Inferring Networks and Network Properties from

Santiago Segarra

Graph Dynamic Processes

Santiago Segarra

Electrical and Computer Engineering
Rice University
segarra@rice.edu
http://segarra.rice.edu

One World SP Seminar Series, July 16-17, 2020



mailto:segarra@rice.edu
http://segarra.rice.edu

Network Science

Online social media Internet Clean energy and grid analytics

» Desiderata: Process, analyze and learn from network data [Kolaczyk09]

Santiago Segarra 2/42



Network Science

Online social media Internet Clean energy and grid analytics

2@ 8

» Desiderata: Process, analyze and learn from network data [Kolaczyk09]

» Network as graph G: encodes pairwise relationships between agents
> Interest not only in G, also in network data associated with the nodes

Combine Network Science and Signal Processing and Machine Learning to
leverage the structure of networks for the better understanding of data
defined on them
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Motivating examples — Graph signals

Irregular Data Domains

credit: LTS2

Santiago Segarra 4/42




Motivating examples — Processing signals

Interpolate a brain signal Compress a signal in Localize the
from local observations an irregular domain source of a rumor
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Smooth an observed Predict the evolution of a Infer the topology where
network profile network process the signals reside
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Graph signals

> Consider graph G = (V, &, W). Graph signals are mappings x : V — R
= Defined on the nodes of the graph

» May be represented as a vector x € RV

= x; denotes the signal value at the i-th vertex in V
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Graph-shift operator

» Associated with G is the graph-shift operator S € RV*N

» S can take nonzero values in the edges of G or in its diagonal

= S transformation that can be computed locally at the nodes
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» Ex: Adjacency A and Laplacian L = D — A matrices
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Graph Fourier Transform (GFT)

> Let S = VAV~! be the shift associated with G
» The Graph Fourier Transform (GFT) of x is defined as

%=V Ix

» While the inverse GFT (iGFT) of X is defined as x = V&
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Graph Fourier Transform (GFT)

> Let S = VAV~! be the shift associated with G
» The Graph Fourier Transform (GFT) of x is defined as

x=V'x
» While the inverse GFT (iGFT) of X is defined as x = V&

v[ka = Z Aij([Vk]i — [Vk]j)2 = TV(vk)
(ij)eE
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Graph Fourier Transform (GFT)

> Let S = VAV~! be the shift associated with G
» The Graph Fourier Transform (GFT) of x is defined as
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» While the inverse GFT (iGFT) of X is defined as x = V&
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Graph Fourier Transform (GFT)

> Let S = VAV~! be the shift associated with G
» The Graph Fourier Transform (GFT) of x is defined as

x=V'x
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Linear (shift-invariant) graph filter

» A graph filter H: RV — RN is a map between graph signals of the form

» Polynomial in S of degree L, with coeff. h = [hg, ..., h]"
[Sandryhaila-Moura13]

L
H:= hyS° + mS '+ ...+ h St = Z S
1=0

> Ify:=Hx, Def 1saysy = Zf:o hix() (shifted versions of x)
= x) ;= 8/x = SxU=1) can be found locally and sequentially

Santiago Segarra



Network topology inference

[ Understanding Networks

°
Overlappipg clustering
o e

Node centralities

° . [}
Network inference Authoxship attribution

_ Graph neural nets
Deconvolution

o
Dual graphs

° ) :
Stationarity

odern English plays

® © |
Sampling o Early
Reconstruction oNc‘uroscwc\mcc °
° >
Signal distance .Fi\tor design Shakesgearean Literature

o
°® ical SN
Median graph filters Political Science




Network topology inference and GSP

» Network topology inference from nodal observations [Kolaczyk09]
= Approaches use Pearson correlations to construct graphs [Brovelli04]
= Partial correlations and conditional dependence [Friedman08]
= [Banerjee08], [Lakel0], [Slawskil5], [Meinshausen06], [Karanikolas16]
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Network topology inference and GSP

» Network topology inference from nodal observations [Kolaczyk09]
= Approaches use Pearson correlations to construct graphs [Brovelli04]
= Partial correlations and conditional dependence [Friedman08]
= [Banerjee08], [Lakel0], [Slawskil5], [Meinshausen06], [Karanikolas16]

» Key in neuroscience [Spornsl10]

= Functional net inferred from activity

» Most GSP works assume that S (hence the graph) is known
= Analyze how the characteristics of S affect the signals and filters

> We take the reverse path
= How to use GSP to infer the graph topology? [TSIPN17] [SPMagl9]
= [Dongl6], [Kalofolias16], [Meil7], [Shenl7], [Pasdeloupl7], [Egilmez17]
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Connecting the dots

» Recent tutorials on learning graphs from data
> |EEE Signal Processing Magazine and Proceedings of the IEEE

% Topology Identification and
Learning Over Graphs:

Accounting for Nonlinearities
8 leammg and Dynamics ‘
Graphs .

From Ilala

A signal rpresatotn perpacive

» |EEE Trans. on Signal and Information Processing over Networks
» |ssue on Network Topology Inference earlier this year

Segarra



Problem formulation

Setup
» Undirected network G with unknown graph shift S
> Observe signals {y;}7_, defined on the unknown graph

Y1 Y2 Y3
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Problem formulation

Setup
» Undirected network G with unknown graph shift S
> Observe signals {y;}7_, defined on the unknown graph

Y1 y2 y3

Problem statement

Given observations {y;}¥_;, determine the network S knowing that
{yi}£_, are outputs of a diffusion process on S.
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Generating structure of a diffusion process

» Signal y; is the response of a linear diffusion process to input x;

yi H(I—a,S)x, = ZB,SX,, i=1,...,P

= 1=0

= Common generative model, e.g., heat diffusion, consensus
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Generating structure of a diffusion process

» Signal y; is the response of a linear diffusion process to input x;

"u
::18

(I1—aS)xi = > BS'x;, i=1,...,P

\
Il
-

= Common generative model, e.g., heat diffusion, consensus

» Cayley-Hamilton asserts we can write diffusion as (L < N)

L—1
= (Zh,S’) xi:=Hx;, i=1,...,P
1=0

= Graph filter H is shift invariant [Sandryhaila-Moura'13]
= H diagonalized by the eigenvectors V of the shift operator
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Generating structure of a diffusion process

» Signal y; is the response of a linear diffusion process to input x;

"u
::18

(I1—aS)xi = > BS'x;, i=1,...,P

\
Il
-

= Common generative model, e.g., heat diffusion, consensus

» Cayley-Hamilton asserts we can write diffusion as (L < N)

L—1
= (Zh,S’) xi:=Hx;, i=1,...,P
1=0

= Graph filter H is shift invariant [Sandryhaila-Moura'13]
= H diagonalized by the eigenvectors V of the shift operator

> Goal: estimate undirected network S from signal realizations {y;}_;
= Unknowns: filter order L, coefficients {h/}:7}, inputs {x;}7;

Santiago Segarra 14 /42



Blueprint of our solution

P STEP 1: Estimate
. the eigenvectors of
{yitiza &

S

STEP 2: Find
eigenvalues via
optimization

U

A 4

A priori info and
desirable features
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Blueprint of our solution

STEP 1: Estimate

P the eigenvectors of
{yitiza & "~
S 'V :noisy
> STEP 2: Find A
> eigenvalues via S
optimization
A priori info and Sparsity and shift
desirable features operator feasibility
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Step 1: Obtaining the eigenvectors of S

> vy is the output of a local diffusion of a white input

y= aon(l—a/S (Zh, )x::Hx
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Step 1: Obtaining the eigenvectors of S

» y is the output of a local diffusion of a white input
[eS) N—-1
y=ag H(I —aS)x = (Z hy S’)x = Hx
=1 1=0

» The covariance C, of y shares V with S

C, = H? = h21 + 2hy S + h3S? + ...
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Step 1: Obtaining the eigenvectors of S

» y is the output of a local diffusion of a white input
0o N—-1
y=ag H(I —aS)x = (Z hy S’)x = Hx
I=1 1=0

» The covariance C, of y shares V with S

C, = H? = W31 + 2ho S + h2S? + ...

» Mapping S — C, is polynomial
= Correlation methods = C, =S
= Precision methods (graphical Lasso) —+ C, = S~!
= Structural EM methods = C, = (I — S)~2

Santiago Segarra



Step 2: Convex recovery of the eigenvalues

» Use extra knowledge/assumptions to find the eigenvalues
= Of all graphs, select one that is optimal in some sense

N
Sy :=argmin [|S|[p s.to S= Z/\kaVkT, Ses
S,A k=1

» Set S contains all admissible scaled adjacency matrices

§:={S|5;>0, SeMN S; =0, ¥, S;=1}
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Step 2: Convex recovery of the eigenvalues

» Use extra knowledge/assumptions to find the eigenvalues
= Of all graphs, select one that is optimal in some sense

N
Sy :=argmin [|S|[p s.to S= Z/\kaVkT, Ses
S,A k=1

» Set S contains all admissible scaled adjacency matrices

§:={S|5;>0, SeMN S; =0, ¥, S;=1}

» Non-convex problem, relax to ¢1-norm minimization, e.g., [Tropp06]

N
1 :=argmin ||S|; s.to S= Z)\kvkva, Ses
S =

» Does the solution Sj coincide with the /y solution S5?

Santiago Segarra



Recovery guarantee for /1 relaxation

» Define W:=V oV

» Build M := (I - WWT)pe the orthogonal projector onto range(W)
= Construct R :=[M, e; ® 1y_1]
= Denote by K the indices of the support of s; = vec(S;)

i and S§ coincide if the two following conditions are satisfied:
1) rank(Rx) = |K|; and
2) There exists a constant ¢ > 0 such that

YR = e (672RRT + 1 ele) M oo < L.

» Cond. 1) ensures uniqueness of solution S}

» Cond. 2) guarantees existence of a dual certificate for /y optimality

Santiago Segarra



Recovery guarantee for /1 relaxation

4ol

i and S§ coincide if the two following conditions are satisfied:
1) rank(Rx) = |K|; and
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Robust shift identification

STEP 1: Estimate

P the eigenvectors of
{yitiza & .
S V :noisy
> STEP 2: Find A~
> eigenvalues via
L optimization
A priori info and Sparsity and shift

desirable features operator feasibility
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Robust shift identification

STEP 1: Estimate

P the eigenvectors of
{yitiza & .
S V :noisy
> STEP 2: Find A~
> eigenvalues via
L optimization
A priori info and Sparsity and shift
desirable features operator feasibility

» QI1: How to modify the optimization problem to make it robust?
» Q2: Recovery guarantees in this robust setting?

19/42
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Noisy eigenvectors

» We might have access to V,a noisy version of the eigenvectors

» With d(-,-) denoting a (convex) distance between matrices

min ||S]1 s to =N M0, T, SeS, d(S,8) <e

{S,A,S}

> How does the noise in V affect the recovery?

Santiago Segarra



Noisy eigenvectors

» We might have access to V,a noisy version of the eigenvectors

» With d(-,-) denoting a (convex) distance between matrices

min ||S]1 s to =N M0, T, SeS, d(S,8) <e

{S,A,S}

> How does the noise in V affect the recovery?

» Conditions 1) and 2) but based on R, guaranteed

Santiago Segarra

d(S*,S%) < Ce

= € large enough to guarantee feasibility of S;
= Constant C depends on V and the support K




Performance comparisons

» Comparison with graphical lasso and sparse correlation methods
» Evaluated on 100 realizations of ER graphs with N =20 and p = 0.2

0.9 -9
ls
0.8 R
£07 —o—Ourfor H,
::é 0.6 .7 |-@ OurforH,
g L2 | —correl. for H
m 0.5 e —% Correl forH,
0.4 it Glasso for H
: e GLasso for H
035::---&:: i____*____*-----qls
0.2l , .
10" 102 10° 10° 10° 10°

Number of observations
» Graphical lasso implicitly assumes a filter H; = (pl + S)~/2
= For this filter our method works, but not as well

» For general diffusion filters Hy our method still works fine

Santiago Segarra



Inferring the structure of a protein

» Our method can be used to sparsify a given network
= Keep direct and important edges or relations
= Discard indirect relations that can be explained by direct ones

> Use eigenvectors V of given network as noisy eigenvectors of S

Ex: Infer contact between amino-acid residues in BPT1 BOVIN
= Use mutual information of amino-acid covariation as input

Ground truth Mutual info. Network deconv. Our approach

» Network deconvolution assumes a specific filter model [Feizil3]
= We achieve better performance by being agnostic to this

Santiago Segarra 22/42



Sensitivity of recovered edges

» Sensitivity of the top edge predictions

= Fraction of the real contact edges recovered

» For e = 0 we force S to be mutual information matrix S’

» For larger values of €, we get a better recovery

Fraction of recovered edges
o I o Qo e 1= o
= R S - S

o

-+~ SpecTemp (e = 0.0)

— -SpecTemp (¢ = 0.5)
— SpecTemp (¢ = 1.0)

- -Mutual information
—--Network deconvolution

Top predictions

200

250

Fraction of recovered edges
o o o o o
[ N S

o

- SpecTemp (e = 0.0)
— -SpecTemp (e = 0.5)
—SpecTemp (¢ = 1.0)

- -Mutual information
—--Network deconvolution /el L
L7
e P
e
L
/I B
=
50 100 150 200

Top predictions
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A rich framework for network inference

AP {Yi iP;l Network Q
{Xz}izl H(S) S
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A rich framework for network inference

HeH

{yitiia ~
() —fH(S) S

» Prior knowledge on the filter class [Segarra et al'17] [Zhu et al'20]
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A rich framework for network inference

S £ 87

{yitiia ~
() —fH(S) S

» Prior knowledge on the filter class [Segarra et al'17] [Zhu et al'20]
» Colored inputs to the diffusion process [Shafipour et al'17, '19]
» Inference for directed graphs [Shafipour et al'18]
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A rich framework for network inference

IR
{x"}2, —H(S)) -

Joint Network
Inference

{yz@)}fj:l

{(x{"H, —H(S,

» Prior knowledge on the filter class [Segarra et al'17] [Zhu et al'20]
» Colored inputs to the diffusion process [Shafipour et al'17, '19]

» Inference for directed graphs [Shafipour et al'18]

» Joint inference of multiple networks [Segarra et al'17]

Santiago Segarra



A rich framework for network inference

{yi £1 ities i
' P = - K Communities in
012 —{H(S) S

Prior knowledge on the filter class [Segarra et al'17] [Zhu et al’20]
Colored inputs to the diffusion process [Shafipour et al'17, '19]
Inference for directed graphs [Shafipour et al'18]

Joint inference of multiple networks [Segarra et al'17]

vVvyVvyVvVvyy

Recovering the community structure [Wai'18,'19] [Roddenberry’20]
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A rich framework for network inference

S ~ D(Q)

{}’i}il ~
o — (B 3

Prior knowledge on the filter class [Segarra et al'17] [Zhu et al’20]
Colored inputs to the diffusion process [Shafipour et al'17, '19]
Inference for directed graphs [Shafipour et al'18]

Joint inference of multiple networks [Segarra et al'17]

Recovering the community structure [Wai'18,'19] [Roddenberry’20]

vVVvyYVvYyVvyYVvyy

Estimating the graph model coefficients [Schaub et al'20]
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A rich framework for network inference

{Yi}f;l o
AP Network Centralities in
(ot —{H(s) :

Prior knowledge on the filter class [Segarra et al'17] [Zhu et al’20]
Colored inputs to the diffusion process [Shafipour et al'17, '19]
Inference for directed graphs [Shafipour et al'18]

Joint inference of multiple networks [Segarra et al'17]

Recovering the community structure [Wai'18,'19] [Roddenberry’20]

vVVvyYVvYyVvyYVvyy

Estimating the graph model coefficients [Schaub et al'20]

v

Recovering the node centralities [Roddenberry et al'20] [He at al'20]



What if we have low-rank data?

> Low-rankness is a prevalent feature in graph signals / network data

Social network data / opinion: Gene network data:

+ N

0
8
5
g

&7}
g
3
3

@

8

S

&

46 overexpressed transcription factors Deletion mutants in 42 of the same
with profiles above noise transcription factors

[Chua et al., PNAS, 2006]

» Number of experiments available is

» Polarization is common in social
limited due to time and labor cost.

networks' opinions
» Bad news: oftentimes we do not have full-rank data

25 /42




Community detection

Remedy: relax the goal of learning the whole graph )

Clustering
e

» Understanding the community structure gives a macroscopic (or
reduced resolution) view of the graph

= useful for network analysis and influence maximization

» Typical approach requires perfect knowledge of the graph

Santiago Segarra



Blind community detection

> A Blind Community Detection method to detect communities from
graph signals without learning/storing the graph itself

Blind Com. Det.

Spectral Clustering on low
rank covariance

Low-Rank
Excitation

\7 Lack of full-rank data
Unknown -> not accurate
Graph

Requires storing a

large network
Two-steps Approach g

Santiago Segarra



Problem statement

Given observations {y;}7 ,, determine the communities in G when:
(AS1) {y;}£_, are the outputs of a low-rank diffusion on G
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Problem statement

Given observations {y;}7 ,, determine the communities in G when:
(AS1) {y;}£_, are the outputs of a low-rank diffusion on G

L
y= Z hyS*w = H(S)w

£=0

w=Bz, BeR"*R R« N.

» Additional unknowns:

> The filter H = Unknown L and {h/}}_,

» Tall matrix B

» Input z = Assume statistical knowledge E[zz"] = |

Santiago Segarra



Quick review of spectral clustering

» Undirected graph G = (V, E,A)
> let V=CyU---UCk with
CkNCrr =0,k # K.

» “Best” clustering is achieved by minimizing:

RatioCut(Cy, ..., C Z Z > A

IECkJeCk
» Spectral clustering tackles it via low rank approximation —

Let S := Diag(A1) — A be the graph Laplacian, and Vi € RVNxK

as the collection of its smallest K singular vectors. Perform
K-means to:
2
s
2

1
0 = 30 F [ = L5 g
C1r,m,nCK ! k)= ZZ |Ck|J§( Y

k=1i€Cy

where vi°¥ is the ith row vector of V.

Santiago Segarra




Blind community detection for low-rank data

Blind Community Detection (BlindCD):

1. Sample Covariance:

. 12
AT Cy= 5 v )T
=1
\ 7
2. Stack the top-K singular
vectors as Px € RVXK, Detected communities

Low Rank Graph Signals 3. Apply K-means on the N é,..Cxk
row vectors of Py

» A blind method as the graph and graph filter are unknown.
> If Py spans the same subspace as V, then BlindCD is accurate.

Santiago Segarra
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High-level view of the problem
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High-level view of the problem

OBSERVATIONS
GENERATIVE MODEL .
"""""""""""""" PROPOSED ALGORITHM

Spectral

A~ Clusterin 5 5
c, {Cy,...,Cx}

Spectral v
S Clustering {Cl, o ,CK}

How similar are these recovered communities?

ORACLE

Santiago Segarra



Building up some intuition

» Recall: Spectral clustering require the smallest K eigenvectors of S
> Specifically, we want Vi from V := (Vx Vpy_k) [recall S = VAVT].
» Under the low-rank model, w = Bz, we have

C, = HBBTH' = V(Diag(h))(V'B)(B"V)(Diag(h))VT
» Intuitively, the singular vectors Vi are in C, if

rank(V4B) = K, V,_,B~0

4 £0 ,i=1,..,K,
"l=0 ,i>K+1

Santiago Segarra



Low-pass graph filters

Definition: a graph filter is said to be (K, 7)-low pass if

h . . .
Kl < <1, m2h>-->hy>0,

where h; == [ 50 heNi, i =1,..., N.

» An ideal low-pass graph filter have n = 0.
» Example 1 — consensus dynamics

1-— CY)\K 1 =1
H1(S) = (I — OéS)Lil = 1n = (1——05)\:) .

» Example 2 — steady-state of DeGroot dynamics

L 1+c N
Ha(S) = (14+¢718) ™ = 1 = 7

Santiago Segarra



Theoretical guarantee of BlindCD

K 2
> Recall F(Cy. . Co) = S S |7 = iy s i I

> Let F* :=ming, ¢« F(Ci,..,Ck) and (i, ...,Cxk be the communities
found by BlindCD, we have:

Under some conditions (e.g., ||C, — €, || is small, R > K), we have

5 5 = VY2 / 7? ISy — éy||2
— L
F(Clv 7CK) F — 8K ( 1 +,.Y2 + 6 )

where v < 7 |V xBQkllz- (Vi BQk) |2,

and Qg is a set of K orthogonal vectors.

» The error of BlindCD is decomposed into two parts —

» Non-ideal low-pass graph filter and mismatch between V4, B.
» Due to insufficient samples in covariance estimation.

Santiago Segarra 34 /42



United States Senate data

> Rollcall data from the 110-114th congress of the US Senate (2007-2017)
» Infer partition of the network of n = 50 states of USA
» i-th rollcall data is mapped into a graph signal y; € R%°
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United States Senate data

> Rollcall data from the 110-114th congress of the US Senate (2007-2017)
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Conclusions

» GSP approach to network inference in the graph spectral domain
= Two step approach: i) Obtain V; ii) Estimate S given V

> How to obtain the spectral templates V
= Based on covariance of diffused signals
= Other sources: network operators, network deconvolution
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Conclusions

» GSP approach to network inference in the graph spectral domain
= Two step approach: i) Obtain V; ii) Estimate S given V

> How to obtain the spectral templates V
= Based on covariance of diffused signals

= Other sources: network operators, network deconvolution

» Infer S via convex optimization
= Objectives promote desirable physical properties
= Constraints encode a priori information on structure
= Robust formulations for noisy (and incomplete) templates
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Conclusions

» Whenever recovering the whole graph is not feasible
= What can data tell us about the graph?
= Try to recover coarser features = Communities
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Conclusions

» Whenever recovering the whole graph is not feasible
= What can data tell us about the graph?

= Try to recover coarser features = Communities

OBSERVATIONS
PROPOSED ALGORITHM
H Spectral ........................................ |
~y Clustering (5 5 5
Z w —HS)—y —C, (G C}
Spectral ¥ -,

How similar are these recovered communities?

gap < f(B, H, P) |

ORACLE
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