\boldsymbol{\Phi}}_{ij\ell} - [\![\boldsymbol{\lambda}, \mathbf{A}_i, \mathbf{A}_j, \mathbf{A}_\ell]\!] \right\|_F^2$$

subject to $\lambda \geq 0, \mathbf{1}^T \lambda = 1,$

$$\mathbf{A}_n(K+1,:) = \mathbf{1}^T, \ n = 1, \dots, N.$$

- Alternating optimization \rightarrow Cyclically update variables A_n, λ
- The optimization problem with respect to A_i becomes

 $\min_{\mathbf{A}_i} \sum_{j \neq i} \sum_{\ell \neq i, \ell > j} \|\underline{\boldsymbol{\Phi}}_{ij\ell}^{(1)} - (\mathbf{A}_\ell \odot \mathbf{A}_j) \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{A}_i^T \|_F^2$ subject to $\mathbf{A}_i(K+1,:) = \mathbf{1}^T$

Unconstrained complex least squares problem

ADMM

The optimization problem with respect to λ becomes Least squares problem with $\min_{\boldsymbol{\lambda}} \sum_{i} \sum_{j > i} \sum_{\ell > j} \|\operatorname{vec}(\underline{\boldsymbol{\Phi}}_{ij\ell}) - (\mathbf{A}_{\ell} \odot \mathbf{A}_{j} \odot \mathbf{A}_{i}) \boldsymbol{\lambda}\|_{F}^{2}$ probability simplex constraints subject to $\lambda > 0, \mathbf{1}^T \lambda = 1.$

Algorithmic approach

We propose solving the following optimization problem:

$$\min_{\boldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N} \sum_i \sum_{j>i} \sum_{\ell>j} \left\| \underline{\boldsymbol{\Phi}}_{ij\ell} - [\![\boldsymbol{\lambda}, \mathbf{A}_i, \mathbf{A}_j, \mathbf{A}_\ell]\!] \right\|_F^2$$

subject to $\lambda \geq 0, \mathbf{1}^T \lambda = 1,$

$$\mathbf{A}_n(K+1,:) = \mathbf{1}^T, \ n = 1, \dots, N.$$

- Alternating optimization \longrightarrow Cyclically update variables A_n, λ
- The optimization problem with respect to A_i becomes

 $\min_{\mathbf{A}_i} \sum_{j \neq i} \sum_{\ell \neq i, \ell > j} \|\underline{\boldsymbol{\Phi}}_{ij\ell}^{(1)} - (\mathbf{A}_\ell \odot \mathbf{A}_j) \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{A}_i^T \|_F^2$ subject to $\mathbf{A}_i(K+1,:) = \mathbf{1}^T$

Unconstrained complex least squares problem

ADMM

- The optimization problem with respect to λ becomes Least squares problem with $\min_{\boldsymbol{\lambda}} \sum_{i} \sum_{j>i} \sum_{\ell>j} \|\operatorname{vec}(\underline{\Phi}_{ij\ell}) - (\mathbf{A}_{\ell} \odot \mathbf{A}_{j} \odot \mathbf{A}_{i}) \boldsymbol{\lambda}\|_{F}^{2}$ probability simplex constraints subject to $\boldsymbol{\lambda} \geq \mathbf{0}, \mathbf{1}^T \boldsymbol{\lambda} = 1.$
- The corresponding joint PDF model can be recovered at any point as $f_{\boldsymbol{X}}(\mathbf{x}) = \sum_{k=1}^{F} \boldsymbol{\lambda}(h) \prod_{k=1}^{N} \sum_{k=1}^{K} \mathbf{A}_{n}(k_{n}, h) e^{-j2\pi k_{n} x_{n}}$ n=1 $k_m = -K$

- Performance evaluation using 7 UCI high-dimensional datasets
 - Average log-likelihood of unseen data samples
 - Regression tasks
 - Image sampling
- 10 Monte Carlo simulations
- 80% training, 20% test (5 fold cross validation for parameter selection)
 - Parameters: Tensor rank, smoothing parameter
- Standard baselines
 - 2 Classic literature (GMMs, KDE)
 - 2 State of the art Neural Density Estimators (RNADE, MAF)

Results

- Average log-likelihood of unseen data samples
- Our method achieves a higher average test sample log likelihood in almost all datasets!

MoG	KDE	RNADE	MAF	LRCF-DE
11.9 ± 0.29	9.9 ± 0.16	14.41 ± 0.16 17.1 ± 0.26	15.2 ± 0.09 17.2 \pm 0.20	16.4 ± 0.67 18.4 ± 0.17
10.1 ± 1.48 125.4 ± 7.79	14.8 ± 0.12 103.05 ± 0.84	17.1 ± 0.26 152.48 ± 5.62	17.3 ± 0.20 149.6 ± 8.32	18.4 ± 0.17 154.34 ± 8.43
152.9 ± 3.88	147.6 ± 1.63	171.7 ± 2.75	179.6 ± 1.62	194.4 ± 2.43
134.7 ± 3.47	127.2 ± 2.82	140.2 ± 1.03	143.5 ± 1.32	146.1 ± 2.31
$211.7 \pm 1.04 \\ 310.3 \pm 3.47$	201.4 ± 1.18 296.48 ± 1.62	$\begin{array}{c} 223.6 \pm 0.88 \\ 316.3 \pm 3.57 \end{array}$	$218.2 \pm 1.35 \\ 315.4 \pm 1.458$	$\begin{array}{c} 222.6 \pm 1.25 \\ 316.6 \pm 2.35 \end{array}$
	$\begin{array}{c} \text{MoG} \\ 11.9 \pm 0.29 \\ 16.1 \pm 1.48 \\ 125.4 \pm 7.79 \\ 152.9 \pm 3.88 \\ 134.7 \pm 3.47 \\ 211.7 \pm 1.04 \\ 310.3 \pm 3.47 \end{array}$	$\begin{array}{c c} \mbox{MoG} & \mbox{KDE} \\ \hline 11.9 \pm 0.29 & 9.9 \pm 0.16 \\ 16.1 \pm 1.48 & 14.8 \pm 0.12 \\ 125.4 \pm 7.79 & 103.05 \pm 0.84 \\ 152.9 \pm 3.88 & 147.6 \pm 1.63 \\ 134.7 \pm 3.47 & 127.2 \pm 2.82 \\ 211.7 \pm 1.04 & 201.4 \pm 1.18 \\ 310.3 \pm 3.47 & 296.48 \pm 1.62 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Average test-set log-likelihood per datapoint for 5 different models on UCI datasets; higher is better.

Data set	Ν	Μ
Red wine	11	1599
White wine	11	4898
First-order theorem proving (F-O.TP)	51	6118
Polish companies bankruptcy (PCB)	64	10503
Superconductivty	81	21263
Corel Images	89	68040
Gas Sensor Array Drift (Gas Sensor)	128	13910

Results

- **Regression**: our joint PDF model enables easy computation of any marginal or conditional density of subsets of variables
- Estimate the output using the **conditional expectation**
 - Report the Mean Absolute Error

Data set	MoG	KDE	RNADE	MAF	LRCF-DE
Red wine	1.28	1.13	0.66	0.63	0.56
White wine	1.79	1.31	0.80	0.75	0.59
F-O.TP	1.86	1.46	0.63	0.52	0.48
PCB	5.6	7.73	4.43	4.52	3.85
Superconductivty	18.56	19.96	16.46	16.38	16.53
Corel Images	0.53	0.93	0.27	0.27	0.28
Gas Sensor	29.7	35.3	26.8	26.2	26.7

Data set	N	М
Red wine	11	1599
White wine	11	4898
First-order theorem proving (F-O.TP)	51	6118
Polish companies bankruptcy (PCB)	64	10503
Superconductivty	81	21263
Corel Images	89	68040
Gas Sensor Array Drift (Gas Sensor)	128	13910

Data set	LRCF-DE	MAF
Red wine	0.82	0.91
White wine	0.93	0.97
First-order theorem proving (F-O.TP)	0.69	0.72
Polish companies bankruptcy (PCB)	4.97	5.46
Superconductivty	20.84	20.72
Corel Images	1.36	1.59
Gas Sensor Array Drift (Gas Sensor)	25.7	26.1

Multi-output regression: Predicting the last two random variables

• Our method outperforms the baselines in almost all datasets and performs comparable to the winning method in the remaining ones

Results

- Image synthesis: Our generative model affords easy sampling
- USPS dataset N=256 : Fix the tensor rank to F=8, K=15 and draw 8 random samples of each digit (class)

Figure: Class-conditional synthetic vs real samples from the USPS dataset.

	0	1	2	3	4	5	6	7	8	9	Total
Samples	1553	1269	929	824	852	716	834	792	708	821	9298

Nonparametric Multivariate Density Estimation: A Low-Rank Characteristic Function Approach

Recap

- We revisited the classic problem of nonparametric density estimation from a fresh perspective
 - Through the lens of complex Fourier series approximation
 - Tensor modeling
- We showed that
 - Any compactly supported density can be approximated by a finite characteristic tensor of leading complex Fourier coefficients, whose size depends on the smoothness of the density
 - We posed density estimation as a constrained (coupled) tensor factorization problem and proposed a Block Coordinate Descent algorithm
 - Under certain conditions enables learning the true data-generating distribution

Nonparametric Multivariate Density Estimation: A Low-Rank Characteristic Function Approach

THANK YOU!

Questions?