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Abstract—This paper proposes a two-timescale compressed primal-
dual (TiCoPD) algorithm for decentralized optimization with improved
communication efficiency over prior works on primal-dual decentralized
optimization. The algorithm is built upon the primal-dual optimization
framework and utilizes a majorization-minimization procedure. The
latter naturally suggests the agents to share a compressed difference term
during the iteration. Furthermore, the TiCoPD algorithm incorporates
a fast timescale mirror sequence for agent consensus on nonlinearly
compressed terms, together with a slow timescale primal-dual recursion
for optimizing the objective function. We show that the TiCoPD algorithm
converges with a constant step size. It also finds an O(1/T ) stationary
solution after T iterations. Numerical experiments on decentralized
training of a neural network validate the efficacy of TiCoPD algorithm.

Index Terms—decentralized optimization, nonlinear compression, two-
timescale iteration, majorization-minimization.

I. INTRODUCTION

Let G = (V,E) be an undirected and connected graph of n agents,
with the node set given by V = [n] := {1, ..., n} and the edge set
E ⊆ V ×V . Consider the following distributed optimization problem:

min
X∈Rnd

1

n

n∑
i=1

fi(Xi) s.t. Xi = Xj , ∀(i, j) ∈ E, (1)

where X = [X⊤
1 X⊤

2 · · · X⊤
n ]

⊤. For each i ∈ V , Xi ∈ Rd stands
for the local decision variable of the ith agent, and the local objective
function fi : Rd → R is continuously differentiable (possibly non-
convex). Distributed solution methods for (1) has found applications
in machine learning [1], [2], signal processing [3]–[5], etc.

In scenarios where the local objective function (and the associated
training data) has to be stored or processed in a distributed network,
and/or there is no central server, a decentralized algorithm is preferred
for tackling (1) where agents do not share their local objective
functions with other parties. The pioneering work by Nedić and
Ozdaglar [6] proposed the decentralized gradient descent (DGD)
method. The latter is shown to converge in the non-convex setting in
a follow-up publication [7]. A number of subsequent works have
been proposed to improve DGD, e.g., EXTRA in [8], gradient
tracking in [9], etc. The (proximal) primal-dual algorithm [10]–[12]
yields a general framework for decentralized optimization with good
convergence property where it encompasses the previous algorithms
as special cases.

For high dimensional instances of (1) such that d ≫ 1, the
communication overhead incurred with decentralized optimization
can be a bottleneck impeding the convergence speed of these algo-
rithms. Reducing the bandwidth usage through lossy communication
compression has thus become an important issue in recent works.
Note that directly applying compression scheme such as quantization
in distributed optimization may result in a non-converging algorithm
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[13]. Thus, many works have proposed to combine the decentralized
algorithms with an error feedback subroutine to achieve exact conver-
gence. For example, [14]–[17] focused on the deterministic gradient
setting and extended algorithms such as DGD and gradient tracking
with communication compression, [18]–[21] considered similar ex-
tensions but have considered using stochastic gradients. Alternatively,
[22]–[24] considered reducing the communication frequency by local
updates, [25] considered event triggered communication.

Meanwhile, existing results entail various limitations in guarantee-
ing convergence for the general non-convex setting — the algorithms
in [14], [19] require a bounded heterogeneity assumption such that
∥∇fi(X)−∇fj(X)∥ is upper bounded for any X and may require a
diminishing stepsize for convergence, the algorithms in [17], [20] re-
quires applying two separate communication compression operations
that may increase storage complexity, and other algorithms [15], [16],
[18] have not been analyzed for the non-convex optimization setting.

This paper aims to address the above shortcomings with communi-
cation efficient decentralized optimization. Our key idea is to develop
the algorithm using the primal-dual framework [10], [11] and to
incorporate compressed communication updates under the classical
majorization-minimization framework [26]. Our contributions are:

• We propose the Two-timescale Compressed Primal-Dual (TiCoPD)
algorithm as a nonlinearly compressed primal-dual algorithm for
decentralized optimization. The TiCoPD algorithm follows a two-
timescale update rule which separates the communication and
optimization steps, handled using a large stepsize and a small
stepsize, respectively.

• To incorporate nonlinear compression into the primal-dual algo-
rithm, we develop a majorization-minimization (MM) procedure
which suggests agents to transmit the compressed difference terms
– a scheme that coincides with the popular error feedback mecha-
nism. This offers a new perspective for extending the error feedback
mechanism popularized by [18] and establishing a connection to
the nonlinear gossiping algorithm in [27]. We believe that this
observation will be of independent interest.

• For optimization problems with continuously differentiable (possi-
bly non-convex) objective functions, we show that the TiCoPD
algorithm converges at a rate of O(1/T ) towards a stationary
solution of (1). Furthermore, the convergence is guaranteed with
a constant stepsize and without relying on additional assumptions
such as bounded heterogeneity.

Finally, we present numerical experiments to demonstrate the efficacy
of TiCoPD algorithm against state-of-the-art algorithms in tackling a
toy example of training neural networks over network for (1).

II. PROBLEM STATEMENT

This section introduces the basic ideas for the proposed TiCoPD
algorithm to tackling (1). We first introduce a few extra notations to
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facilitate the development: define

f(X̄) :=
1

n

n∑
i=1

fi(X̄), ∇f(X̄) :=
1

n

n∑
i=1

∇fi(X̄), (2)

as the global objective function and gradient evaluated on a common
decision variable X̄ ∈ Rd, respectively. Moreover, the consensus
constraint Xi = Xj , ∀(i, j) ∈ E can be replaced by the equality
ÃX = 0, where Ã = A⊗ Id and Ã ∈ {0, 1,−1}|E|×n denotes the
incidence matrix of the graph G.

Using the above notations and introducing the Lagrange multiplier
variable λ = (λi)i∈E ∈ R|E|d for the equality constraint ÃX = 0,
we consider the following augmented Lagrangian function:

L(X,λ) :=
1

n

n∑
i=1

fi(Xi) + λ⊤ÃX+
θ

2
∥ÃX∥2, (3)

where θ > 0 is a regularization parameter. It can be shown that any
stationary point to L(·) satisfying ∇XL(X,λ) = 0, ∇λL(X,λ) =
0 is a KKT point of (1). Importantly, applying the standard gradient
descent-ascent (GDA) algorithm on L(·) yields the decentralized
algorithm proposed in [12] which finds a stationary solution to (1)
for a class of non-convex problems.

However, a key drawback for [12] and similar algorithms proposed
using the primal-dual optimization framework (e.g., [11]) lies on their
high bandwidth usage for high-dimensional problems when d ≫ 1.
In particular, at each iteration, such algorithms require the agents to
share their current local decision variable with neighboring agents,
which demands transmitting an Rd vector. Such step introduces a
considerable communication overhead for their implementation.

III. PROPOSED TICOPD ALGORITHM

Our idea is to develop a Two-timescale Compressed Primal-Dual
(TiCoPD) algorithm that supports general nonlinear compression in
primal-dual decentralized updates. The key idea of TiCoPD is to
separately treat compressed communication and optimization as lower
and upper level updates, respectively, to be updated at different
speed. The algorithm depends on two ingredients: (i) a majorization-
minimization step that introduces a surrogate variable to separate the
communication step from the optimization step, (ii) a two-timescale
update that incorporates the nonlinearly compressed update of the
surrogate variable. The above ideas will be introduced in the sequel.

Majorization Minimization. We begin by inspecting the augmented
Lagrangian function L(·) again. Here, computing the gradient for the
last term in (3) at a fixed primal variable Xt leads to

∇Xi ||ÃXt||2 = 2
∑

j∈Ni
(Xt

j −Xt
i), (4)

where Ni is the neighbor set of agent i. Consequently, the primal
update necessitates the communication of the neighbors’ decision
variables Xj , j ∈ Ni and leads to a communication bottleneck.

Our idea is to sidestep this term through a majorization-
minimization (MM) procedure with a surrogate variable. Let there be
a sequence of surrogate variables {X̂t}t≥0 such that (i) X̂t ≈ Xt,
and (ii) it is possible for agent i to acquire the neighbors’ surrogate
variables (X̂t

j)j∈N t
i

with compressed communication. We will illus-
trate how to construct such sequence later. With M := ∥Ã⊤Ã∥2,
the following majorization holds for any X,

∥ÃX∥2 ≤ ∥ÃX̂t∥2 + 2(X− X̂t)⊤Ã⊤ÃX̂t +M∥X− X̂t∥2.
(5)

Unlike the original term ∥ÃX∥2, evaluating the gradient w.r.t. Xi

on the upper bound only requires aggregating the surrogate variables
X̂t

j , j ∈ Ni, which can be obtained from compressed communication.

We further upper bounding the first term in (3) using standard
truncated Taylor approximation. Now, the X-update can be computed
using the following minimization step:

Xt+1 = arg min
X∈Rnd

∇f(Xt)⊤(X−Xt) +X⊤Ã⊤λt +
θ

2
∥ÃX̂t∥2

+ θX⊤Ã⊤ÃX̂t +
θM

2
∥X− X̂t∥2 + 1

2α̃
∥X−Xt∥2

= βXt + (1− β)X̂t − α
(
∇f(Xt) + Ã⊤λt + θÃ⊤ÃX̂t), (6)

where ∇f(Xt) = [∇f1(X
t
1)

⊤ · · ·∇fn(X
t
n)

⊤]⊤, α = 1
1
α̃
+θM

, and

β = α
α̃

. For the λ-subproblem, similarly we replace Xt with the
surrogate variable X̂t to obtain:

λt+1 = arg min
λ∈R|E|d

{
−λ⊤ÃX̂t +

1

2η
∥λ− λt∥2

}
= λt + ηÃX̂t.

(7)

Substituting the variable λ̃t = Ã⊤λt ∈ Rnd yields a decentralized
primal-dual algorithm that only requires aggregating X̂t

i at each
step. Our remaining task is to study how to effectively construct the
sequence {X̂t}t≥0 in a compressed communication friendly fashion.

Two-timescale Updates. Recall that a key requirement for our
construction of {X̂t}t≥0 is that the surrogate variable should track
the original decision variable X̂t ≈ Xt.

To this end, our construction consists of applying a (randomized)
compression operator Q̂ : Rd × Ωi → Rd satisfying: there exists
δ ∈ (0, 1] such that

E
[
∥Q̂(x; ξi)− x∥2

]
≤ (1− δ)2E

[
∥x∥2

]
, ∀ x ∈ Rd, i ∈ [n], (8)

where ξi ∈ Ωi is a random variable. For example, the above property
can be satisfied with the randomized quantization operator:

qsgds(x; ξi) =
sign(x) · ∥x∥

sτ
·
⌊
s
|x|
∥x∥ + ξi

⌋
, (9)

where s > 0 is the number of precision levels, τ = 1 +
min{d/s2,

√
d/s} and ξi ∼ U [0, 1]d is an additive noise [28]. The

operator can be implemented with an encoder (denoted ENC(·))
which turns the d-dimensional input vector into a d log2 s bits
string to represent the quantized levels, a d bits string to represent
sign(x) and a floating-point value for ∥x∥. The latter can be
transmitted on bandwidth limited channels. On the receiver’s side,
a decoder (denoted DEC(·)) may convert the received symbols
into the quantized real vector in (9). Particularly, the randomized
quantization operator satisfies (8) with δ = 1

2τ
; see [18], [28] for

discussions on contractive compressors satisfying (8). Finally, we
denote Q : Rnd×Ω1× . . .×Ωn → Rnd as the compression operator
for the column stacked variables such that [Q(x; ξ)]i = Q̂(xi; ξi),
where ξ = (ξ1, . . . , ξn).

The contraction property in (8) suggests a compressed communi-
cation friendly procedure to achieve X̂t ≈ Xt. In particular, we
notice that the mean field Eξ[Q(Xt − X; ξ)] has a unique fixed
point at X = Xt. In particular, we observe that at the tth primal-
dual iteration, if we let k denotes the contraction iteration index and
γ ∈ (0, 1] be a stepsize parameter, the recursion

X̂t,k+1 = X̂t,k + γ Q(Xt − X̂t,k; ξt,k+1), ∀ k ≥ 0. (10)

finds X̂t,k k→∞→ Xt. The insight behind the above update is that
the compression error can be gradually reduced by compressing only
the error itself Xt − X̂t,k. For implementation on a decentralized
system, for each (t, k), the agents only need to encode and transmit



Algorithm 1 TiCoPD

1: Input: Parameter α, θ, β, η, initialize X0, X̂0, λ̃0.
2: for t = 1, . . . , T do
3: Surrogate variable update: for any i ∈ V ,

X̂t
i = X̂t−1

i + Q̂(Xt
i − X̂t−1

i ; ξti),

and transmit the compressed message ENC(Xt
i − X̂t−1

i ; ξti)
to agent j ∈ Ni.

4: Aggregate received messages: for any i ∈ V ,

X̂t
i,−i = X̂t−1

i,−i +
∑

j∈Ni
DEC(ENC(Xt

j − X̂t−1
j ; ξtj)),

where Q̂(·) = DEC ◦ ENC(·) and DEC(·) is a decoder.
5: Primal-dual update: for any i ∈ V ,

Xt+1
i = βXt

i + (1− β)X̂t
i

− α
[
∇fi(X

t
i) + λ̃t

i + θ(|Ni|X̂t
i − X̂t

i,−i))
]
,

λ̃t+1
i = λ̃t

i + η(|Ni|X̂t
i − X̂t

i,−i).

6: end for

the differences Xt−X̂t,k. In particular, it holds E[∥X̂t,k−Xt∥2] ≤
(1 − γδ)k∥X̂t,0 − Xt∥2. For the rest of this paper, we shall take
γ = 1 for simplicity. However, we remark that in cases when (8) is
not satisfied, the stepsize parameter γ ∈ (0, 1] can be used to control
the process for the construction of X̂t ≈ Xt.

The convergence of the procedure (10) relies on holding Xt fixed
as k increases. While repeating the recursion (10) until k → ∞
guarantees X̂t,k = Xt, this may incur a prohibitive communication
cost for each of the primal-dual update (6), (7) indexed by t.
Fortunately, we observe that each recursion in (10) can actually
reduces the error by a factor of (1− δ), i.e., it exhibits a geometric
convergence rate. Suppose the primal-dual update stepsizes are suf-
ficiently small compared to γ, it is possible to satisfy the tracking
condition X̂t ≈ Xt with only one step of the update in (10) per
primal-dual iteration.

Overall, the above discussion suggests a two-timescale simulta-
neous update of (6), (7), (10). We call this algorithm the TiCoPD
algorithm which is summarized in Algorithm 1. Note that the
algorithm is fully decentralized. For each iteration, the agents always
communicate with one round of compressed message exchanges.

Remark III.1. The recently proposed CP-SGD algorithm [21] uses
a similar idea of contractive compressor on primal-dual algorithm
as TiCoPD. There are several key differences: (i) CP-SGD uses
an extra auxiliary variable Xc and entails an additional stepsize
parameter αx, (ii) in practice we observe that CP-SGD yields slower
convergence in the consensus error for certain problems. We highlight
that TiCoPD was developed directly from the MM procedure and
two-timescale updates. Our algorithm also belongs to a general
framework that can incorporate scenarios with less restrictions on the
communication architecture, e.g., noisy communication, time varying
graphs, etc. Such features are missing in the CP-SGD algorithm [21].

IV. CONVERGENCE ANALYSIS

This section establishes the convergence of the TiCoPD algorithm
towards a stationary point of (1) at a sublinear rate. To facilitate
our discussions, we define the consensus error operator K̃ := (In −
11⊤/n) ⊗ Id and Q̃ := (Ã⊤Ã)†, where (·)† denotes the Moore-
Penrose inverse. From the definitions, we observe that Ã⊤ÃK̃ =
Ã⊤Ã = K̃Ã⊤Ã and Q̃Ã⊤Ã = Ã⊤ÃQ̃ = K̃. We first state the

assumptions about the objective function, graph, and the compression
operator.

Assumption IV.1. For any i ∈ [n], the function fi is L-smooth, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ ∀ x,y ∈ Rd. (11)

Note that (11) implies the global objective function is L-smooth. It
is also a standard assumption in the optimization literature.

Assumption IV.2. There exists ρ̃1 ≥ ρ̃2 > 0 such that

ρ̃2K̃ ⪯ Ã⊤Ã ⪯ ρ̃1K̃. (12)

Recall that as Ã⊤Ã is the graph Laplacian matrix, the assumption
above is satisfied when G is a connected graph. Furthermore, we
have ρ̃1 = ∥Ã⊤Ã∥2. It also holds ρ̃−1

1 K̃ ⪯ Q̃ ⪯ ρ̃−1
2 K̃.

Assumption IV.3. For any fixed X ∈ Rd, there exist 0 < δ ≤ 1
such that the compression operator Q̂(·; ξq) satisfies

E
[
∥Q̂(X; ξq)−X∥2

]
≤ (1− δ)2∥X∥2. (13)

As discussed before, the randomized quantizer (9) satisfies the above
with δ = s/

√
d for sufficiently large d.

To describe our main results, we need to define a few extra
notations. The network-average decision variable is denoted as

X̄t =
1

n

n∑
i=1

Xt
i =

1

n
(1⊤ ⊗ Id)X

t,

and the consensus error is given by
n∑

i=1

∥Xt
i − X̄t∥2 = ∥Xt − 1n ⊗ X̄t∥2 = ∥K̃Xt∥2 = ∥Xt∥2

K̃
.

We also set vt = α(λ̃t+∇f((1⊗Id)X̄
t)) as an auxiliary variable to

measures the violation of tracking the average deterministic gradient.
The convergence result follows:

Theorem IV.4. Under Assumptions IV.1–IV.3, suppose the step sizes
satisfy η > 0, θ ≥ θlb, α ≤ αub, where

θlb =max
{ 4L2

nρ̃2a
,
2

ρ̃2
(1 + 2L+ 8ηρ̃21ρ̃

−1
2

+ δ1(
3

2
+ 3L2 + ηρ̃1 +

ρ̃21
2
))
}
,

αub =
max{16η, δ}

320θ2
·min

{ 1

M2
,
na

M2
,
1

ρ̃21

}
,

(14)

where δ2 = max{ 16η
δ
, 1}, δ1 = 12max{2, 2ρ̃−1

2 η−1, δ2δ̃}, δ̃ =

max{ (1−δ)2(1− δ
2
)2

(1− δ
2
)2−(1−δ)2

, 1}. Then, for any T ≥ 1, it holds

1

T

T−1∑
t=0

E
[∥∥∇f(X̄t)

∥∥2
]
≤ E [F0]− E [FT ]

αT/16
,

1

T

T−1∑
t=0

E
[
∥Xt∥2

K̃

]
≤ E [F0]− E [FT ]

αθρ̃2aT/4
.

(15)

where the expectation is taken w.r.t. randomness in the compression
operator, a > 0 is a free quantity, and

Ft = f(X̄t)− f⋆ +
a

ηα
∥vt∥2

Q̃+α
(
(
δ1
2

(θ+η)−θ)−δ2θ
)
K̃

+ a∥Xt∥2
K̃
+ δ1a

〈
Xt | vt〉

K̃
+ δ2a∥X̂t −Xt∥2,

(16)

can be shown to be non-negative.

Our analysis involves constructing a Lyapunov function to track the
joint convergence of the coupled variables. However, the proof is



rather technical and are relegated to an online appendix; see https:
//www1.se.cuhk.edu.hk/∼htwai/pdf/icassp25-ticopd.pdf.

The above theorem shows that upon fixing the dual step size at
η = δ, there exists a sufficiently small constant primal step size
α ≤ αub

1 (independent of T ) such that for sufficiently large T ,

1

T

T−1∑
t=0

E
[∥∥∇f(X̄t)

∥∥2
]
= O

(
1/T

)
, (17)

where it implies that there exists t̂ ∈ {0, . . . , T − 1} such that
E
[
∥∇f(X̄t̂)∥2

]
= O(1/T ). Notice that this is the same rate

(w.r.t. 1/T ) as a centralized gradient algorithm on the smooth
optimization problem (1). Moreover, compared to the results for
decentralized algorithms such as DGD [7] and CHOCO-SGD [19],
our results do not require using a diminishing step size nor bounded
gradient heterogeneity.

We also comment on the impact of compression on the convergence
rate and step size selection. Recall that δ ∈ (0, 1] of Assumption IV.3
is affected by quality of the compressor, where δ ≈ 0 with an
aggressive compression scheme, e.g., the number of quantization
levels, s, is small. In this case, we have δ̃ ≍ δ−1, θlb ≍ δ1 ≍ δ−1, and
thus αub = O(δ3). Consequently, we observe that the convergence
rate will be 1

T

∑T−1
t=0 E

[∥∥∇f(X̄t)
∥∥2

]
= O(δ3T−1) and the upper

bound evaluates to O(d1.5s−3T−1) for the case of randomized
quantization. As such, we conclude that the convergence of TiCoPD
is sensitive to the quality of compressor. A future direction is to
improve such dependence on δ.

V. NUMERICAL EXPERIMENTS

We compare the performance of the proposed algorithm on a
typical machine learning model training task. Here, fi(Xi) is taken
as the cross-entropy classification loss where Xi ∈ R79510 denotes
the weights of a 2 layer feed-forward neural network with 100
neurons and sigmoid activation. We consider training the neural
network on the MNIST dataset. We benchmark the performance
among algorithms that support compressed communication including
CHOCO-SGD [18] and CP-SGD [21] (both implemented with exact
gradients), while also comparing against the classical DGD method,
and a heuristic variant of DGD that only aggregates quantized
parameters. The stepsizes for each of the above algorithms are fine
tuned so that they achieve the best performance after 105 iterations.
The experiments are performed on a 40-core Intel Xeon server with
64GB memory using the PyTorch package.

We simulate the algorithms on a ring network of 10 nodes. The
MNIST dataset (of M = 60, 000 images, each with p = 784 pixels)
is distributed to each node according to the class label {0, ..., 9}, i.e.,
each node only access one class of images. We consider unshuffled
dataset to maximize data heterogeneity across agents. Note that
the convergence of primal-dual algorithms (TiCoPD, CP-SGD) are
unaffected by the data heterogeneity issue.

Fig. 1 compares the training loss (maxi∈[n] f(X
t
i)), gradient

norm (maxi∈[n] ∥∇f(Xt
i)∥2), consensus error (∥Xt∥2

K̃
), and test

accuracy of the worst local model Xt
i against the iteration number

and communication cost (in bits transmitted). Notice that for the
uncompressed DGD method, we assume that a 32 bits full precision
representation for a real number. We observe that both the primal-
dual algorithms, TiCoPD, CP-SGD, achieve substantially better per-
formance than the other algorithms that are primal-only. It illustrates

1Since it holds α = 1
1
α̃
+θL

, once θ is fixed, the upper bound of α can be

achieved by selecting a sufficiently small α̃.

DGD Quantized 8-bits
DGD (Exact)

CHOCO-SGD 8-bits
CP-SGD 8-bits

TiCoPD 8-bits

109 1010 1011

Bits Transmitted

100

3 × 10 1
4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n 
Lo

ss

0 2500 5000 7500 10000
Iteration

100

3 × 10 1
4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n 
Lo

ss

109 1010 1011

Bits Transmitted

10 5

10 4

Gr
ad

ie
nt

 N
or

m
 S

qu
ar

ed

0 2500 5000 7500 10000
Iteration

10 5

10 4

Gr
ad

ie
nt

 N
or

m
 S

qu
ar

ed

109 1010 1011

Bits Transmitted

10 4

10 3

10 2

10 1

100

Co
ns

en
su

s E
rro

r
0 2500 5000 7500 10000

Iteration

10 4

10 3

10 2

10 1

100

Co
ns

en
su

s E
rro

r

109 1010 1011

Bits Transmitted

40

60

80

100

Te
st

 A
cc

ur
ac

y

0 2500 5000 7500 10000
Iteration

40

60

80

100

Te
st

 A
cc

ur
ac

y
Fig. 1. Training a 2-layer feedforward network using the MNIST data. The
bit-rates for communication quantization are displayed in the legend.

how data heterogeneity will dampen the convergence of primal-only
algorithms. Furthermore, we note that the heuristic modification of
DGD with direct quantization results in a non-converging algorithm,
indicating the necessity of developing better approaches such as error
feedback. When comparing between TiCoPD and CP-SGD, we can
see that TiCoPD achieves lower consensus error by two orders of
magnitude as the number of iterations grows. Meanwhile, the two
algorithms share similar convergence rates on other metrics.

VI. CONCLUSIONS

This paper studies a communication efficient primal-dual algorithm
for decentralized optimization with support for compression schemes
such as quantized message exchanges. Unlike prior works, our key
idea is to develop the algorithm from the augmented Lagrangian
framework, and to incorporate classical designs such as majorization-
minimization and two-timescale updates. The resultant algorithm
is an algorithm that converges at the rate of O(T−1) for smooth
(possibly non-convex) problems. We envisage that the proposed
algorithmic framework can be extended for numerous tasks in signal
processing and machine learning.
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APPENDIX A
PROOF OF THEOREM IV.4

For some constants a, b, c, d, e > 0, we define the potential function Ft as

Ft = f(X̄t) + a∥Xt∥2
K̃
+ b∥vt∥2

Q̃+cK̃

+ d
〈
Xt | vt〉

K̃
+ e∥X̂t −Xt∥2,

(18)

Based on the update of algorithm, it follows:

E [Ft+1] ≤ E [Ft] + ωfE
[∥∥∇f(X̄t)

∥∥2
]
+ α2ωσ

n∑
i=1

σ2
i

+ E
[
ωx∥Xt∥2

K̃
+ ωv∥vt∥2

K̃
+ ωx̂∥X̂t −Xt∥2 +

〈
Xt

∣∣ vt〉
Wxv

]
,

(19)

where we denote

Wxv =a · −2(K̃− αθÃ⊤Ã) + b · 2αη(K̃+ cÃ⊤Ã)− d · (αθ + αη)Ã⊤Ã+ e · 2δ̃αθÃ⊤Ã (20)

ωx =
αL2

n
+ a ·

(
α− 2αθρ̃2 + α2θ2ρ̃21 + (3 +

2

α
)α2L2

)
(21)

+ b ·
(
4α2η2ρ̃21(c+ ρ̃−1

2 ) + 9α2(ρ̃−1
2 + c)L4) (22)

+ d ·
(
3

2
α+ 3L2α+ (αη − α2θ − 2α2θ)ρ̃1 + (

α

2
− α2ηθ + α3θ2 +

α3η2

2
)ρ̃21 + (α+

1

2
α2)8α2L4

)
(23)

+ e · δ̃
(
2α2θ2ρ̃21 + 3α2L2) , (24)

ωv =a · 3 + b · 2α(ρ̃−1
2 + c) + d · −1

2
+ e · 2δ̃, (25)

ωx̂ =θ2M2Lα+ 2

n
α+ a ·

(
(2α+ 3α2)θ2(ρ̃1 +M)2

)
(26)

+ b ·
(
4α2η2ρ̃21(ρ̃

−1
2 + c) + αη2 + 6α3(ρ̃−1

2 + c)θ2M2L2) (27)

+ d ·
(
3α2θ2(ρ̃1 +M)2) +

αη2

2
ρ̃21 + 2(α+

1

2
α2)θ2M2L2α2

)
(28)

+ e ·
(
2δ̃α2θ2(ρ̃1 +M)2 + (1− δ

2
)2 − 1

)
(29)

ωf =− α

4
+ b · 9α3(ρ̃−1

2 + c)nL2 + d · 4(α+
1

2
α2)α2nL2 + e · 2δ̃α2 (30)

Lemma A.1. Under Assumption IV.1, when α ≤ 1
4L

,

E
[
f(X̄t+1)

]
≤ E

[
f(X̄t)−

α

4

∥∥∇f(X̄t)
∥∥2

+ (
αL2

2n
+

2α2L3

n
)∥Xt∥2

K̃

]
+

α2L

n2

n∑
i=1

σ2
i

+ θ2M2Lα+ 2

n
αE

[
∥X̂t −Xt∥2

]
, (31)

See Appendix B for the proof. Therefore, next we need to develop the bound of consensus error E
[
∥X∥2

K̃

]
and surrogate variable error

E
[
∥X̂t −Xt∥2

]
.

Lemma A.2. Under Assumptions IV.1–IV.2 and step size α ≤ 1
θρ̃1

, the consensus error follows the inequality

E
[
∥Xt+1∥2

K̃

]
≤

(
1 + α− 2αθρ̃2 + α2θ2ρ̃21

+ (2α+ 3α2)L2)E [
∥Xt∥2

K̃

]
− 2E

[〈
Xt

∣∣ vt〉
(I−αθÃ⊤Ã)K̃

]
+ 3E
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∥vt∥2

K̃

]
+ (2α+ 3α2)θ2(ρ̃1 +M)2E

[
∥X̂t −Xt∥2

]
,

(32)

See Appendix C for the proof. The above lemma provides the updates of consensus error E
[
∥Xt∥2

K̃

]
depend on E

[
∥vt∥2

K̃

]
and the

weighted inner product of Xt,vt. Therefore, next we will consider the bound of these two terms.



Lemma A.3. Under Assumption IV.1–IV.2 and step size α ≤ 1, for any constant c > 0, it follows the inequality

E
[∥∥vt+1

∥∥2

Q̃+cK̃

] (67)
≤ (1 + 2α)E

[∥∥vt
∥∥2
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[∥∥∇f(X̄t)
∥∥2

]
.

(33)

See Appendix D for the proof.

Lemma A.4. Under Assumption IV.1–IV.2, for any constant c > 0, δ1 > 0, it follows the inequality

E
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]
≤ E

[〈
Xt

∣∣ vt〉
K̃−(αθ+αη)Ã⊤Ã
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,

(34)

where N = 3
2
α+ 3L2α+ (αη − α2θ − 2α2θ)ρ̃1 + (α

2
− α2ηθ + α3θ2 + α3η2

2
)ρ̃21 + (α+ 1

2
α2)8α2L4.

See Appendix E for the proof.

Lemma A.5. Under Assumptions IV.1–IV.3, the mirror sequence error follows the inequality

E
[
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]
≤ δ̃
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∥∥2

.

(35)

See Appendix F for the proof.

Lemma A.6. Suppose that

b = a · 1

αη
, c =

(αθ + αη)d− 2αθa− e2δ̃αθ

2αηb
,

d = max{24, 24ρ̃−1
2 η−1, 192

δ̃η

δ
, 12δ̃}a, e = max{16η

δ
, 1}a,

(36)

then for η > 0, θ ≥ θlb, α ≤ αub, it holds that Ft ≥ f(X̄t) ≥ f∗ > −∞, and

Wxv = 0, ωx ≤ −1

4
αθρ̃2a, ωv ≤ −2a,

ωx̂ ≤ − δ

16
a, ωf ≤ − 1

16
α.

(37)

Summing up the inequality (18) from t = 0 to t = T − 1 and divide both sides by T concludes the proof of the theorem.

APPENDIX B
PROOF OF LEMMA A.1

Firstly, by (14) and (6), the updates of X̄ follows:

X̄t+1 =
1

n
(1⊤ ⊗ Id)

(
Xt + (1− β)(X̂t −Xt)− α

(
∇f(Xt) + Ã⊤λt + θÃ⊤ÃX̂t)) (38)

= X̄t +
1− β

n
(1⊤ ⊗ Id)(X̂

t −Xt)− α

n
(1⊤ ⊗ Id)∇f(Xt), (39)

where the last equation utilize the fact 1⊤Ã⊤ = 0.



By Assumption IV.1 and (39),

E
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]
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The second term of (41) can be bounded as
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]
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where we use (IV.1) and the following relationship between α and 1− β:

1− β = 1− 1

1 + α̃θM
=

θM
1
α̃
+ θM

= θMα. (45)

The third term of (41) can be bounded as
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. (48)

Combining the above and setting the step size α ≤ 1
4L

concludes the proof of the lemma. □

APPENDIX C
PROOF OF LEMMA A.2

To facilitate our analysis, we introduce the following quantities:

et
g := α

(
∇f((1n ⊗ Id)X̄

t)−∇f(Xt)
)
, (49)

vt := αλ̃t + α∇f((1n ⊗ Id)X̄
t), (50)

et
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(
αθÃ⊤Ã+ (1− β)Ind

)
(X̂t −Xt). (51)

By (49), (50) and (51), we can rewrite the primal update as
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=
(
I− αθÃ⊤Ã
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By (53), the consensus error can be measured by
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The ,E
[
∥et

g∥2K̃
]
,E

[
∥et
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]
term can be simplified as follow. Using the fact that each difference term in et

s has mean zero and are
independent when conditioned on (Xt,λt), we can obtain
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Combining the upper bounds of ,E
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[
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and step size α ≤ 1

θρ̃1
, the proof of Lemma A.2 has been completed. □

APPENDIX D
PROOF OF LEMMA A.3

Consider expanding vt+1 as

vt+1 (50)
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Therefore,
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Due to Assumption IV.2, it holds:
E
[
∥·∥2

Q̃+cK̃

]
≤ (ρ̃−1

2 + c)E
[
∥·∥2

K̃

]
. (65)

The second term of (64) can be simplified as
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]
+ 2αE

[∥∥vt
∥∥2

Q̃+cK̃

]
+ αη2ρ̃21E

[∥∥∥X̂t −Xt
∥∥∥2

Q̃+cK̃

]
+ α(ρ̃−1

2 + c)E
[∥∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)
∥∥2

]
(67)

The third term of (64) can be simplified as
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Q̃+cK̃

]
(68)

≤ 4α2η2ρ̃21E
[
∥Xt∥2

Q̃+cK̃

]
+ 4α2η2ρ̃21(ρ̃

−1
2 + c)E

[
∥X̂t −Xt∥2

]
(69)

The fourth term of (64) can be simplified as

2E
[∥∥α∇f((1n ⊗ Id)X̄

t+1)− α∇f((1n ⊗ Id)X̄
t)
∥∥2

Q̃+cK̃

]
≤ 2α2 · (ρ̃−1

2 + c)E
[∥∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)
∥∥2

]
(70)

The proof is concluded by combining the above inequalities and simplifing Q̃Ã⊤Ã = K̃ and K̃Ã⊤Ã = Ã⊤Ã. □

APPENDIX E
PROOF OF LEMMA A.4

By (53) and (63),

E
[〈
Xt+1

∣∣ vt+1〉
K̃

]
(71)

= E
[〈
Xt

∣∣ vt〉
(I−αθÃ⊤Ã)K̃−αηK̃Ã⊤Ã

]
+ E

[
∥Xt∥2

αη(I−αθÃ⊤Ã)K̃Ã⊤Ã

]
(72)

+ αE
[〈
Xt

∣∣ ∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t)
〉
(I−αθÃ⊤Ã)K̃

]
(73)

− E
[
∥vt∥2

K̃

]
− αE

[〈
vt

∣∣ ∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t)
〉
K̃

]
(74)

+ E
[〈(

I− αθÃ⊤Ã
)
Xt − vt

∣∣∣ αηÃ⊤Ã(X̂t −Xt)
〉
K̃

]
(75)

+ E
[〈

et
g + et

X̂

∣∣∣ vt + αηÃ⊤ÃX̂t + α(∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t))
〉
K̃

]
(76)



Now notice that by applying Young’s inequality on the third, fifth, sixth and seventh terms of the above, we get

αE
[〈
Xt

∣∣ ∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t)
〉
(I−αθÃ⊤Ã)K̃

]
(77)

≤ α

2
· E

[
∥Xt∥2

((I−αθÃ⊤Ã)K̃)2

]
+

α

2
· E

[
∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)∥2

]
, (78)

− αE
[〈
vt

∣∣ ∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t)
〉
K̃

]
(79)

≤ α

2
E
[
∥vt∥2

K̃

]
+

α

2
E
[
∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)∥2

]
(80)

E
[〈(

I− αθÃ⊤Ã
)
Xt − vt

∣∣∣ αηÃ⊤Ã(X̂t −Xt)
〉
K̃

]
(81)

≤ αE
[
∥
(
I− αθÃ⊤Ã

)
Xt∥2

K̃

]
+ αE

[
∥vt∥2

K̃

]
+

αη2

2
ρ̃21E

[
∥X̂t −Xt∥2

K̃

]
(82)

E
[〈

et
g + et

X̂

∣∣∣ vt + αηÃ⊤ÃX̂t + α(∇f((1n ⊗ Id)X̄
t+1)−∇f((1n ⊗ Id)X̄

t))
〉
K̃

]
(83)

≤ 3

2
E
[
∥et

g + et
X̂∥2

K̃

]
+

1

6
E
[
∥vt + αηÃ⊤ÃX̂t + α(∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t))∥2

K̃

]
(84)

≤ 3E
[
∥et

g∥2K̃
]
+ 3α2θ2(ρ̃1 +M)2E

[
∥X̂t −Xt∥2

]
+

1

2
E
[
∥vt∥2

K̃

]
+

α2η2

2
E
[
∥Ã⊤ÃXt∥2

K̃

]
+

1

2
α2E

[
∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)∥2

K̃

]
(85)

The proof is concluded by combining Lemma H.1 and simplifying ÃK̃ = Ã. □

APPENDIX F
PROOF OF LEMMA A.5

By Lemma IV.3, it holds that

E(∥X̂t+1 −Xt+1∥2 = E(∥X̂t −Xt+1 +Q(Xt+1 − X̂t; ξt+1
q )∥2

≤ (1− δ)2E
[
(1 + τ)∥Xt+1 −Xt∥2 + (1 +

1

τ
)∥Xt − X̂t∥2

]
≤ δ̃E

[
∥Xt+1 −Xt∥2

]
+ (1− δ

2
)2E

[
∥Xt − X̂t∥2

]
,

(86)

where we denote τ = (1−δ)2

δ− 3
4
δ2

, which satisfied (1− δ)2(1 + 1
τ
) = (1− δ

2
)2. The last term E

[
∥Xt − X̂t∥2

]
can be simplified as

E
[
∥Xt+1 −Xt∥2

]
= E

[∥∥∥−αθÃ⊤ÃXt − vt + et
s + et

g + et
X̂

∥∥∥2
]

(87)

≤2E
[∥∥∥−αθÃ⊤ÃXt

∥∥∥2
]
− 2E

[〈
Xt

∣∣ vt〉
−αθÃ⊤Ã

]
+ 2E

[
∥vt∥2

]
+ 3E

[
∥et

g∥2
]
+ 2E

[
∥et

X̂∥2
]
+ 2E

[
∥et

s∥2
]

(88)
(i)

≤
(
2α2θ2ρ̃21 + 3α2L2 + 2α2θ2σ2

Aρ̃1
)
E
[∥∥Xt

∥∥2

K̃

]
+ 2E

[〈
Xt

∣∣ vt〉
αθÃ⊤Ã

]
+ 2E

[
∥vt∥2

]
+ 2α2θ2(ρ̃1 +M)2E

[
∥X̂t −Xt∥2

]
+ 2α2

n∑
i=1

σ2
i , (89)

where (i) uses the bound of ,E
[
∥et

g∥2K̃
]
,E

[
∥et

X̂
∥2
K̃

]
. Notice that λ̃t = Ã⊤λt ⇒ (1⊗ Id)

⊤λ̃t = 0, it follows

∥vt∥2
K̃

= ∥αλ̃t + α∇f((1n ⊗ Id)X̄
t)∥2(I− 1

n
11⊤)⊗Id

= ∥vt∥2 − α2∥∇f((1n ⊗ Id)X̄
t)∥21

n
11⊤⊗Id

(90)

= ∥vt∥2 − α2
∥∥∇f(X̄t)

∥∥2
. (91)

It follows

E
[
∥Xt+1 −Xt∥2

]
(92)

≤
(
2α2θ2ρ̃21 + 3α2L2 + 2α2θ2σ2

Aρ̃1
)
E
[∥∥Xt

∥∥2

K̃

]
+ 2E

[〈
Xt

∣∣ vt〉
αθÃ⊤Ã

]
+ 2E

[
∥vt∥2

K̃

]
+ 2α2θ2(ρ̃1 +M)2E

[
∥X̂t −Xt∥2

]
+ 2α2

n∑
i=1

σ2
i + 2α2

∥∥∇f(X̄t)
∥∥2

(93)

Combing the above, the proof is concluded. □



APPENDIX G
PROOF OF LEMMA A.6

Firstly, we show the lower bound of Ft for any t ≥ 0. By the inequality | ⟨x | y⟩ | ≤ 1
2δ0

∥x∥2 + δ0
2
∥y∥2 for any δ0 > 0,

Ft ≥ f(X̄t) + a∥Xt∥2
K̃
+ ∥vt∥2

bQ̃+bcK̃
− d

2δ0
∥Xt∥2

K̃
− dδ0

2
∥vt∥2

K̃
+ e∥X̂t −Xt∥2 (94)

= f(X̄t) + (a− d

2δ0
)∥Xt∥2

K̃
+ ∥vt∥2

bQ̃+(bc−dδ0/2)K̃
+ e∥X̂t −Xt∥2 (95)

(δ0=
d
2a

)
= f(X̄t) + 0 · ∥Xt∥2

K̃
+ ∥vt∥2

bQ̃+(bc− d2

4a
)K̃

+ e∥X̂t −Xt∥2 (96)

(12)
≥ f(X̄t) + ∥vt∥2

(b·ρ̃−1
1 +bc− d2

4a
)K̃

+ e∥X̂t −Xt∥2 (97)

Assume that d = δ1a, e = δ2a, δ1, δ2 ≥ 0. By choosing δ1 ≥ 2δ2 + 2, α ≤ 4
ηρ̃1δ

2
1

, it holds

b · ρ̃−1
1 + bc− d2

4a
= a

(
1

αηρ̃1
+ α(

δ1
2
(θ + η)− θ)− δ2αθ −

δ21
4

)
≥ 0. (98)

Therefore, we can obtain
Ft ≥ f(X̄t) ≥ f∗ > −∞. (99)

If the parameters are choosed according to (36), then it holds

Wxv = −a · 2K̃+ a · 2αθÃ⊤Ã+ b · 2αη(K̃+ cÃ⊤Ã)− d · (αθ + αη)Ã⊤Ã+ e2δ̃αθÃ⊤Ã = 0, (100)

and the inner product term in (18) vanishes. Combining (36), we can obtain

c = α(
δ1
2
(θ + η)− θ)− δ2αθ. (101)

By choosing α ≤ 1

ρ̃2(
δ1
2

(θ+η)−θ)
and (12), we can simplify c ≤ ρ̃−1

2 . Now we argue that ωx, ωv, ωx̂, ωf , ωσ are negative.

To upper bound ωx, by choosing α ≤ 1, η ≥ 1, we have

ωx ≤αL2

n
+ a · α

(
1 + 2L+ 8ηρ̃21ρ̃

−1
2 + δ1(

3

2
+ 3L2 + ηρ̃1 +

ρ̃21
2
)− 2θρ̃2

)
(102)

+ a ·
(
α2θ2ρ̃21 + 3α2L2 + 18α2ρ̃−1

2 L4η−1) (103)

+ a · δ1
(
(−α2θ − 2α2θ)ρ̃1 − α2ηθρ̃21 + α2θ2ρ̃21 + α2 η

2

2
ρ̃21 + 12α2L4

)
(104)

+ a · δ̃δ2
(
2α2θ2ρ̃21 + 3α2L2) . (105)

It holds that ωx ≤ − 1
4
αθρ̃2a < 0, with the following step size condition:

αL2

n
≤ 1

4
αθρ̃2a ⇔ θ ≥ 4L2

nρ̃2a
,

θ ≥ 2(1 + 2L+ 8ηρ̃21ρ̃
−1
2 + δ1(

3
2
+ 3L2 + ηρ̃1 +

ρ̃21
2
))ρ̃−1

2 ,

α2θ2ρ̃21 ≤ 1
10
αθρ̃2 ⇔ α ≤ ρ̃2

10θρ̃21
,

3α2L2 ≤ 1
10
αθρ̃2 ⇔ α ≤ θρ̃2

30L2 ,

18α2ρ̃−1
2 L4η−1 ≤ 1

10
αθρ̃2 ⇔ α ≤ θρ̃22η

180L4 ,

δ1α
2θ2ρ̃21 ≤ 1

10
αθρ̃2 ⇔ α ≤ ρ̃2

10δ1θρ̃
2
1
,

δ1α
2 η2

2
ρ̃21 ≤ 1

10
αθρ̃2 ⇔ α ≤ θρ̃2

5δ1η2ρ̃21
,

δ112α
2L4 ≤ 1

10
αθρ̃2 ⇔ α ≤ θρ̃2

120δ1L4 ,

2δ̃δ2α
2θ2ρ̃21 ≤ 1

10
αθρ̃2 ⇔ α ≤ ρ̃2

20δ̃δ2θρ̃
2
1

,

3δ̃δ2α
2L2 ≤ 1

10
αθρ̃2 ⇔ α ≤ θρ̃2

30δ̃δ2L2 ,

(106)

To upper bound ωv ,

ωv ≤a · 3 + a · 4ρ̃−1
2 η−1 + a · −1

2
δ1 + a · 2δ̃δ2 (107)

It holds that ωv ≤ −a 1
12
δ1 ≤ −2a < 0, with the following step size condition:

3 ≤ 1
8
δ1 ⇔ δ1 ≥ 24,

4ρ̃−1
2 η−1 ≤ 1

6
δ1 ⇔ δ1 ≥ 24ρ̃−1

2 η−1,

2δ̃δ2 ≤ 1
6
δ1 ⇔ δ1 ≥ 12δ̃δ2,

(108)



To upper bound ωx̂,

ωx̂ ≤θ2M2 3

n
α+ a ·

(
5αθ2(ρ̃1 +M)2

)
(109)

+ a ·
(
η + 8αηρ̃21ρ̃

−1
2 + 18α2η−1ρ̃−1

2 θ2M2L2) (110)

+ a · δ1
(
3α2θ2(ρ̃1 +M)2 +

αη2

2
ρ̃21 + 3α2θ2M2L2

)
(111)

+ a · δ2
(
2δ̃α2θ2(ρ̃1 +M)2 − 3δ

4

)
, (112)

Utilizing α ≤ min{1, η, 1
L
} and (45), it holds that ωx̂ ≤ − δ

16
a < 0, with the following step size condition:

4δ̃α2θ2ρ̃21 ≤ δ
16

⇔ α ≤
√

δ/δ̃

8θρ̃1
,

4δ̃α2θ2M2 ≤ δ
16

⇔ α ≤
√

δ/δ̃

8θM
,

θ2M2 3
n
α ≤ δ

16
δ2a ⇐ α ≤ δ2aδn

48θ2M2 ,

10aαθ2ρ̃21 ≤ δ
32
δ2a ⇔ α ≤ δδ2

320θ2ρ̃21
,

10aαθ2M2 ≤ δ
32
δ2a ⇔ α ≤ δδ2

320θ2M2 ,

aη ≤ δ
16
δ2a ⇔ δ2 ≥ 16η

δ
,

a(8αηρ̃21ρ̃
−1
2 ) ≤ δ

16
δ2a ⇔ α ≤ δδ2

128(ηρ̃21ρ̃
−1
2 )

a(18α2ρ̃−1
2 θ2M2L2) ≤ δ

8
δ2a ⇔ α ≤

√
δδ2ρ̃2

12MLθ
,

6aδ1α
2θ2ρ̃21 ≤ δ

32
δ2a ⇔ α ≤

√
δδ2/192δ1

θρ̃1
,

6aδ1α
2θ2M2 ≤ δ

32
δ2a ⇔ α ≤

√
δδ2/192δ1

θM
,

aδ1
αη2

2
ρ̃21 ≤ δ

32
δ2a ⇔ α ≤ δδ2

16δ1η2ρ̃21
,

aδ13α
2θ2M2L2 ≤ δ

32
δ2a ⇔ α ≤

√
δδ2/96δ1
θML

,

(113)

To upper bound ωf ,

ωf ≤ −1

4
α+ 18aα2η−1ρ̃−1

2 nL2 + 6aδ1α
2nL2 + 2aδ̃δ2α

2 (114)

It holds that ωf ≤ − 1
16
α, with the following step size condition:

18aα2η−1ρ̃−1
2 nL2 ≤ 1

16
α ⇔ α ≤ ηρ̃2

288nL2a
,

6aδ1α
2nL2 ≤ 1

16
α ⇔ α ≤ 1

96δ1nL2a
,

2aδ̃δ2α
2 ≤ 1

16
α ⇔ α ≤ 1

32δ̃δ2a
,

(115)

Without loss of general, assume L ≥ 1. Based on the above conditions, the upper and lower bounds of the parameters and step size can
be obtained. η ≥ 1, θ ≥ θlb, α ≤ αub, where

δ1 = max{24, 24ρ̃−1
2 η−1, 12δ2δ̃}, δ2 = max{16η

δ
, 1},

θlb = max{ 4L2

nρ̃2a
, 2ρ̃−1

2 (1 + 2L+ 8ηρ̃21ρ̃
−1
2 + δ1(

3

2
+ 3L2 + ηρ̃1 +

ρ̃21
2
))},

αub =
δδ2

320θ2
·min{ 1

M2
,
na

M2
,
1

ρ̃21
,
1

na
}.

(116)

□

APPENDIX H
AUXILIARY LEMMAS

Lemma H.1. Under Assumption IV.1,

E
[∥∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)
∥∥2

]
≤ 3α2nL2E

[∥∥∇f(X̄t)
∥∥2

]
+ 3α2L4∥Xt∥2

K̃
+ 3θ2M2L2α2E

[
∥X̂t −Xt∥2

]
.

(117)



Proof of Lemma H.1. By the Lipschitz gradient assumption on each local objective function fi,

E
[∥∥∇f((1n ⊗ Id)X̄

t+1)−∇f((1n ⊗ Id)X̄
t)
∥∥2

]
(118)

≤nL2E
[
∥X̄t+1 − X̄t∥2

]
(119)

≤3α2nL2E

[∥∥∇f(X̄t)
∥∥2

+
1

n

n∑
i=1

∥∥∇fi(X
t)−∇fi(X̄

t)
∥∥2

]
+ 3L2(1− β)2E

[
∥X̂t −Xt∥2

]
(120)

≤3α2nL2E
[∥∥∇f(X̄t)

∥∥2
]
+ 3α2L4∥Xt∥2

K̃
+ 3θ2M2L2α2E

[
∥X̂t −Xt∥2

]
. (121)

□
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