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Multi-View Social
Networks
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Adjacency Matrix Analysis
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What about the rest of the views??
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If we aggregate, we ignore important structure!!
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Tensors

* Multi-dimensional matrices
 Can naturally model multi-aspect datasets

» Long list of applications: Psychometrics,
Chemometrics, Signal Processing, Machine
Learning, Data Mining
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Tensor Decomposition for Signal Processing and
Machine Learning

Nicholas D. Sidiropoulos, Fellow, IEEE, Lieven De Lathauwer, Fellow, IEEE, Xiao Fu, Member, IEEE,
Kejun Huang, Member, IEEE, Evangelos E. Papalexakis, and Christos Faloutsos

Overview Article

Abstract—Tensors or multiway arrays are functions of three or Index Terms—Tensor ition, tensor ion, rank,
more indices (i, j, k, . . . )—similar to matrices (two-way arrays), ical polyadic position (CPD), parallel factor anal-
which are functions of two indices (r,c) for (row, column). ysis (PARAFAC), Tucker model, higher-order singular value
‘Tensors have a rich history, stretching over almost a century, and ition (HOSVD), ili singular value decomposi-
touching upon numerous disciplines; but they have only recently tion (MLSVD), uniqueness, NP-hard problems, alternating op-
become ubiquitous in signal and data ics at the imizati ing direction method of ipli gradient
of signal processing, statistics, data mining, and machine learning.  descent, G Newton, ic gradient, Cra Rao bound,
This overview article aims to provide a good starting point for icati source ion, harmonic retrieval, speech

and it in learning about and  separation, collaborative filtering, mixture modeling, topic mod-
working with tensors. As such, it focuses on and eling, ificati learning.

motivation (using various application examples), aiming to strike
an appropriate balance of breadth and depth that will enable
someone having taken first graduate courses in matrix algebra
and probability to get started doing research and/or developing
tensor algorithms and software. Some background in applied
optimization is useful but not strictly required. The material
covered includes tensor rank and rank decomposition; basic
tensor factorization models and their relationships and properties
i ing fairly good ge of i ifiability); broad coverage
of algorithms ranging from i imization to i

gradient; statistical performance analysis; and applications rang-
ing from source separation to collaborative filtering, mixture and

topic an learning.

1. INTRODUCTION

ENSORS! (of order higher than two) are arrays indexed by

three or more indices, say (i, j, k, . . .) — a generalization of
matrices, which are indexed by two indices, say (r, ¢) for (row,
column). Matrices are two-way arrays, and there are three- and
higher-way arrays (or higher-order) tensors.

Tensor algebra has many similarities but also many striking
differences with matrix algebra — e.g., low-rank tensor factor-
ization is essentially unique under mild conditions; determining
tensor rank is NP-hard, on the other hand, and the best low-rank
approximation of a higher rank tensor may not even exist.

Geared towards theoretical &

Tensors for Data Mining and Data Fusion: Models, Applications,
and Scalable Algorithms

EVANGELOS E. PAPALEXAKIS, University of California Riverside
CHRISTOS FALOUTSOS, Carnegie Mellon University
NICHOLAS D. SIDIROPOULOS, University of Minnesota

Tensors and tensor decompositions are very powerful and versatile tools that can model a wide variety of
heterogeneous, multiaspect data. As a result, tensor decompositions, which extract useful latent information
out of multiaspect data tensors, have witnessed increasing popularity and adoption by the data mining
community. In this survey, we present some of the most widely used tensor decompositions, providing the
key insights behind them, and izing them from a pr: i 's point of view. We then provide an
overview of a very broad spectrum of applications where tensors have been instrumental in achieving state-
of-the-art performance, ranging from social network analysis to brain data analysis, and from web mining
to healthcare. Subsequently, we present recent algorithmic advances in scaling tensor decompositions up to
today’s big data, outlining the existing systems and summarizing the key ideas behind them. Finally, we
conclude with a list of challenges and open problems that outline exciting future research directions.
CCS Concepts:® General and r — D types; ® i —
systems applications; Data mining; ® Computing h ies — F izati hod
Additional Key Words and Phrases: Tensors, tensor decomposition, tensor factorization, multi-aspect data,
multi-way analysis
ACM Reference Format:

gt E.F is, Christos and Nicholas D. Sidiropoulos. 2016. Tensors for data mining
and data fusion: Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. 8, 2,
Article 16 (October 2016), 44 pages.
DOL: http:/dx.doi.org/10.1145/2915921

1. INTRODUCTION

Tensors are multidi ional extensions of matrices. Because of their ability to express
multimodal or multiaspect data, they are very powerful tools in applications that
inherently create such data. For instance, in online social networks, people tend to
interact with each other in a variety of ways: they message each other, they post on
each other’s pages, and so on. All these different means of interaction are different

Geared towards applications &

algorithmic understanding practitioners
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What are we looking for?

Blocks within the data
Subsets / co-clusters of:

1) Users (“senders”)
2)Users (“receivers”)

3) Means of communication

E. Papalexakis @ OneWorldSP'20 %



Blocks are rank-one tensors
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Direct extension of matrix case!
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CP/PARAFAC Decomposition
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CP/PARAFAC Decomposition
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Intuitive interpretation
1) Each triplet of vectors co-clusters: 2) Rows of matrix A (or B)
matrix are embeddings to A(sg .))=

(users, users, means of communication)
“community space”
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DBLP Multi-View Grap
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(a) citation (b) co-auth. (c) co-term

» Take the arg max of the r-dim embedding
per node for community assignment
» Baselines AL )=
+ Spectral clustering on sum of matrices / views '
+ Linked Matrix Factorization
+ [Tang et al. ICDM 2009]

 Qutperforms “2D"/matrix baselines wrt
NMI (Normalized Mutual Information)

Community(sg) =
arg max Al )
Info on B is usually same

[Papalexakis, Akoglu, lenco Fusion 2013]
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Word2Vec: Word Embeddings [1]

Task: Given a target word
predict which words
are more likely context
Fortuitous by-product: The
learned NN weights provide a
vector representation for each
word aka word embedding

!
Softmax classifier |@ @ @ wee @ |

Hidden layer

‘M piom Aglesu joipaid

> g(embeddings

Projection layer |the cat sits on thelmatl

\ J L J
T T

context/history h target w,

img: https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html

Cool fact: Instead of a
skipgram, we can factorize a
matrix that holds Pointwise
Mutual Information [2]

Embedding space respects
contextual relationships

Can add and subtract the
vector embeddings for

different words
Some interesting results:

+ King = Man + Woman =
Queen

+ Human = Animal = Ethics
+ Library — Books = Hall

+ President — Power = Prime
Minister

[1] Mikolov et al. “Distributed Representations of
Words and Phrases and their Compositionality”,
NeurlPS'13

[2] Levy et al. “Neural Word Embeddings as Implicit
Matrix Factorization”, NeurlPS 2014

E. Papalexakis @ OneWorldSP'20


https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html

Node Embeddings

Inspired by Word Embeddings
Identifies the context by random walks

Uses skipgram to learn node representation
+ Variants: DeepWalk [KDD15], node2vec [KDD16]

What if we also have node features?
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(a) DeepWalk (b) TADW

Yang et al. Network Representation Learning with Rich Text Information, IJCAI'15
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Tensor-based Context-Aware Node

Embeddings

T 14
_ — V
> F K-NN > VA - 14
=
: V| - Y Z
Start from a node x feature matrix: F

Create a K-Nearest Neighbor Graph

for nodes in the feature space: Z = .4

~ Tensor X

t-PNE - Step 1

ASONAM 2018 w/ Saba Al Sayouri, Ekta Gujrﬂl, anai Koutra, Sara
E. Papalexakis @ OneWorldSP'20
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Tensor-based Context-Aware Node
Embeddings
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h

ASONAM 2018 w/ Saba Al Sayouri, Ekta Gujrﬂl, Danai Koutra, Sarah Lam
E. Papalexakis @ OneWorldSP'20
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Tensor-based Context-Aware Node
Embeddings

Wikipedia (K = 8)

WebKB (K = 40)

CiteSeer (K = 15)

Algorithm 10% 50% 90% 10% 50% 90% 10% 50% 90%
DeepWalk 59.04 68.25 69.75 1282 45.49 4557 5422 61.01 0.62.11
node2vec 58.73 66.98 70.12 43.20 44.87 44.43 52.66 60.22 60.87
Walklets 58.17 65.61 66.68 42.16 46.83 49.09 52.57 59.25 60.96
TADW 19.25 32.69 46.27 48.10 49.25 48.98 25.52 56.51 67.92
t-PNE * 61.64 66.16 74.00 73.53 82.95 85.73 66.00 70.00 75.00
Gain over DeepWalk | 4.4 - 6.1 71.7 82.4 88.1 21.7 13.1 20.8
Gain over node2vec 49 — 5.5 70.2 84.9 929 25.3 16.2 23.2
Gain over Walklets 6.0 0.8 11.0 74.4 77.1 74.6 25.5 18.1 23.0
Gain over TADW 2202 102.4 59.9 52.9 68.4 75.0 158.6 23.9 10.4

Outperforms “traditional” node embeddings

E. Papalexakis @ OneWorldSP'20
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Rank-1 can be restrictive

X

I

DDA |
—_—

5] o

Can only "see” full clique

The Web Conference (WWW) 2020 w/ Ekta Guijral
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What if we have richer structure?

Knowledge Graph: Social Graph:
Relations of the sort: Social media “influencer”
<Trump, is-president, USA> Telemarketer/spammer
<Merkel, is-chancellor, Germany> Near cliques/bipartite cores

<Mlitsotakis, is-primeminister, Greece>

Chain ; Full Clique 5Near Bipartite Core Star
5

The Web Conference (WWW) 2020 w/ Ekta Guijral
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Related work

(b) VOG: 8 out of the 10 most (¢) VOG: The most informative (d) VOG: the second most infor-
informative structures are stars bipartite graph - ‘edit war’ - war- mative bipartite graph - another
(their centers in red - Wikipedia ring factions (one of them, in ‘edit war’, between vandals (bot-
editors, heavy contributors etc.). the top-left red circle), changing tom left circle of red points) vs
each-other’s edits. responsible editors (in white).

Koutra et al. “VoG: Summarizing and
Understanding Large Graphs”, SDM'14

Uses a vocabulary of graph structures and tries to
compress the graph by using it

Follow-up work by Shah et al. “TimeCrunch”,
KDD15 stitches graph snapshots over time

Can we automatically extract that rich structure?

(a) Original Wikipedia
Controversy graph (with
‘spring embedded’ layout [15]).
No structure stands out.

E. Papalexakis @ OneWorldSP'20



We need higher-rank blocks!

Rank 1 Term
-
é b1 — B1
a A1 Rank L Block Term

Can express richer structure
Still has the nice interpretability of CP/PARAFAC

The Web Conference (WWW) 2020 w/ Ekta Guijral

E. Papalexakis @ OneWorldSP'20 22



Block-Term Decomposition

IR

Star
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Beyond Rank-1: Discovering Rich
Structure in Multi-Aspect Graphs

Constrained LL1 Decomposition

J

X

Multi-Aspect
Data
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Beyond Rank-1: Discovering Rich
Structure in Multi-Aspect Graphs
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Detect anomalies / real-life events

Papalexakis, Evangelos E., Nicholas D. Sidiropoulos, and Rasmus Bro.
"From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors.”
IEEE transactions on signal processing 61, no. 2 (2012): 493-506.

Gorovits, Alexander, Ekta Gujral, Evangelos E. Papalexakis, and Petko Bogdanov.
"LARC: Learning activity-regularized overlapping communities across time." KDD 2018

Shen, Yanning, Brian Baingana, and Georgios B. Giannakis.

"Tensor decompositions for identifying directed graph topologies and tracking dynamic networks."
|IEEE Transactions on Signal Processing 2017
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Incremental Decomposition of
Streaming Tensors

+ Tensor updated in streaming fashion
* New slices arrive

+ New snapshots on a temporal graph
+ In general, new slices (or batches) over time

How can we incrementally update the decomposition?

Nion & Sidiropoulos, Adaptive Algorithms to Track the PARAFAC Decomposition
of a Third-Order Tensor, IEEE TSP 2009

Mardani, Morteza, Gonzalo Mateos, and Georgios B. Giannakis. "Subspace

learning and imputation for streaming big data matrices and tensors." IEEE
Transactions on Signal Processing, 2015

Baskaran et al, Accelerated Low-Rank Updates to Tensor Decompositions, IEEE
HPEC 2016

Zhou et al, Accelerating Online CP Decompositions for Higher Order Tensors,
ACM KDD 2016

Sun et al., Beyond Streams and Graphs: Dynamic Tensor Analysis, ACM KDD 2006
E. Papalexakis @ OneWorldSP'20 2



A Tale of Two Sketches

SamBaTen: Sampling-based Batch Incremental Tensor Decomposition

Ekta Gujral
UC Riverside
egujr001@ucr.edu

Abstract

Tensor decompositions are invaluable tools in analyz-
ing multimodal datasets. In many real-world scenarios,
such datasets are far from being static, to the contrary
they tend to grow over time. For instance, in an online
social network setting, as we observe new interactions
over time, our dataset gets updated in its “time” mode.
How can we maintain a valid and accurate tensor de-
composition of such a dynamically evolving multimodal
dataset, without having to re-compute the entire de-
composition after every single update? In this paper
we introduce SAMBATEN, a Sampling-based Batch In-
cremental Tensor Decomposition algorithm, which in-
crementally maintains the decomposition given new up-
dates to the tensor dataset. SAMBATEN is able to scale
to datasets that the state-of-the-art in incremental ten-
sor decomposition is unable to operate on, due to its
ability to effectively summarize the existing tensor and
the incoming updates, and perform all computations
in the reduced summary space. We extensively eval-
uate SAMBATEN using synthetic and real datasets. In-
dicatively, SAMBATEN achieves comparable accuracy to
state-of-the-art incremental and non-incremental tech-
niques, while being up to 25-30 times faster. Fur-
thermore, SAMBATEN scales to very large sparse and
dense dynamically evolving tensors of dimensions up to
100K x 100K x 100K where state-of-the-art incremental
approaches were not able to operate.

Ravdeep Pasricha
UC Riverside
rpasr001@ucr.edu

Evangelos E. Papalexakis
UC Riverside
epapalex@cs.ucr.edu

CPU utlization time for
mutiple datasets

Figure 1: SamBaTen outperforms state-of-the-art base-
lines while maintaining competitive accuracy.

In a wide array of modern real-world applications,
data are far from being static. To the contrary, data get
updated dynamically. For instance, in an online social
network, new interactions occur every second and new
friendships are formed at a similar pace. In the tensor
realm, we may view a large proportion of these dynamic
updates as an introduction of new “sl in the ten-
sor: in the social network example, new interactions
that happen as time evolves imply the introduction of
new snapshots of the network, which grow the tensor in
the “time” mode. A tensor decomposition in that ten-
sor can discover communities and their evolution over

Gujral et al, SIAM SDM 2018
Randomized index sampling

OCTEN: ONLINE COMPRESSION-BASED TENSOR DECOMPOSITION

Ekta Gujral, Ravdeep Pasricha, Tianxiong Yang, Evangelos E. Papalexakis

Department of Computer Science, UC Riverside, California, USA
Email: (egujrO01, rpasrO01, tyang022)@ucr.edu, epapalex @cs.ucr.edu

ABSTRACT

Tensor decompositions are powerful tools for large data ana-
lytics, as they jointly model multiple aspects of data into one
framework and enable the discovery of the latent structures
and higher-order correlations within the data. One of the
most widely studied and used decompositions, especially in
data mining and machine learning, is the Canonical Polyadic
or PARAFAC decomposition. However, today’s datasets are
not static and often grow and change over time. To operate
on such large dynamic data, we present OCTEN, the first
ever compression-based online parallel implementation for
the CP/PARAFAC decomposition. We conduct an exten-
sive empirical analysis of the algorithms in terms of fitness,
memory used and CPU time and in order to demonstrate
the compression and scalability of the method, we apply
OCTEN to big tensor data. Indicatively, OCTEN performs
on-par or better than state-of-the-art online and offline meth-
ods in terms of decomposition accuracy and efficiency, while
achieving memory savings ranging in 40-200%.

Parallel Compressed old summaries System of Linear Equations

Parallel cp- | Matching
Decomposition

Factors
s RS
T R =l s

A
compresss | 2 8¢

Matrices \/

PP P}

[axaxal
.
et 818 S
Fig. 1: Framework. Compressed tensor summaries Y, and
Zy, are obtained by applying randomly generated compression
matrices (U, V,,, W,,) and (U;, VI/,, W;) toX g and X,
respectively. The updated ies are puted by X =
Y, + Z,. Each X is independently decomposed in parallel.
The update step anchors all compression and factor matrices
to a single reference i.e. (P,,P;,P.) and (A,,B,,C,), and
solves a linear equation for the overall A, B, and C.

tensors. In this paper, we fill that gap. Our contributions are
summarized as follows:
o Novel Parallel Algorithm We introduce OCTEN, a

Guijral et al, IEEE CAMSAP 2019
Randomized compression

E. Papalexakis @ OneWorldSP'20
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Central limiting assumption

* Most streaming work (incl. our work © ) assumes:

Existing - |
data b - X

: a, a, as

1

1

| Concept 1 Concept2 Concept 3 i

N L cy Cy Cy !
1

v =3 i — = |

New t ~ b, b, ﬁb:; .
data ' o Y H + H + w = AJ -
|

1 ay a a .
Concept 1 Concept 2 Cohcept 3

Rank(existing data) = Rank(new data)

ECML-PKDD 2018 w/ Ravdeep Pasricha &Ekta Gujral | .
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What if this doesn’t hold?

Overlap Concept o Overlap Concept
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Cc c [ (o
/ / c/ / 2 /3

1 | 1 1
1 ! I 1 1
l ! l h !
N | —— | N ! A :
v R=2 "I b i * R=3 ! T
~:H AR 4 |ee IR R O
~ | + 1 ~ 1 +1 !
tO - x i i to - x i + ii i
! & 3 i New Concept L ay a, | ag :
I iConcept 1 Concept 2}~~~ ~~77" """~ ! | iConcept 1 Concept 21 Concept3 |
rcy Cy G Gy c, , !
=Y R B A IRl B |
, -_— C— |I = 1 X _— C—
t ~ | b b, h b; 1 _ n t = b, b, ! o
- Y i . +:i E - Y i . : Missing
. I ! ' ! Concept
| : a, a, :: a, ! I oay a, !
1Concept 1 Concept 2 n Concept3 1Concept 1 Concept 2 !
New concept appears Concept is missing
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Identifying and Alleviating Concept Drift in
Streaming Tensor Decomposition

___________________

Y/ RS I n b, i Running Rank = 4 .
= : + + | % R=4
[ €
b S X o j | N / / / /
New Concept ! c1 ceptl Concept2 | acaoncept3 COl B B .o X
[ T " : + + =nhew
e L ! l‘ | !
! l:_:l:: —— : L. 1 a 3 a,
t, = H bl H b, BE s | Missing Concept 1 Concept 2 Concept 3 Concept 4
- Y ! " Concept
| P o % : Update Rank and number of concepts

___________________________

° Algonthm for detecting and alleviating
concept drift: SeekAndDestroy

ECML-PKDD 2018 w/ Ravdeep Pasricha &Ekta Gujral | I -\‘
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SeekAndDestroy in a nutshell

* At every step we have

v
Y k=3

. . {:\ R=2 .
Existing Incoming t,
data © - X batch R

* To determine drift:
+ We compute rank(Y) and compare with rank(X)

+ Even if rank(Y) = rank(X), we may have new
components

+ We compute matching of components
+ If similarity>threshold, same component
+ Else this is a new component

ECML-PKDD 2018 w/ Ravdeep Pasricha &Ekta Gujral | |
E. Papalexakis @ OneWorldSP'20




Detection of Concept Drift

=
N
=
N

v Y T
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Actual Rank Actual Rank
(a) Increasing rank (b) Decreasing rank

Fig. 4: SeekAndDestroy is able to successfully detect concept drift, which is manifested
as changes in the rank throughout the stream.

|DataSet || Dimension |Initial Rank|Full Rank|

SDS1 5
SDS2 100 x 100 x 100 2 10
SDS3 5
sDS4 300 x 300 x 300 2 10
SDS5 5
SDS6 500 x 500 x 500 2 10

Synthetic data with simulated drift

E. Papalexakis @ OneWorldSP'20



Concept Drift Effects in Reconstruction

Reconstruction error

DataSet OnlineCP OnlineCP SamBaTen SamBaTen |SeekAndDestroy
(Initial Rank) | (Full Rank) (Initial (Full Rank)
Rank)
SDS1 0.278240.0221 [0.197+0.086 0.261+0.048|0.3174+0.058 [0.283+0.075
SDS2 0.25374+0.0125 |0.1684-0.507 0.244+0.028[0.480+0.051 |0.2534+0.0412
SDS3 0.27314+0.0207 |0.205+0.164 0.385+0.021 (0.4454+0.164 [0.266+0.081
SDS4 0.2454+0.013 0.1714+0.537 0.29940.045 [(0.40240.049 [(0.221+0.0423
SDS5 0.271940.0198 [0.206+0.022 0.5594+0.046 [0.51940.0219(0.256+0.105
SDS6 0.23840.013 0.171+0.374 0.510+0.036 [0.5474+0.027610.2081+0.0433
DataSet Dimension Initial Rank|Full Rank . .
| I | | | If final/full rank is unknown:
SDSL 1160 x 100 x 100 2 5 -
SDS2 10 SeekAndDestroy can detect drift
SDS3 11540 x 300 x 300 5 5 and have lower error than SOTA
SDS4 10
SDS5 11500 x 500 x 500 2 5 : ; ‘et )
SDS6 x 500 x 10 If final rank is known (unrealistic):

Synthetic data with simulated drift

ECML-PKDD 2018 w/ Ravdeep Pasricha &Ekta Gujral
E. Papalexakis @ OneWorldSP'20

SOTA performs on par or better




Evidence of drift in real data

Running| Predicted |[Batch Approximation Error
Rank |Full Rank| Size |SeekAndDestroy| SambaTen | OnlineCP

7£0.88 | 4£0.57 | 22 | 0.68 £ 0.002 |0.759+ 0.059|0.941+ 0.001

—v—Legal (sénior levels)
0.8 ,_‘_Eig:[nives (CEO & V.P) Investigation begins
When streaming Enron, we encounter = %° =& shmis, s
<C
a number of drifting communities 5
. 5 02
that other methods miss 8
O,
-0.2 ! | v | |
0 5 10 15 20 25 30 35 40 45

Weeks

E. Papalexakis @ OneWorldSP'20
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What's happening here??

+.007 x
i en(ValO:29)  esign(v,7(0,2,4)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

https://arxiv.org/pdf/1412.6572.pdf : fast gradient sign method

E. Papalexakis @ OneWorldSP'20
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What's happening here??

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Subtle Poster Camouflage Camouflage Art Camouflage Art

Distance/Angle Subtle Poster Right Turn Graffiti (LISA-CNN)  (GTSRB-CNN)

57 0°

57 15°

107 0°

10" 30°

40’ 0°

Targeted-Attack Success 100% 73.33% 66.67%

https://arxiv.orq/pdf/1707.08945.pdf

E. Papalexakis @ OneWorldSP'20
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Not just an "academic curiosity”

MIT Technology Review

Computing / Cybersecurity

Hackers can trick a Tesla
into accelerating by 50
miles per hour

Atwo inch piece of tape fooled the Tesla’'s cameras and made the
car quickly and mistakenly speed up.

by Patrick Howell O'Neill February 19,2020

https://www.technologyreview.com/2020/02/19/868188/hackers-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/

E. Papalexakis @ OneWorldSP'20
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"Defense” Problem Definition

For a given model C:

* x: clean instance, x': perturbed instance
Goal of adversarial attack:

'=x+8=> Cx) #C(x') while [lx —x'|| <t

u o “
sign(V x,y

gbb
577/ hd 99.3 % confiden

e Goal of defense mechanlsm

apply a preprocessing operation g(.) that brings
back x' closer to the clean instance x such that:

C(g(x") = C(x)

E. Papalexakis @ OneWorldSP'20 42



Attack on Graph Convolutional
Networks

['] [] s target node [] []
perturbation \
[1@ [] > [* \\
" ‘?-‘-0
[:] attacker node []

i Train node classification model :

W/ "/
Target gets
misclassified

Nettack [Zugner et al. KDD18]

E. Papalexakis @ OneWorldSP'20 43



All you need is low (rank

Classification Margin
o
g
3

Clean Nettack Clean Nettack Clean Nettack Clean Nettack Clean Nettack
(a) Unvaccinated (b) rank-5 approx. (c) rank-10 approx. (d) rank-15 approx. (e) rank-50 approx.
Figure 6: Vaccinating GCN against NETTACK
(1) ()
SVD reveals the Low Rank Approximation In P ut to G CN
high-rank retains only useful
Nettack attack spectrum graph information Vaccinated Graph

@E il e S ol %m

target node

WSDM 2020 w/ Negin Entezari

E. Papalexakis @ OneWorldSP'20 44




All you need is low (rank)

Classification Margin
|

3

® o
°

I.u

Clean Nettack Clean Nettack Clean Nettack Clean Nettack Clean Nettack

(a) GCN (b) t-PINE (K = 30) (c) t-PINE (K = 35) (d) t-PINE (K = 40) (e) t-PINE (K = 45)
Figure 8: Poisoning of t-PINE with NETTACK 0on CiteSeer. The embedding dimension is 32.

Method | CiteSeer Cora-ML PoliticalBlogs
Clean 0.83 0.82 0.90
GEN NETTACK 0.02 0.01 0.06
Clean 0.74 0.68 0.87
CPINE Nermack | 072 0.64 0.30

WSDM 2020 w/ Negin Entezari

E. Papalexakis @ OneWorldSP'20 45



"Chain Mail"
(Attacked)

Labrador
Retriever

Attack in images is of high-
frequency!

SHIELD: Fast, Practical Defense and Vaccination for
Deep Learning using JPEG Compression

& SHIELD _ o
Secure Heterogeneous Image yHIEID & Stochastic Local Quantization
Ensemble with Localized Denoising ‘ ‘ Removes Adversarial Perturbations
s e O 8pX .
" — . ,Random Compression Level
ool B,
[ e o Correctly
A 9 ® Classified
g AN 4
Real-time Vaccinated
Compression Deep Neural
Preprocessing Network Ensemble Correctly

(A - g
Classified

JPEG compression removes adversarial perturbations

https://arxiv.org/pdf/1802.06816.pdf

E. Papalexakis @ OneWorldSP'20 46
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Tensor-Based Defense Mechanism

Tensor Decomposition

=

Humming Bird v

. ¥

Humming Bird v/

S
= PxIxK Target gets
'g - correctly
E o classified
Q X
v
IxR JxR
DNN

. ¥

Humming Bird v/

On-going work & arXiv:2002.10252 w/ Negin Entezari

E. Papalexakis @ OneWorldSP'20 47




Choice of Tensor Model

* CP/PARAFAC:
* Pros: Interpretable latent factors
* Cons: Slow,
Restricted to have same ranks for all modes

and super-diagonal core makes it not a
suitable choice for image decomposition

n

IxR

® Tucker:

* Pros: No constraint on the core tensor
Each mode can have a different rank
®* Cons: Slow

latent factors are not easily interpretable i
®* Tensor-Train:
* Pros: No constraint on ranks of different modes

Linearly scalable with respect to tensor dimension
* Cons: latent factors are not easily interpretable X(ij, ke, ) ~

E. Papalexakis @ OneWorldSP'20 48



How to Represent Batch of Images?

» Batching images in either

+ 4-mode tensor

+ Stack all slices into 3-mode tensor
* Through batching we

+ Amortize computational cost

+ Leverage patterns across images

/1
/1
e o o E>
/
/ ImageV

Image 1 Image 2 Image N

R/ﬂ—/

Each single image is a 3-mode tensor 3-mode-stacked

Image V

On-going work & arXiv:2002.10252 w/ Negin Entezari

E. Papalexakis @ OneWorldSP'20 49



Experimental Results

Configurations PGD FGSM i-FGSM | Runtime
(e=4) (e=4) (e=4) | (seconds)
No defense 11.10 18.40 7.49
[Tensor-Train, 4-mode, 5, [5,90,3]] 51.53 43.59 50.46 675
[Tensor-Train, 4-mode, 10, [10,100,3]] 51.01 43.10 49.95 605
[Tensor-Train, 3-mode, 1, 40] 49.75 42.32 48.52 530
[Tucker, 3-mode-stacked, 30, [105,105,90]] | 49.37 40.07 48.79 1050
[Parafac, 3-mode, 1, 60] 48.11 41.38 49.75 5500
s.o 4460 2940 3860 | 410

E. Papalexakis @ OneWorldSP'20 50
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Tensors Everywhere!

» Unsupervised exploratory analysis

+ Challenges:
= |s there structure in the data? What kind?

* How many useful patterns in the data?
* Which model should | use?

e Tensors in a Brave New World

¢+ Interplay of traditional tensor methods &
deep learning

» E.g., defending against adv. attacks

E. Papalexakis @ OneWorldSP'20



Thank you! Questions?

* How to reach me: http://www.cs.ucr.edu/~epapalex/

Tensors

GPU Grant

Supported by:

WSEA {1 Ol @

A SYSTEMS C Ad()be

BournsCollege M A- D- Lab @ UCR
NVIDIA. of Engineering MI Aspec
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