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Motivation

[Source: NETWORK MANAGEMENT] [Source: Sapien Labs]

▶ Graphs are natural ways to represent social, biology, transportation,

power networks, and others.

▶ Graph Signal Processing (GSP) — extends signal processing to

graph data and enables ‘interpretable’ inference of data.
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Motivation

Multilayer protein networks [Source: [Zhao et al., 2016]]
Multilayer social network [Source: [Hanteer and Rossi, 2019]]

▶ Prior works consider closed systems with single layer of networks, but

networks do not live in isolation [Kivelä et al., 2014].

▶ A general model is multiplex graph – a node is present on ≥ 2 layers

of graphs, each with different topology – e.g., opinion dynamics on

≥ 2 topics, weather measurement stations, brain signals, etc.

▶ Note: We focus on multi-attribute graph signals.
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Goals and Contributions

To extend GSP methods to multiplex graphs: signal analysis, topology

learning, etc. — we focus on graph topology learning.

Contributions:

▶ Multiplex Graph Filter for

multi-attribute graph signals with

nonlinear intra-/inter-layer couplings.

▶ Interpret TV/smoothness criterion as a

matched filter criterion – extend to

handle inter-layer couplings.

▶ Alternating Optimization Procedure

for efficient multiplex graph learning.
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Related Works

▶ Models for multi-way graph signals (on multiplex graphs)
▶ [Zhang et al., 2023b] – tensor GSP model, but it lacks inter-layer

coupling dynamics.
▶ [Natali et al., 2020, Grassi et al., 2017] considered product graph

signal models which is a special case of multiplex graphs.

▶ Multiplex graph topology learning
▶ [Kalaitzis et al., 2013] [Kadambari and Chepuri, 2021],

[Einizade and Sardouie, 2023] learn product graphs using graph

signals via smoothness, spectral template, etc.
▶ Our prior work [Zhang et al., 2023a] consider a fine-grained model for

product graph learning.

▶ Graph Machine Learning
▶ [Cen et al., 2019, Zhang et al., 2019] seek embeddings for graph

representation on heterogeneous graph with HetGNN.
▶ [Butler et al., 2023] proposed a model for convolutional learning on

multigraph.

▶ and many others ...
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Multiplex Graph Model
▶ G = ⟨V , E ,GC ⟩ with nodes V , layer edges E , coupling graph GC .

▶ There are |V | = N nodes and L layers.

▶ Layer Graphs: For ℓ = 1, ..., L, Gℓ with supernodes Vℓ, edges Eℓ,

representing intra-layer links with adjacency Aℓ.

▶ Coupling Graph: GC for inter-layer links with adjacency C .

▶ Adjacency Matrix: Layer-wise AL = blkdiag(A1, . . . ,AL) and

coupling AC = C ⊗ IN . e.g: supra-adjacency: A = AL +AC .
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Multi-attribute Graph Filter and Signals.

▶ We model multi-attribute graph signal as

y (m) = H(AL,AC )x (m) + w (m) ∈ RNL, (1)

▶ H(AL,AC ) shall model the multiplex with distinct intra-layer and

coupling dynamics → a general multi-attribute graph filter model1:

H(AL,AC ) =
T−1∑
t=0

2t−1∑
j=0

ht,j

t∏
i=1

Ab
(i)
t,j

L A1−b
(i)
t,j

C , b
(i)
t,j ∈ {0, 1} (GF)

▶ Remark: the tensor GSP model [Zhang et al., 2023b] essentially takes the

polynomial filter of supra-adjacency matrix

H(AL,AC ) =
T−1∑
t=0

ht(AL +AC )
t . (GF-t)

1Note: this is a multinomial with exponential number of coefficients. Similar

observations are made in [Butler et al., 2023].
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Expressibility of (GF): Multiplex Graph Dynamics

It is necessary to use the model (GF) with

H(AL,AC ) =

T−1∑
t=0

2t−1∑
j=0

ht,j

t∏
i=1

A
b
(i)
t,j

L A
1−b

(i)
t,j

C , b
(i)
t,j ∈ {0, 1}

Supra-diffusion Process:

▶ E.g., dynamics of epidemics [Kivelä et al., 2014]:

dyℓ(t)
dt

= −yℓ(t) + Aℓyℓ(t)︸ ︷︷ ︸
intra-layer

+
∑L

ℓ′=1 Cℓ,ℓ′yℓ′(t)︸ ︷︷ ︸
inter-layer

+x (m)
ℓ .

▶ Steady-state of the diffusion process:

y (m) = lim
t→∞

y(t) = (INL − (AL +AC ))
−1x (m),

▶ Fine with (GF) and (GF-t).
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Expressibility of (GF): Multiplex Graph Dynamics

It is necessary to use the model (GF) with

H(AL,AC ) =

T−1∑
t=0

2t−1∑
j=0

ht,j

t∏
i=1

A
b
(i)
t,j

L A
1−b

(i)
t,j

C , b
(i)
t,j ∈ {0, 1}

Opinion Dynamics:

▶ Evolution with mutual trust C and logical matrix Aℓ:

yℓ(t + 1) = Aℓ

∑L
ℓ′=1 Cℓ,ℓ′yℓ′(t)︸ ︷︷ ︸

coupled inter- and intra-layer

+x (m)
ℓ ,

▶ Steady-state opinions:

y (m) = lim
t→∞

y(t) = (INL −ALAC )
−1x (m).

▶ Fine with by (GF) but not (GF-t).

8 / 18



Multiplex Graph Learning

??

Unknown Graph

Observations {y (m)}Mm=1

Task: Given graph signals {y (m)}Mm=1, estimate multiplex graph AL, AC .

▶ General idea: Following [Dong et al., 2016], exploit smoothness of

multi-attribute graph signals → how to leverage (GF)?
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TV Objective and Matched Graph Filter

(Let’s take a slight detour ...)

▶ Let S ∈ RN×N be the pairwise distance matrix of graph signals and we

aim at learning the (simple) graph adjacency A.

▶ Consider the Dirichlet energy criterion in [Berger et al., 2020]2:

TV(Â) :=
∑N

i,j=1 Âij
1
M ∥yi − yj∥2 =

∑N
i,j=1 ÂijSij = ⟨Â|S⟩. (2)

With y (m) ≈ H(A)x (m) and under mild condition

minÂ TV(Â)
approx.⇐⇒ maxÂ ⟨Â |H2(A)⟩.

▶ If H2(A) is a low-pass graph filter [Ramakrishna et al., 2020], then its

first order approximation3 is given by H2(A) ≈ A.

▶ Criterion (2) can be interpreted as a matched filter criterion.

2Graph learning methods based on quadratic TV such as [Dong et al., 2016] can be

interpreted similarly.
3In general H(A) is not known a-priori, 1st order approx is the best we can do.
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Tractable Approximation to (GF)

▶ (GF) is intractable in general ∵ exponential no. of parameters.

▶ Inspired by the examples, consider the approximation4:

H(AL,AC ) ≈ H1(AL) +H2(AC ) +H3(ALAC +ACAL) (a-GF)

▶ H1,H2,H3 are polynomials.
▶ H1(AL), H2(AC ) model intra- and inter-layer graph dynamics,
▶ H3 captures two-hops neighbors and cross-layer interactions.

4Also assume that H(AL,AC )H(AL,AC )
⊤ obeys a similar form.
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Matched Graph Filter for Multiplex Graph Learning

▶ S ∈ RNL×NL = pairwise distance matrix of multi-attribute signals.

▶ Consider a generalized Dirichlet energy criterion

TV(AL,AC ) :=
∑NL

i,j=1

[
ĥ (AL,AC )

]
ij
Sij = ⟨ĥ (AL,AC ) |S⟩. (3)

▶ With (a-GF), we have

S ≈ H1(AL) +H2(AC ) +H3(ALAC +ACAL).

▶ Assumption H1: H1(·),H2(·),H3(·) are low-pass graph filters.

▶ Under H1, the matched multiplex graph filter design:

ĥ (AL,AC ) = AL +AC + λ (ACAL +ALAC ).

→ A high-order smoothness metric!
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Multiplex Graph Learning - Algorithm

Under H1, we formulate the bi-convex problem:

min
ÂL,ÂC∈A

〈
ÂL + ÂC + λ

(
ÂLÂC + ÂCÂL

)
|S

〉
+ α

(
∥ÂL∥2F + ∥ÂC∥2F

)
(4)

▶ Algorithm: alternating optimization (AO) can be applied:
▶ Fix ÂC and solve for ÂL → fix ÂL and solve for ÂC → · · ·

▶ The AO subproblems are separable and tractable – each involves

convex problems size of N × N or L× L.

▶ AO finds a stationary point of (4) as iteration number goes to ∞
[Grippo and Sciandrone, 2000].

▶ Remark: when λ = 0, the problem reduces into that of

[Kadambari and Chepuri, 2021].
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Topology Reconstruction under strong coupling
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AL -[Kadambari and Chepuri, 2021] AL - Proposed AO
AC -[Kadambari and Chepuri, 2021] AC - Proposed AO

▶ Weak coupling: Hwk(AL,AC ) = (I − τwk(AL +AC ))
−1.

▶ Observation: AUC performance generally improves as M

increases/deteriorates as N increases.

▶ Proposed AO (λ = 0.1) attains similar performance to the benchmark.
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Topology Reconstruction under strong coupling
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AL -[Kadambari and Chepuri, 2021] AL - Proposed AO
AC -[Kadambari and Chepuri, 2021] AC - Proposed AO

▶ Strong coupling: Hstr(AL,AC ) = (I − τstrALAC )
−1.

▶ Benchmark fails in estimating graph topologies under strong coupling.

▶ Proposed AO (λ = 5) recovers topology effectively regardless of layer

coupling robustly.
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Summary

Takeaway: Distinct inter-layer and intra-layer interactions dynamics

require careful modeling for multiplex graph learning.

We have introduced a method for learning multiplex network structures

from multi-attribute graph signals:

▶ General multiplex graph filter to model complex signal interactions.

▶ Matched filter perspective to graph learning by smoothness → a

high-order smoothness metric aimed at inter-layer coupling.

▶ An efficient AO procedure for learning graph topologies.

▶ Future work: modeling of multiplex graph signals, adopting other

GSP tools, ...
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Thank you!

Contact me at htwai@cuhk.edu.hk if you are interested.
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