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Motivation

⋄ Given network data, a standard procedure is:

data−→ graph︸ ︷︷ ︸
Graph Learning

−→ prediction/analysis/GSP︸ ︷︷ ︸
make decision

⋄ Smooth-GL Model: xm = smooth, S = Adj. [1],

J(S ;X ) =
1

M

∑
i ,j

Sij∥x row
i − x row

j ∥2 + β∥S∥2F ,

S = {S : S1 = c1, S ≥ 0, diag(S) = 0},

Q: Insufficient data (M ≪ N) to estimate S .

Existing Approach: structural priors on Ŝ ,

minS J(S,X ) + λR(S) s.t. S ∈ S (1)

⋄ Sparsity prior [1]: promote sparseness, R(S) = ∥S∥1.

⋄ Spectral prior [2]: promote clusters, λi(S);

Observation: Structural priors are explicit on S and
only capture macroscopic properties.

Network Games in Social Network

⋄ Generalized linear quadratic game [3] w/ utility function:

U(yi ; y−i ;S) := −y 2i /2 + yi

(∑n
j=1,j ̸=i Sijf (yj)− bi

)
• bi : marginal benefit, f (·) models interactions.

⋄ Nash equilibrium (NE) = state where no agent has the
intention to change,

NE (S) := {y ∈ RN : yi = argmax
y≥0

U(yi ; y−i ;S), ∀ i}

⋄ If |NE (S)| = 1, yNE(S) denotes the unique NE.

Max-Welfare Induced Graph Learning

Suppose |NE (S)| = 1, denote Wel(S) := 1⊤yNE(S) as the social welfare.

Empirical Study: Is intelligent network S locally optimized for max-welfare ?

⋄ Random rewiring and
evaluate the relative % of
welfare loss due to rewiring.

⋄ Human-made networks
(Karate & WikiVote) are
sensitive to rewiring;

⋄ non-human-made networks
are not (Dolphins).

Conjecture: Human-made networks are self-optimized w.r.t. Wel(S).

=⇒ Utilize Wel(S) to inform graph learning.

Graph Learning with Functional Prior (GLFP):

minS,y∈RN J(S,X )− λ 1⊤y s.t. y ∈ EQ(S), S ∈ S.

Q: What structural insights can be derived from (GLFP)?
Proposition: An approximation of (GLFP) admits the optimal solution:

S⋆
ij =

1
2β max {0, ηi + λbj − Dij} , for some ηi ∈ R.

⋄ Implication: let λ ≫ 1, optimal S⋆ admits a ‘star’ structure.

⋄ Empirical evidence: human-made network contains few hub nodes.

Two-timescales Gradient Algorithm for (GLFP)

Challenge: took network dynamics as constraint ⇒ Bilevel Optimization:

⋄ Upper level: regularized graph learning. Lower level: NE seeking.
→ Two-timescales algo.: η (Lower-level) > γ (Upper-Level)

y k+1i = y ki + η∇yiU(y
k
i , y

k;Sk), ∀i ∈ [N ]

Sk+1 = ProjS(S
k − γ∇̂SΦ(Sk, y k)),

(2)

∇̂SΦ(Sk, y k) estimates hypergradient — from derivatives of U(·)
⋄ Theorem: With η = 1−c

(1+c)2, γ ≪ η (+ additional assumptions),

mink=1,...,K ∥γ−1(Sk − ProjS(Sk − γ∇Φ(Sk, y ⋆(Sk))))∥2 = O(K−1).

=⇒ finds a stationary point of (GLFP).

Numerical Results

(1) Synthetic Data:

⋄ Setting: S ∼ PA graph with N = 50 nodes & M = 10 stationary +
smooth graph signals ⇒ limited amount of data (M ≪ N).

⋄ Benchmark: (i) linear approximation of (GLFP) with 1⊤y ⋆(S) ≈
1⊤Sb ⇒ single-level problem & (ii) Smooth-GL [4].

⋄ For the network dynamics & (GLFP), we take b = TopEV(D).

⋄ Proposed methods has better AUROC than vanilla Smooth-GL.

(2) Karate Club:

⋄ N = 34 from M = 50 smooth graph signals.

⋄ Pareto Front by adjusting λ to get tradeoffs for h(y ) vs J(S,X ).

⋄ Bilevel OPT by TT algorithm achieves better Pareto optimality.

(3) Real Data: Indian village [5]

⋄ Data: network sizes N = 77 to 330, each w/ M = 16 samples ⇒
limited amount of data (M ≪ N).

⋄ Graph learning with functional prior maximizing Welfare(S) improves
AUROC relative to ground truths .
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