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> The goal of Super-resolution is to recover “lost” details (typically high
frequency components) from noisy, low-resolution (typically low-frequency)
measurements acquired by a physical system.

> The problem has origins in optics. Features widely across many applications,
including radar, microscopy, medical imaging, radio astronomy, image
processing/computer vision...
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» Harmonic Retrieval Problem:

K
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k=1
» Classical Methods are algebraic, and .
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» Many impactful results spanning decades: [Schmidt'86],[Kailath'89],[Hua et.al'90],
[Kaveh'86], [Rao,Hari'89], [Stoica,Nehorai'89], [Vaccaro’93],[Krim'96]...

» Guarantees are mostly asymptotic/perturbation-based.

> Recent advances in non-asymptotic guarantees of classical methods: [Liac'14],
[Moitra’15,'20], [Li'19],[Qiao,Pal’19],[Hucumenoglu,Pal’20]..

» Modern Convex algorithms for Super-resolution: Atomic norm/TV norm
minimization. Robusntess guarantees, minimax optimality:
[Candes,Fernandez-Granda'12-'20],[Tang et al.’12-20]...



This Talk: Multiple (Temporal) Measurements and Correlation

Priors
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» In many applications (such as microscopy, radar target localization,
interferometry), we acquire several low-resolution measurements of a scene
of interest over time.

> Incorporation of temporal measurements and correlation priors can
significantly enhance super-resolution capabilities.



Sparse Arrays and Aperture Synthesis

 « Physical Sensors « Virtual Sensors

» In many applications sources are assumed to be spatially incoherent (or
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> By utilizing a sparse sensing geometry and computing spatial correlation between
sensor pairs, it is possible to generate the effect of a virtual difference co-array.
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Sparse Arrays and Aperture Synthesis

 « Physical Sensors « Virtual Sensors

» In many applications sources are assumed to be spatially incoherent (or
statistically uncorrelated).

> By utilizing a sparse sensing geometry and computing spatial correlation between
sensor pairs, it is possible to generate the effect of a virtual difference co-array.
[Moffet'68],[Pillai’85],[Kassam’90], [Abramovich], [Pal,Vaidyanathan'10],[Amin’15],[Wang,Nehorai'17],
[Koochakzadeh,Pal'16],[Qiao, Pal’'20]...

» Asymptotic guarantees for resolving more sources than sensors, significantly
smaller Cramér-Rao Bounds.

> Non-asymptotic Guarantees: Largely open.
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» Classical Subspace based algorithms do not explicitly need separation
condition, but their guarantees are mostly asymptotic in the number of
snapshots.

» Modern TV-norm and atomic norm based algorithms offer non-asymptotic
robustness guarantees, but require a minimum separation condition, even in
absence of noise (reminiscent of Rayleigh resolution limit).



Open Questions of Interest

» Classical Subspace based algorithms do not explicitly need separation
condition, but their guarantees are mostly asymptotic in the number of
snapshots.

» Modern TV-norm and atomic norm based algorithms offer non-asymptotic
robustness guarantees, but require a minimum separation condition, even in
absence of noise (reminiscent of Rayleigh resolution limit).

Can correlation priors and aperture synthesis provably lead to improvements in
resolution? Can a strict separation condition be relaxed and noise amplification
be tamed by exploiting

> Sensing geometry?
» Temporal snapshots?

> Inherent conic constraints?
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Reconstruction
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> Discrete Super-resolution: The goal is to reconstruct a desired image on a
high-resolution grid, given low-resolution measurements collected by a sensor
array.

> Widely used in optical super-resolution imaging
[Solomon,Eldar,Segev'18,Goodman et. al'17]
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> The discrete version of the super-resolution problem has been studied
extensively, following pioneering works by [Donoho’90]

> Discrete version appears frequency in applications where the goal is to display a
super-resolved image on a desired high resolution grid [Solomon,Eldar et. al’18].
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> The discrete version of the super-resolution problem has been studied
extensively, following pioneering works by [Donoho’'90]

> Discrete version appears frequency in applications where the goal is to display a
super-resolved image on a desired high resolution grid [Solomon,Eldar et. al'18].

Measurement Model [Morgenshtern,Candes’16]
Yy=Qx+n
> ye C¥: Low-resolution measurements, contaminated with noise 7.

» Q e CV*N: Discrete Convolution operator, representing a low-pass filter with
cut-off f. < N:

1 _
Q=WHAW, [W],,= \/—Ne*ﬂ”m”/N, —N/24+1<m<N/2, 0<n<N—1

where A = diag(p_n/24+1,P2, " ;Pny2) With p, =0, |n| > fe.
» 2 € CV: Desired high-resolution signal.




Stable Super-resolution

Representation in Frequency Domain:

y=Qr+n=Wy=AWzx+ Wn



Stable Super-resolution

Representation in Frequency Domain:
y=Qr+n=Wy=AWzx+Wn
> If A has a flat spectrum, then we need to recover x € C* from

M =2f.+ 1« N low frequency components (DFT coefficients), corrupted with
noise.



Stable Super-resolution

Representation in Frequency Domain:

y=Qr+n=Wy=AWzx+Wn

> If A has a flat spectrum, then we need to recover x € C* from
M =2f.+ 1« N low frequency components (DFT coefficients), corrupted with

noise.
» Unambiguous and stable recovery of & from vy is not possible unless we exploit

priors on .



Stable Super-resolution

Representation in Frequency Domain:

y=Qxr+n=Wy=AWz+Wn

> If A has a flat spectrum, then we need to recover x € C* from
M =2f.+ 1« N low frequency components (DFT coefficients), corrupted with

noise.
» Unambiguous and stable recovery of & from vy is not possible unless we exploit

priors on .

Let C denote a class of signals that the desired & belongs to (captures apriori

information).



Stable Super-resolution

Representation in Frequency Domain:

y=Qxr+n=Wy=AWz+Wn

> If A has a flat spectrum, then we need to recover x € C* from
M =2f.+ 1« N low frequency components (DFT coefficients), corrupted with

noise.
» Unambiguous and stable recovery of & from vy is not possible unless we exploit

priors on .

Let C denote a class of signals that the desired & belongs to (captures apriori

information).

Stable Recovery
We say that an estimate & leads to stable recovery of « (using the apriori

information in C), if
e — &) < NAC,n,N) . |n|
NA(C,n,N) : Noise Amplification Factor
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Non-negative Super-Resolution and Noise Amplification

» Suppose we have the apriori information that @ > 0, i.e. @ is non-negative.

» Can this prior information enable stable recovery?

Non negative Super-resolution [Morgenshtern,Candes 2016]

min |y — Qz|; subjet to z >0
z
No explicit regularizer (such as sparsity enforcing I; norm, or TV norm) utilized,

other than non-negative constraint on «.
Stable recovery is still possible if the ground truth @ is non-negative and satisfies

Rayleigh-Regularity.

10




Stability of Non-negative Super-resolution

Rayleigh Regularity [Morgenshtern,Candes’16]: Informally, a signal obeys
Rayleigh regularity with parameters (d, r) if it contains no more than r spikes in
any d consecutive intervals, each of length fi
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Stability of Non-negative Super-resolution

Rayleigh Regularity [Morgenshtern,Candes’16]: Informally, a signal obeys
Rayleigh regularity with parameters (d, r) if it contains no more than r spikes in

any d consecutive intervals, each of length %

Theorem (Stable Non-negative Super-resolution [Morgenshtern,Candes’16])

Suppose x satisfies Rayleigh regularity condition with parameters (3.724r, ), and
the filter @ has a flat or triangular spectrum. Then the solution & to (CVX) obeys

. N 2r
o<l <0 (3727) Ik

When the sparsity pattern of @ obeys the conventional separation condition

2
A > 5% (with r = 1), noise amplifies by a factor of (%) =SRF2.

11




Our Goal: Super-Resolution with Spatiotemporal Measure-

ments

Suppose we collect a set of L temporal measurement vectors g, € CM

y=Ax;+mn, 1<I<L

» Ae CM*N (M < N) is an undersampled (fat) DFT matrix:
Amm = €j27rdmn/N’ 1<m<M, 0<n<N-1

where d,,, denotes the (normalized) location of the mth sensing element.
» Common Support: Supp (z;) =S, [=1,2,---,L

» Special Case: When {d,,}}_, is a set of consecutive integers, each
measurement vector follows the same model as [Morghenstern,Candes16].

> Appears widely in Mulitple Measurement Vector (MMV) models.

12



Super-resolution Correlation-lmaging

> In many problems, the sources are assumed to be spatially incoherent

» Such assumptions are heavily exploited in correlation microscopy (e.g. SOFI,
SPARCOM) to exploit the independent statistical fluctuation of fluoresecent
emitters to aid super-resolution in the discrete setting.
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Super-resolution Correlation-lmaging

> In many problems, the sources are assumed to be spatially incoherent

» Such assumptions are heavily exploited in correlation microscopy (e.g. SOFI,
SPARCOM) to exploit the independent statistical fluctuation of fluoresecent
emitters to aid super-resolution in the discrete setting.

Goal of Correlation-Driven Super-resolution

Obtain a super-resolved image p € R, where each pixel represents the source

power, i.e. p; = E (|z;]?)

» Utilization of correlation priors can lead to significant improvement in
super-resolution performance [Solomon,Eldar,Mutzafi,Segev'18].

13



Mathematical Theory of Correlation-Driven Super-resolution

Key Questions of Interest
» Can the separation condition be relaxed in correlation-driven Super-resolution?
> Can we tame the noise amplification (typically SRF?) using correlation Priors?

> What roles will the geometry of spatial sampling (choice of dy,da, - -dys) and
positivity play?

> What is the underlying trade-off between Spatial and Temporal Measurements?

y

14
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Key Ingredient I: Khatri-Rao Product and Difference Set

R,, = APAY + 0°] < vec(Ryy) = (A* ©® A) p + o?vec(I)

Fact: Desired correlation image p is mapped to the data covariance R, via
the Khatri-Rao product of A:

A*GAZ [aik®a17a;®a23"' 7a}kV®a’N]

Difference Set

Nested Array

= .o ; . 29000 )¢ NT XoXeRelels) ace
S {d17d25 adJV[} S: 873348 H ¥ % 2
T r
Dg = {dm —d,, dpn.d,E€ S} Array Level 1 Auray Level 2
]Djﬁ 1000000000000 000000000000000000
'S 01234567 891011121314151617181920212223242526272829

2Mygier + 1 = cardinality of largest s o
subset of consecutive integers in Dg
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Key Ingredient I: Khatri-Rao Product and Difference Set

R,, = APAY + 0°] < vec(Ryy) = (A* ©® A) p + o?vec(I)

Fact: Desired correlation image p is mapped to the data covariance R, via
the Khatri-Rao product of A:

A*GAZ [aik®a17a;®a23"' 7a}kV®a’N]

Difference Set
Nested Array

S ={di,dz, - ,dm} S: 312992 grocnaguionagranaag
Ds ={dm —dn, dm.dy€ S} Array Level 1 Arvay Lovel 2

N . ]D);; :.(.) ’ 3 g : g z ’ g ; 1.01.1 1.21.31.41.51.617181’92‘02'12‘22'32‘42‘52627252
2Mgiss + 1 = cardinality of largest o 252021208

subset of consecutive integers in Dg

» The quantity Mg will be used to relax the separation condition, and reduce
noise amplification in correlation-driven super-resolution.
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Key Ingredient Il: Role of Positive Constraints—Warm-Up

Solving an ill-posed system of equations (in p,o) :

R,, = APAY 1 5°1 (1)

Asymptotic Unique Recovery without sparsity Constraints [Qiao,Pal2019] J

As long as ||S|lo < M, there is a unique non negative pair (p, o) that satisfies (1)

» No need for separation (asymptotically in number of snapshots L).

» Explicit Sparsity constraint not necessary.

> Proof Technique:
> Lift to higher dimension: R, — T € CMam>Mdtt T > 0 T is Toeplitz.
> Invoke Caratheodory:

2
0 = Omin(T) (2)
* 2 .
(af ®ai;)v LN(T —0c°I), VieS (3)
1H Qiao and P. Pal, "Guaranteed Localization of More Sources Than Sensors With Finite hots in Multiple M Vector Models Using

Difference Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019,

16



n Asymptotic G ntees

> In practice we have access to an estimate Ry, of the covariance matrix Ry,
computed using finite snapshots L.

R, = APA" + ’T + E;
——

Ap

» Key Questions of Interest:
> Noise + Finite snapshot error both can potentially degrade the ability to
super-resolve.
> Can (i) positivity of the desired correlation-image and (ii) geometry of sensing still
lead to stable super-resolution with relaxed separation, and reduction in noise
amplification?

17



Geometry of Conic Constraints

Feasible Set

Ty, = {z >0, Hvec(RL) —(A* @A)zH2 < HALHF}

> Feasible set Fa, characterized by snapshots, and contains the true source power
p.

18



Geometry of Conic Constraints

Feasible Set

Ty, = {z >0, Hvec(RL) —(A* @A)zH2 < HALHF}

> Feasible set Fa, characterized by snapshots, and contains the true source power
p.

> Is it possible to bound the distance between any two points z1, 22 € Fa, in
terms of |A |, despite A* ® A being a fat matrix?

> Such a bound can lead us to universal stability guarantees for correlation-driven

super-resolution.

18



Geometry of Conic Constraints

Feasible Set

Ty, = {z >0, Hvec(RL) —(A* @A)zH2 < HALHF}

> Feasible set Fa, characterized by snapshots, and contains the true source power
p.

> Is it possible to bound the distance between any two points z1, 22 € Fa, in
terms of |A |, despite A* ® A being a fat matrix?

> Such a bound can lead us to universal stability guarantees for correlation-driven
super-resolution.

» Main challenge: A* ® A has a non-trivial null-space.

18



Positivity to the Rescue

Fa, = {z >0, Hvec(RL) —(A* G)A)zH2 < HALHF}

How does the conic constraint help?
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Positivity to the Rescue

Fa, = {z >0, Hvec(RL) —(A* @A)zH2 < HALHF}

How does the conic constraint help?
» Without non-negative constraint

Be={zeR",

VeC(Ryy)_(A*QA)zH2$HALHF}

> Let pe B and let z; = p + awv, where
veN(A*® A). Then z; € B but
|p — z1]|| diverges with a.

» Geometry of conic constraint crucial to
make Fa, bounded.



Stability of Convex Feasibility Test

Definition
Define the set of sparse signals obeying relaxed Difference-Set Separation

(DS-SEP) condition as

l 2
>

L —) = Wk # 1€ Su
~) Vor pp(p)}

2| =

Pos.sep = {p € CV | ¢(

20



Stability of Convex Feasibility Test

Definition
Define the set of sparse signals obeying relaxed Difference-Set Separation
(DS-SEP) condition as

l 2
>

’ N) = M

Pps-sep = {p € CV | ¢( ,Vk # 1 € Supp(p)}

2| =

Theorem (Qiao,Pal.19)

Suppose the ground truth p satisfies the relaxed difference-set separation
condition, i.e. p € Pps.sep. Further suppose Mg > 128 and
N > 3.03(2Mgis + 1). Then, for any p* € Fa,, we have

]_ _
Ip* —ply =0 (p'”AuF)

> . .
where p = ¢; (A][\C;'”) , c1 being a universal constant.

H. Qiao and P. Pal, " Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector
Models Using Difference Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019.
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Significance Of the Bound: Universal Stability in Correlation-

driven super-resolution

Consider the Feasibility Problem
find z

subject to  |vec(Ryy) — (A* © A) 2|2 < |AL|F,

z>0.

(FEAS)
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Consider the Feasibility Problem

find z
subject to  |vec(Ryy) — (A* © A) 2|2 < |AL|F, (FEAS)
z>0.

> Any solution z* to (FEAS) wil satisfy [2* — pl1 = O (152 A. | )

» Captures how correlation estimation error |Ap||r controls the (worst-case)
reconstruction error.



Significance Of the Bound: Universal Stability in Correlation-

driven super-resolution

Consider the Feasibility Problem

find z
subject to  |vec(Ryy) — (A* © A) 2|2 < |AL|F, (FEAS)
z>0.

> Any solution z* to (FEAS) wil satisfy [2* — pl1 = O (152 A. | )

» Captures how correlation estimation error |Ap||r controls the (worst-case)
reconstruction error.

> Algorithm-independent upper bound on the reconstruction error, depending
only on the geometry of the Feasible set Fa,. Universal benchmakr to
determine objective functions can do better than picking arbitrary point from
Feasible set.

21
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Error Amplification Can be Reduced
)

1 _
Ip* —pll = O (p Llag

. Mg\ >
/1 N

» Covariance estimation error gets scaled by a factor of

- (3
— =C
p "\ Mg

> Role of Sensing Geometry:
> Mg = ©(M), corresponds to ULA: |AL|r amplifies by SRF? = ()2,
Similar to existing analysis.
> My = ©(M?), corresponds to sparse arrays: Covariance error scales by ]]C]Ti
> Covariance error can be potentially compensated in the final correlation image,
thanks to the large difference set of sparse arrays, as long as N = 0(]”2).

(5)

p
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Tightness of the Amplification Factor

Amplification is quadratic in N:

1
p

Is the quadratic scaling tight?

1H Qiao and P. Pal, " Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector Models Using
Difference Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019
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tness of the Amplification Factor

Amplification is quadratic in N: L+ ~ N
P Mg

Is the quadratic scaling tight?

Theorem (Qiao,Pall9)

There exist p1,ps € Fa, (with py also obeying separation condition) such that
whenever Mg > 128 and N = 3.03(2M i + 1), we have

Ilp1 — p2li < CL(M)N?|AL|F
and
Ip1 — P21 = C2(M)N?|AL|F

where Cy (M) and Cy (M) are only functions of M.

1H Qiao and P. Pal, " Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector Models Using
Difference Co-Arrays,” in IEEE Transactions on Signal Processing, vol. 67, no. 22, pp. 5715-5729, 15 Nov.15, 2019
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Numerical Results 1

Phase Transition and Sample Complexity

Figure 1: Phase transition of success rate as function of sparsity s and number of
measurements M: (a) (Plcoden), (b) MMV-BP. White pixels indicate perfect recovery
and black pixels denote total failure. Here L = 2000, N = 600 and the results are
averaged over 50 runs. The overlaid red curve represents s = 0.18M” in (a) and s = M

in (b) and (c).

24



Numerical Results 2

Empirical Support Recovery versus Sparsity

Q [PMSBL Nested

P Go-den
0038 {OMMV-BP Gaussian
2 IERA-ORMP Gaussian|
o [>MMV-BP ULA
@ 0.6 I>PRA-ORMP ULA
804
§o.
3
(2]

(a) (b)

Figure 2: (a) Probability of successful support recovery as a function of sparsity s. (b)
Success rate of M-SBL, M-FOCUSS and SPICE as a function of sparsity s. For both
cases, M =24, N = 300, L = 100.
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Super-Resolution via Parameter Estimation: Going
Off the Grid




Super-Resolution and Line Spectrum Estimation

Measurement Model:

wkckl—l—nl, l=1,2,---L

HMN

» y; € CM — [th temporal snapshot of measurements collected by an array of M
Sensors.

» a(w) e CM — steering vector of the array corresponding to spatial frequency w.
» ¢, — (Time varying) amplitude of the kth source

» n;— Additive noise at the sensor array.

» Model is widely adopted for the problem of point source localization.

Goal: Recover {wy}& | from measurements vy,

26



Atomic Norm Minimization: Basics

» Point source model:  z(t) = Zle cko(t —tr), 7 € [0,1)

2For an arbitrary point-spread function g(t) bandlimited to | f| < B/2, the Fourier-domain measurement
model has been typically modified as [Chi '16,'20]

K
Ym = Jeﬂw"”f(g #2)(O)dt+npm = Y e’ TMTEG, ) Wi € [—B/2,- -, B/2]
k=1
However, as argued in [Batenkov,Bhandari,Blu’19],[Chen,Moitra’'20], bandwidth selection is an issue, and the
frequency domain model may not be fully representative of the actual physical measurements.
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Atomic Norm Minimization: Basics

» Point source model:  z(t) = Zle cko(t —tr), 7 € [0,1)

» Bandlimited Measurement Model: 2
K

1
Ym = f eJQﬂmtx(t) + Ny, = Z Ck eJQﬂ'Mtk + s |m| M/2
0 k=1

» Atomic Set: A = {e727¢[1,eI27T eI2727 ... i27(M-DT] 4 re[0,1)}

2For an arbitrary point-spread function g(t) bandlimited to | f| < B/2, the Fourier-domain measurement
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Atomic Norm Minimization: Basics

Point source model:  z(t) = Zle cko(t —tr), 7 € [0,1)

>
» Bandlimited Measurement Model: 2
1 K
Ym = f 2T () 4 Ny = Z cpe??™ ™ Lo im| < M /2
0 k=1
» Atomic Set: A = {eI2™?[1,e/27T 2727 ... i27(M=D7] ¢ € [0,1)}

» Atomic Norm: || 4 == inf{t >0,z € t.conv(.A)}

TV or atomic norm minimization rely on a “separation condition” between
spikes/sources for developing theoretical guarantees.

2For an arbitrary point-spread function g(#) bandlimited to | f| < B/2, the Fourier-domain measurement
model has been typically modified as [Chi '16,'20]

K
Ym = jeﬂw"”f(g #2)(O)dt+npm = Y e’ TMTEG, ) Wi € [—B/2,- -, B/2]
k=1

However, as argued in [Batenkov,Bhandari,Blu’19],[Chen,Moitra’'20], bandwidth selection is an issue, and the

frequency domain model may not be fully representative of the actual physical measurements.
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Atomic Norm Denoising and Separation Condition

o1
min > ly — 2|7 + Al] 4
z 2

» Separation Condition: | A := min¢(r;,7;) > (wrap-around distance)

@
i#] M
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Atomic Norm Denoising and Separation Condition

o1
min > ly — 2|7 + Al] 4
z 2

» Separation Condition: | A := rr;ém (13, 15) > % (wrap-around distance)
i#]

Recovery Guarantee [Li,Tang 2020]
Assume that the noise m is zero mean Gaussian with independent entries and
variance o. If Separation condition holds, the complex amplitudes ¢ have

approximately the same magnitude, and Z, \ are suitably chosen, then

1og M log M
lexllme — 7x] = O (05222 ) jep — e = O [ oy /=2
MS/Q M
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Atomic Norm Denoising and Separation Condition

o1
min > ly — 2|7 + Al] 4
z 2

(wrap-around distance)

» Separation Condition: | A := min ¢(7;, ;) > =
i#j M

Recovery Guarantee [Li,Tang 2020]

Assume that the noise m is zero mean Gaussian with independent entries and
variance o. If Separation condition holds, the complex amplitudes ¢ have
approximately the same magnitude, and Z, \ are suitably chosen, then

1og M log M
lexllme — 7x] = O (05222 ) jep — e = O [ oy /=2
MS/Q M

> Separation condition is needed even in noiseless setting and is shown to be
necessary for success of atomic and TV norm minimization [Da

Costa,Dai'18],[Fernandez-Granda'18,'20].
28




Revisiting Separation Condition

> Role of additional Measurements available due to temporal dimension.

» Role of correlation priors (or sources being statistically independent)?




Revisiting Separation Condition

> Role of additional Measurements available due to temporal dimension.

» Role of correlation priors (or sources being statistically independent)?

> Can correlation priors lead us to fundamentally relax the separation
condition, and re-parameterize it by bringing out the integrated effect of
number of temporal measurements, noise power in addition to spatial
measurements?

29



Correlation Priors and Sparse Arrays

Sources are statistically uncorrelated: E(c;cf) = prd[j — k]

Physical Array Difference Co-Array

» Measurement Covariance Matrix: > Difference-set Covariance Matrix
Ryy = STd]ffST Tyife € CMairx Mais g Toeplitz, and

» Ry, € CM*M is Toeplitz for a Laire = 0.

ULA, not Toeplitz for sparse arrays. > Tt = Atoeplitz(Ryy)
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Correlation Priors and Sparse Arrays

Sources are statistically uncorrelated: E(c;cf) = prd[j — k]

Physical Array Difference Co-Array

» Measurement Covariance Matrix: > Difference-set Covariance Matrix
Ryy = STd]ffST Tyife € CMairx Mais g Toeplitz, and

» Ry, € CM*M is Toeplitz for a Laire = 0.

ULA, not Toeplitz for sparse arrays. > Tt = Atoeplitz(Ryy)

> Difference-set based super-resolution methods utilize the subspace-structure of
Tuir (and the large difference set of sparse arrays) to recover {w;}% |

» Can correlation priors and temporal measurements help overcome the need for a
strict separation condition (A > %) which is dictated only by the number M of
spatial measurements 7
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Analyzing Co-array Super-resolution with Spatiotemporal Mea-

surements

Theorem [Hucumenoglu,P.20]

Suppose 0% (A* © A) > %- Given any € > 0, and 0 < § < 1, the matching
distance error in frequency estimation by co-array ESPRIT satisfies md(w,w) < ¢
with probability at least 1 — ¢ if

&(Maife, 0, K) )

T > Ty,
max( 0 €?log 0
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Analyzing Co-array Super-resolution with Spatiotemporal Mea-

surements

Theorem [Hucumenoglu,P.20]

Suppose 0% (A* © A) > %- Given any € > 0, and 0 < § < 1, the matching
distance error in frequency estimation by co-array ESPRIT satisfies md(w,w) < ¢
with probability at least 1 — ¢ if

&(Maife, 0, K) )

T > Ty,
max( 0 €?log 0

» The condition 0% (A* ® A) > p"—z_ can be simplified to produce a minimum

separation condition that depends on both Mg and SNR.
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Analyzing Co-array Super-resolution with Spatiotemporal Mea-

surements

Theorem [Hucumenoglu,P.20]

Suppose 0% (A* © A) > %- Given any € > 0, and 0 < § < 1, the matching
distance error in frequency estimation by co-array ESPRIT satisfies md(w,w) < ¢
with probability at least 1 — ¢ if

&(Maife, 0, K) )

T > Ty,
max( 0 €?log 0

» The condition 0% (A* ® A) > p"—z_ can be simplified to produce a minimum
separation condition that depends on both Mg and SNR.

» The number of snapshots needs to be larger than a threshold T} that depends
on the minimum separation A, number of sources K, My and SNR.
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Numerical Result uency Error and Separation
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Figure 3: Comparison of DoA Estimation error of Nested Array and ULA as a function of
L for (a) A =0.3 and (b) A =0.01
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Numerical Result uency Error and Separation

5 <1073 Snapshots = 30,A =0.3 0.25 Snapshots = 30,A =0.01
g —e—Nested Array g ’ —e—Nested Array
° —e—ULA o —e—ULA
54 5 02
® T
£ £
w3 ®» 0.15
(o} (ol
< <
8 2 8 0.1
el el
I 8
T 1 ® 0.05
£ £
o o
z P4

IN=}
o

0 15 20 25 30 35 40 15 20 25 30 35 40
No of Sensors No of Sensors

(a) (b)
Figure 4: Comparison of DoA Estimation error of Nested Array and ULA as a function of
M for (a) A =0.3 and (b) A =0.01
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Numerical Results: MUSIC Spectrum as a function of Separa-

tion

-2 0 2 -2 0 2 -2 0 2
Angle (radians) Angle (radians) Angle (radians)

Figure 5: MUSIC Spectrum of ULA (red) and a Nested array (blue). The SNR varies
row-wise with values {—1,—0.5,0} dB. Source separation varies column-wise with values
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A note on Covariance Estimation and Frequency Estimation

Error with Sparse Arrays

Let S denote the set of sensor locations. Let Tdiff,g be an estimate of the co-array
covariance matrix, obtained by spatially averaging entries of Ry .
> Nested Geometry with M Sensors: HTdiff'nest — Thitf nestll2 < €| Tuitt nest |2 with

probability at least 1 — § if L > ¢; Mattnest logg”‘““'"es‘/“s)
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A note on Covariance Estimation and Frequency Estimation

Error with Sparse Arrays

Let S denote the set of sensor locations. Let Tdiffs be an estimate of the co-array
covariance matrix, obtained by spatially averaging entries of Ry .

> Nested Geometry with M Sensors: HTdiff'nest — Thitf nestll2 < €| Tuitt nest |2 with

probability at least 1 — § if L > ¢; Mattnest logg”‘““'"es‘/“s)

> Uniform Geometry with M Sensors: ”TdifF,ULA = Tdif-'fyULAHQ < GHTdifF’ULAHQ

with probability at least 1 — 6 if L > ¢; log Mait.uia lzg(M‘“”’ULA/e‘s)
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A note on Covariance Estimation and Frequency Estimation

Error with Sparse Arrays

Let S denote the set of sensor locations. Let Tdiffys be an estimate of the co-array
covariance matrix, obtained by spatially averaging entries of Ry .

> Nested Geometry with M Sensors: HTdiff'nest — Thitf nestll2 < €| Tuitt nest |2 with

probability at least 1 — § if L > ¢y Meifinest loggwdi“‘"es‘/us)

> Uniform Geometry with M Sensors: ”TdifF,ULA = TdiffyULAHQ < E”Tdiﬂ-"ULAHQ

with probability at least 1 — § if L > ¢, ‘28 Manua lzg(Md‘”’ULA/c‘s)

Estimating the co-array covariance matrix (by simple sample averaging) entails
higher error for sparse arrays for a given budget of spatial (M) and temporal (L)

measurements.
Is this true for frequency estimation error as well?
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Covariance versus Frequency Estimation: A reversal of Trend

» Study the Cramér-Rao Bound for covariance versus frequency estimation from
measurements

=

Zawk Ck,1 + My
k=1
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Covariance versus Frequency Estimation: A reversal of Trend

» Study the Cramér-Rao Bound for covariance versus frequency estimation from

measurements
K
Z a wk Ck,1 + My
k=1
Covariance Estimation Frequency Estimation
QT
Y ~ CN (07 SlefFS ) Yy ~ CN (O,A(w)PAH(W) + 0_21-)

Parameter: 0 = [Tyi]
Parameter: 0 = [{wy, pr}E_|, 0]
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Covariance versus Frequency Estimation: A reversal of Trend

» Study the Cramér-Rao Bound for covariance versus frequency estimation from

measurements
K
Z a wk Ck,1 + My
k=1
Covariance Estimation Frequency Estimation
QT
Y ~ CN (07 SlefFS ) Yy ~ CN (O,A(w)PAH(W) + 0_21-)

Parameter: 0 = [Tyi]
Parameter: 0 = [{wy, pr}E_|, 0]

(ol = vec! (22 poyvec (Fer®)) (o)~ ri0) " @ e6)
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Cramér-Rao Bound of Covariance versus Frequency Estimation

» Number of antennas M = 10
» Number of sources K = 4
> Number of snapshots L = 1000
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Figure 6: CRB for (a) Estimating Tyir (b) AOA Estimation
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Conclusions

> Noisy super-resolution is a challenging task. Utilization of appropriate priors
can make a significant difference.

> Sensing geometry and algorithms can work hand-in-hand to overcome
limitations of existing techniques.

> “Resolvability” of point sources depends on both spatial and temporal
measurements. Judicious use of temporal measurements can significantly
improve achievable resolution.

> These results can be generalized to incorporate different types of PSFs.
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