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1. Introduction to FSO Systems



FSO Systems

Figure: Possible 6G architecture1.

• Applications
- Last-mile access
- Fiber backup
- Backhaul of wireless networks
- Satellite communications
- Drone communication

• Advantages
- Directional narrow laser beams
- Cost-efficient transceivers
- Link coverage (> 1000 km)
- License-free bandwidth
- High data rates (up to 10 Gbps)

1M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, "6G wireless communication systems: Applications, requirements, technologies, challenges, and
research Directions," in IEEE Open J. Commun. Soc., vol. 1, 2020.
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Limitations in FSO Systems

Tx (laser source)

Rx (optical lens/PD)

IRS

Blockage

Incident beam

Reflected beam

• Limiting factors
- Atmospheric turbulence
- Adverse whether conditions
- Beam divergence
- Misalignment errors
- Line-of-sight (LOS) connection

• Countermeasures
- MIMO FSO systems
- Hybrid RF/FSO systems
- Serial and parallel FSO relays
- Optical IRSs
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2. Optical IRSs



Optical Reflecting Surfaces

Possible realizations:

• Mirror-based IRSs:
- Standard mirrors
- Micro-mirrors

• Meta-surface-based IRSs:
- Non-reconfigurable meta-surfaces
- Reconfigurable meta-surfaces
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Standard Mirrors

θ
θ

Rotatory motor

• Physical operating principle:
- Specular reflection
- Mechanical re-orientation

• Control resolution > 1 cm
• Low functional capability
• Low tunability
• Cheap and technologically mature
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Micro-Mirrors

θ
θ

V =0 V >0

MEMS

• Physical operating principle:
- Specular reflection
- Mechanical re-orientation via MEMS

• Control resolution > 1 mm
• Moderate functional capability
• Moderate tunability
• Technologically mature (not for the FSO

applications in this talk)

Robert Schober | One World Signal Processing 2021 | Optical Intelligent Reflecting Surfaces September 29, 2021 5 / 43



Non-reconfigurable Meta-Surfaces

θi

θr

0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4

V-shape nano-antennas

Phase shifts

• Physical operating principle:
- Nano-antennas (on the order of

sub-wavelength)
- Change of geometrical properties

(size, orientation, etc.)

• Control resolution > 500 nm
• High functional capability
• No tunability
• Various proofs-of-concept available but

technologically not mature
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Reconfigurable Meta-Surfaces

θi

θr

V
Au

Au

ITO

Al2O3

Tunable element

• Physical operating principle (change of
material properties):

- Charge density (e.g., conductive
oxide materials or graphene)

- Structure (phase-transition materials)
- Molecular alignment (liquid crystal)

• Control resolution > 1−10 µm
• High functional capability
• High tunability
• Various proofs-of-concept available but

technologically not mature
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Optical vs. RF IRSs

Various differences including:

• IRS electrical size
• Analysis methods
• Type of incident waves
• Channel impairments
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IRS Electrical Size

• IRS electrical size Le:

Le =
L

λ

- L: IRS size in meter
- λ : Wavelength in meter

• Example:
- 10 cm at 3 GHz (sub-6 GHz), 30 GHz (mmWave), 3 THz (THz), and 300 THz

(optical) correspond to 1, 10, 1000, 100000 wavelengths, respectively

• Important consequences (from a theoretical point-of-view):
- High flexibility in terms of beam shaping
- Analysis techniques based on geometric-optics may become accurate
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Analysis Methods: Scattering Theory vs. Geometric Optics
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Power density of the reflected wave at x and y = 200 m. An IRS located at origin on the x-axis with

size 20 cm anomalously reflects an oblique plane wave impinged from angle 30◦ into perpendicular

direction [R1].
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Incident Wave Models

• Wave models
- RF: Plane or spherical waves
- FSO: Concentrated wave models such as the Gaussian beam

• Consequence
- E.g.: Saturated performance gain in terms of IRS size

x
y

In
te

n
s
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y
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Channel Impairments

• RF systems
- Free-space path-loss

- Multi-path fading

- Random shadowing

- Atmospheric loss (e.g.,
in mmWave)

- 7

- 7

• FSO systems
- Geometric loss (divergence of the beam)

- 7

- 7

- Atmospheric loss (dominant factor in
low-visibility conditions (e.g., fog))

- Atmospheric turbulence-induced fading

- Pointing errors and misalignment losses
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Design Goals

Generalized Snell Law Splitting

Focusing Collimating

θiθr
θr1θr2

Goals:
• Relaxing LoS requirement
• Supporting multiple links
• Re-adjusting beamwidth
• Correcting distorted wavefront
• Maximizing Rx’s received power
• ...

Considerations:
• Gaussian beam
• Building sway
• ...
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3. Modeling of IRS-assisted FSO Links



IRS-assisted FSO Link

Tx (laser source)

Rx (optical lens/PD)

IRS

Blockage

Incident beam

Reflected beam

Question: How much of the transmitted optical power in an IRS-assisted FSO link
can be collected at the receiver lens?
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Transmitter

Gaussian beam (emitted from the origin and propagating along the z-axis):

E(a,z) =E0

(
w0

w(z,w0)

) n−1
2

exp

(
− a2

w2(z,w0)

)
× exp

(
−j

(
kz + k

a2

2R(z,w0)
−ψ(z,w0)

))
, n ∈ {2,3}

• n ∈ {2,3}: Dimension of the space (i.e., 2D or 3D)
• a: Distance to the center of beam footprint (2D: a = x , 3D: a =

√
x2 + y2)

• E0: Electric field at the origin
• w0: Beam waist radius
• w(z,w0): Beamwidth at distance z
• k : Wave number
• R(z,w0): Curvature radius of the beam’s wavefront at distance z
• ψ(z,w0): Near-field Gouy phase (becomes constant for large z)
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Receiver

Direct detection:

hg =
∫ ∫

(x,y)∈A

I(x,y)dxdy

• A : Receiving lens area
• I(x,y): Power intensity on the Rx lens plane

I(x,y) =
|E lens(x,y)|2

2η

• E lens(x,y): Electric field on the lens
• η : Free-space impedance

x

y

Receiving Lens Beam Footprint
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Analysis Methods

• Scattering theory
• IRS as a collection of discrete phase-shifting unit-cells

• Huygens-Fresnel principle
• IRS as a continuous phase-shifting surface

• Geometric optics
• Approximating the reflection of waves from the IRS based on ray optics
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Scattering theory

Reflected electrical field:

E lens(r) = ∑
m

√
sirs(E irs

m )
exp(jk |r−pm|)
|r−pm|

n−1
2

exp(jφm),

• E lens(r): Electric field at the Rx lens at position r
• E irs

m : Incident field on the m-th unit cell
• sirs(·): Power of the reflected wave
• pm: Position of the m-th unit cell
• φm: Phase of the reflected wave from the m-th unit cell
• n ∈ {2,3}: Dimension of the space (i.e., 2D or 3D)
• k : Wave number
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Huygens-Fresnel principle

Reflected electrical field:

E lens(r) =
ς

jλ
n−1

2

∫
p∈A irs

E irs(p)
exp(jk |r−p|)
|r−p| n−1

2

exp(j∆φ(p))dp,

• E lens(r): Electric field at the Rx lens at position r
• E irs(p): Incident field at position p on the IRS
• ς : A factor to ensure IRS passivity
• A irs: Set of points on the IRS
• ∆φm: Phase-shift of the m-th unit cell
• n ∈ {2,3}: Dimension of the space (i.e., 2D or 3D)
• k : Wave number
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Geometric Optics

Basic idea: Approximating wave propagation by ray tracing

What is a ray?
• Ideal: Wave propagation in a certain direction with zero beamwidth
• Pragmatic: Wave propagation in a certain direction with a beamwidth

smaller than the largest dimension of interest

The beamwidth is inversely proportional to the electric dimension of the EM
radiator (e.g., IRS)
=⇒ beamwidth can be (made) quite small at optical frequencies because of large
electric dimension of the EM radiator

Unlike scattering theory, in geometric optics:
• A point in space receives power from a ray only if it lies along the propagation

line of the ray
• Image theory significantly simplifies the analysis
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Geometric Optics

Reflected electrical field:

E lens(r) = ∑
`|r∈A`

√
sray(E irs

` )exp(jk |r−p`|)exp(jφ`),

• E lens(r): Electric field at the Rx lens at position r
• E irs

` : Incident field on IRS for the `-th ray
• sray(·): Power of the reflected ray
• p`: Position of the `-th ray on the IRS
• φ`: Phase of the `-th ray leaving the IRS
• A`: Points that lie along the propagation line of the `-th ray

Specular reflection Anomalous reflection Focusing
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Comparison of Analysis Methods

 

 
Geometric optics
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Received power density over the Rx lens line for the 2D setup. Setup: Reflecting a Gaussian beam

from angle θi =
π

6 rad to angle θr = θrl = 0; dsr = drl = 200 m; w0 = 1 mm; λ = 1550 nm;

ar = 10 cm; al = 2.5 cm; ς =
√
cos(θi)/cos(θr ), and the proposed phase-shift design in [R3].
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Comparison of Analysis Methods
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IRS Area

Question: How much do we gain by increasing the IRS area considering
• A concentrated Gaussian beam
• An electrically-large receiving lens

Question: What is the impact of IRS design, e.g.:
• Specular reflection by a mirror
• Focusing by a meta-surface

Question: For what regime of IRS sizes does geometric-optic-based
approximation become accurate?
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Power Scaling Law
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Fraction of transmit power received by an Rx lens vs. the IRS length L. Setup: 2D system; Tx at

(−200 m,300 m); IRS at (0,0), Rx at (0,500 m); Gaussian beam; 1550 nm wavelength; waist

radius w0 = 1 mm; IRS length L; half-wavelength unit-cell spacing; Rx lens length 10 cm [R1].
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4. Impact of Building Sway



Building Sway

• Building sway is caused by wind, thermal expansions, etc.
• Due to narrow laser beam, it causes beam misalignment or pointing error

x

y

Receiving Lens Beam Footprint
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Building Sway

• Building sway is caused by wind, thermal expansions, etc.
• Due to narrow laser beam, it causes beam misalignment or pointing error
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Statistical Model

The geometric loss hg (i.e., the fraction of power reaching the receiving lens) is a
random variable due to the random misalignment caused by building sway

Objective: Develop a statistical model of hg that accounts for the sways of
buildings where the transmitter, the IRS, and the receiver are placed on

Challenge: The models obtained based on scattering theory and
Huygens-Fresnel principle are too complicated to serve as a basis for the
derivation of a statistical model
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Equivalent Mirror-assisted System

LS

Lens

θr θr

Amplitude

Phase (reflected wave)

LSn

System

Helpful result [R3]: The IRS phase shift can be chosen such that the phase of the
non-specular reflected wave from the IRS in the original system becomes identical
to the phase of the (specular) reflected wave from a mirror in the equivalent
system!
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Equivalent Mirror-assisted System

LS

Lens

LSn

VSnSystem

Analysis methods: This allows us to employ geometric optics and image theory
to analyze the impact of building sway via the equivalent mirror-assisted system!
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Deterministic Geometric Loss

For a given realization of
misalignment vector u:

hg =
∫ ∫

(x,y)∈A

I(x,y)dxdy

The solution to the above integral
is not available in closed form! x

y

Receiving Lens

Beam Footprint

u = (u1, u2)
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Deterministic Geometric Loss

Lower and upper bounds [R6]

hlow
g ≈ A0 exp

(
−‖u‖

2

tmin

)
hupp

g ≈ A0 exp

(
−‖u‖

2

tmax

)
Proposed approximation:

hg ≈ A0 exp

(
−‖u‖

2

t

)
for some t ∈ [tmin, tmax]
Note: A0, tmin, and tmax are
derived in [R3] as functions of
beam parameters!

x

y

u = (u1, u2)

Upper bound

Lower bound
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Statistical Misalignment Model

Assumption: 3D Gaussian building sway with independent components
• Tx: ε

x,y ,z
s ∼N (0,σ 2

s I)
• IRS: ε

x,y ,z
r ∼N (0,σ 2

r I)
• Rx: ε

x,y ,z
l ∼N (0,σ 2

l I)

Decoupling: For simplifications, we re-define ε
x,y,z
s , ε

x,y ,z
r , and ε

x,y ,z
l in different

coordinate systems
• Tx: ε

x,y ,z
s is decoupled into
ε

xy
s : components orthogonal to the direction of beam propagation

εz
s : component in the direction of beam propagation

• IRS: ε
x,y,z
r is decoupled into

ε
xy
r : components in the IRS plane

εz
r : component orthogonal to the IRS plane

• Rx: ε
x,y ,z
r is decoupled into
ε

xy
l : components orthogonal to the direction of beam propagation

εz
l : component in the direction of beam propagation

For sufficiently large IRSs and large Rx-IRS and IRS-Rx distances, only ε
xy
s , εz

r ,
and ε

xy
l significantly contribute to the overall misalignment!
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Statistical Misalignment Model
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εz
s : component in the direction of beam propagation

• IRS: ε
x,y ,z
r is decoupled into

ε
xy
r : components in the IRS plane

εz
r : component orthogonal to the IRS plane

• Rx: ε
x,y ,z
r is decoupled into
ε

xy
l : components orthogonal to the direction of beam propagation

εz
l : component in the direction of beam propagation

For sufficiently large IRSs and large Rx-IRS and IRS-Rx distances, only ε
xy
s , εz

r ,
and ε

xy
l significantly contribute to the overall misalignment!
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Statistical Geometric Loss Model

Assuming building sway variables ε
xy
s , εz

r , and ε
xy
l follow Gaussian distribu-

tion, ‖u‖ follows a Hoyt distribution and hg follows the following distribution

fhg (hg) =
ϖ

A0

(
hg

A0

) (1+q2)ϖ

2q −1

I0

(
−(1−q2)ϖ

2q
ln

(
hg

A0

))
, 0≤ hg ≤ A0.

where ϖ = (1+q2)t
4qΩ is a constant with

Ω = χ1 + χ2 and q =

[
min{χ1,χ2}
max{χ1,χ2}

]1/2

,

where χ1 and χ2 are the eigenvalues of Σ [R3].
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Simulation Results
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Simulation Results
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Simulation Results
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5. Multi-link FSO Systems



Multi-Link FSO Systems
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• Multiple LS-lens connections
• Single IRS for Gaussian FSO beams
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Point-to-Point IRS-assisted FSO link

Repartition the IRS in to Q tiles which connects m-th LS to n-th lens
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• Tile parameters: position (xq,yq), size (Lx , Ly ), phase-shift profile ∆φq(r)
• LS and lens centers on the IRS: r`0,m, rp0,n
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Point-to-Point Geometric Loss

• Point-to-point geometric loss (m-th LS and n-th lens)

hm,n
g =

∫∫
Apn

Im,n(pn)dApn, Im,n(pn) =

∣∣∑Q
q=1 Em,n

q (pn)
∣∣2

2ηP`m

• Huygens-Fresnel principle

Em,n
q (pn) =

ςq

jλ

∫
r∈A tile

E irs(r)
exp(jk |pn− r|)
|pn− r| exp(j∆φq(r))dr,

• To find closed form solution, approximate |pn− r| as

|pn− r| ≈ |pn|−
xpx + ypy

|pn|︸ ︷︷ ︸
=t1

+
x2 + y2

2|pn|
− x2p2

x + y2p2
y

2|pn|3︸ ︷︷ ︸
=t2
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Far-Field vs. Intermediate-Field

• Far-field regime (term t1) [R4]

k
x2 + y2

2|pn|
� 2π → df =

x2
e + y2

e

2λ

where xe = min
(

Lx
2 ,wx

)
and ye = min

(
Ly

2 ,wy

)
.

• Intermediate-field regime (terms t1 and t2) [R4]

k
(x2 + y2)(xpx + ypy )

2|pn|3
� 2π → dn =

[
(x2

e + y2
e )(xe + ye)

4λ

]1/2

• Example: IRS with Lx = Ly = 50 cm and LS at
(d`,θ`,φ`) =

(
1000m, π

8 ,0
)

with λ = 1550 nm and w0 = 2.5 mm

df = 32.7×103 m and dn = 85.6m
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Far-Field vs. Intermediate-Field
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Lx ×Ly : IRS size [R5]

Robert Schober | One World Signal Processing 2021 | Optical Intelligent Reflecting Surfaces September 29, 2021 37 / 43



Multi-Link IRS-Assisted FSO Systems
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IRS Sharing Protocols

• Protocols [R5]

PSfrag repla
ements

a) Time Division (TD)

b) IRS Division (IRSD)


) IRS Homogenization (IRSH)

• Parameters
• Number of tiles (Q)
• Tile phase shift profile (rt

q)
• LS footprint center (r`0)
• Lens center on the IRS (rp0)

Table: IRS sharing protocols parameters.

Sharing Protocols Q rt
q r`0,rp0

TD protocol 1 (0,0) (0,0)
IRSD protocol N rq rq

IRSH protocol � N (0,0) (0,0)
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Simulation Results
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Target rate: R = 1.7 Gbit/s [R5]
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Simulation Results
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6. Conclusions and Future Work



Summary and Conclusions

• Optical IRSs
• Review and comparison of different optical IRS technologies
• Comparison of IRS-assisted RF and FSO systems

• Deterministic channel model
• Geometric loss
• Comparison of different analysis methods

• Statistical channel model
• Building sway
• Equivalent mirror-assisted analysis

• Multi-link FSO systems

Take-away messages:
• Optical IRSs can be used to relax the LoS requirement, which is a persisting

limitation of FSO systems
• Optical IRS-assisted systems have unique features different from RF

IRS-assisted systems; hence new design and analysis methods are needed
• Compared to RF IRSs, optical IRSs are relatively less studied from a

communication-theoretical perspective; many open problems exist
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Future Work

• Channel modeling
• Geometric loss for general phase-shift models
• Pointing error for a given IRS design (e.g., focusing, collimation, etc.)
• Channel delay dispersion
• Wavefront distortion

• System design and performance analysis
• Initial link establishment
• Channel estimation
• Modulation schemes
• IRS optimization

• Implementation
• Relevant hardware constraints/impairments
• Verification of the theory via experiments
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Thank you for your attention!
Questions?
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Optical IRSs vs. Optical Relays
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