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Abstract—The application of graph signal processing (GSP)
on partially observed graph signals with missing nodes has
gained attention recently. This is because processing data from
large graphs are difficult, if not impossible due to the lack of
availability of full observations. Many prior works have been
developed using the assumption that the generated graph signals
are smooth or low pass filtered. This paper treats a blind graph
filter detection problem under this context. We propose a detector
that certifies whether the partially observed graph signals are low
pass filtered, without requiring the graph topology knowledge.
As an example application, our detector leads to a pre-screening
method to filter out non low pass signals and thus robustify the
prior GSP algorithms. We also bound the sample complexity of
our detector in terms of the class of filters, number of observed
nodes, etc. Numerical experiments verify the efficacy of our
method.

Index Terms—graph signal processing, low pass graph filter,
partial observations.

I. INTRODUCTION

An important goal of graph signal processing (GSP) [1] is
to extract insights from complex network data. Using graph
shift operator (GSO), graph filters & signals as the underlying
constructs, GSP has led to many theoretically justified graph
learning methods [2], [3], e.g., prior works showed how to
estimate the structure of weather [4] and brain networks [5].
Meanwhile, the overwhelming size of complex networks has
necessitated practical methods to consider the partial obser-
vation setting where a fraction of nodes are never observed.

The partial observation setting may break a number of prop-
erties such as structure of eigenvectors, smoothness of graph
signals, etc., that are necessary for graph learning. To this end,
the early work [6] proposed to exploit the ‘low-rank+sparse’
structure in the precision matrix of partially observed graph
signal. Subsequent work such as [7] proposed a graph learning
criterion using smoothness of graph signals, [8] considered
time-series data, [9] considered a linear influence model, and
[10], [11] focused on identifiability of network dynamical
systems. Additionally, the authors have studied graph feature
learning from partial observations, such as community [12],
central nodes [13]. In the above works, a common assumption
made is that the graph signals are smooth, or more generally,
generated from a network process that can be modeled as
exciting a low-pass graph filter [14].

This work is supported in part by HKRGC Project #24203520.

While the low-pass graph filter assumption can be motivated
by modeling network processes from social-physical aspects
(e.g., [14], [15]), the latter often requires prior knowledge
on the given dataset. In the absence of prior knowledge or
when the dataset is corrupted, applying GSP methods may
lead to unexpected results. Under this context, it is natural
to ask: Do we know if a dataset of partially observed graph
signals is generated from a low-pass filter, without knowing
the underlying graph beforehand? Addressing the question
gives a certificate prior to applying the mentioned methods on
partially observed signals and guarantees reliable outcomes.

Our plan is to build on the authors’ prior work [16], which
tackled a similar detection problem but was focused on fully
observed graph signals. Particularly, as the detection problem
is ill-posed in general since smoothness/low-pass-ness are
defined with respect to the graph itself, [16] focuses on a
simplified case where the graph is known to be modular [17],
a common feature for graphs found in networked systems. It
then derives a detector based on the clusterizability of principal
components, i.e., spectral pattern, for observed graph signals.

For partially observed graph signals, the challenge lies on
how to account for the effect of missing nodes on the observed
spectral pattern. To this end, our contributions are:

• We show that the K-means score detector in [16] can
correctly detect the spectral pattern of partially observed
low-pass graph signals. Though the latter also exhibit spec-
tral pattern that distinguishes itself from any non-low-pass
signals, we prove that the sampling complexity critically
depends on the number of observed nodes.

• We demonstrate that the proposed detector can be used as
a pre-screening procedure to robustify community detection
from partially observed graph signals.

The rest of this paper is structured as follows. Section II
describes the partial observation setting and formulates the
blind detection problem. Section III develops the proposed
method and reports its sample complexity. Finally, Section IV
presents results from preliminary numerical experiments.

Notations. We use ||·||2 to denote spectral norm for matrices
and Euclidean norm for vectors, and ||·||F to denote Frobenius
matrix norm. For a symmetric matrix X, λi(X) denotes the
ith smallest eigenvalue of a matrix.



II. PROBLEM STATEMENT

Consider an undirected, connected N -node graph G =
(V,E) where V = {1, ..., N} and E ⊆ V × V . The graph
can be represented as an adjacency matrix A ∈ {0, 1}N×N ,
a Laplacian matrix L = D − A where D = diag(A1), or
a normalized Laplacian matrix Lnorm = I − D−1/2AD−1/2.
The aforementioned matrix representations of G qualify as
graph shift operators (GSO), which are any symmetric matrix
S ∈ RN×N such that Sij ̸= 0 only if (i, j) ∈ E. A
GSO admits an eigendecomposition S = VΛV⊤, where
the columns of V = [v1, · · · ,vN ] are the orthonormal
eigenvectors associated with eigenvalues sorted in ascending
order, and Λ is a diagonal matrix of eigenvalues, also known
as the graph frequencies. We focus on the case of S = Lnorm.

The graph filter is defined as a polynomial of the GSO:

H(S) =
∑T

t=0 htS
t = Vh(Λ)V⊤, (1)

where {ht}T−1
t=0 are the filter coefficients. The latter also de-

fines the frequency response function: h(λ) =
∑T

t=0 htλ
t and

h(Λ) = diag(h(λ1), ..., h(λn)). For simplicity, we assume
the magnitudes of frequency responses to be distinct, i.e.
|h(λi)| ≠ |h(λj)| for all i ̸= j. By sorting the magnitude of
frequency responses in descending order as |h1| > ... > |hN |,
the graph filter operator can be written as H(S) = UhU⊤,
where h = diag(h1, ..., hN ) and U is accordingly the column
re-ordered version of V.

A graph signal on G is represented as a N -dimensional
vector that is the output of a graph filter (1):

y = H(S)x+w. (2)

The ith element of y denotes the signal on node i ∈ V ,
subjected to the excitation graph signal x ∈ RN , and w ∈ Rn

is a zero-mean white noise with E[ww⊤] = σ2I for σ2 ≥ 0.
The observed signal y is assumed to be stationary, i.e.,
E[x] = 0 and E[xx⊤] = I [18], [19] for simplicity; however,
our analysis can be extended to the non-stationary case of
E[xx⊤] ̸= I.

The graph signal y in (2) can also be modeled as the output
of a network process. Prior works in GSP have suggested
to categorize network process according to their frequency
response. Among others, an important class of graph filters
is the low-pass graph filters [14], [20], which is defined by:

Definition 1. A graph filter H(·) is said to be K-low-pass if

ηK :=
maxi=K+1,...,N |h(λi)|
mini=1,...,K |h(λi)|

< 1, (3)

where K is cut-off frequency, and ηK is the sharpness of H.

From the definition, a low-pass graph filter retains (resp. at-
tenuates) the energy of the excitation graph signal at low
(resp. high) frequencies. A graph signal is said to be low-pass
if it is the output of a low-pass graph filter.

We further consider the scenario when the graph signals in
(2) can only be partially observed. Without loss of generality,
we assume that the first n nodes are observed and denote

yo = [In×n,0n×(N−n)]y =: Eoy. (4)

As mentioned in the Introduction, the application of GSP on
partial observations has gained popularity as the model arises
naturally for large graphs where it is difficult to obtain obser-
vations on every nodes. Under this context, GSP applications
such as graph learning [7], community detection [12] have
exploited the smoothness property and motivate the latter by
modeling the graph signal observations as low pass signals.

We depart from the above works and inquire if the smooth-
ness property is valid for a given dataset. This leads to the
blind low-pass graph filter detection problem:

Problem 1. Given the parameter K and a set of partially
observed graph signals [cf. (2), (4)], determine if the under-
lying graph filter is K-low-pass or not [cf. Definition 1]. We
denote the null hypothesis T0 (resp. alternative hypothesis T1)
as ‘H(S) is (resp. not) K-low-pass’.

Notice that Problem 1 serves as a data-driven certificate to the
successful applications of the prior GSP works.

There are two challenges in solving Problem 1: (i) the graph
topology or the GSO S is unknown, (ii) the graph signals are
partially observed where Eo is unknown. Either challenge has
made it impossible to verify Definition 1 directly. Our prior
work [16] proposed to narrow down the detection problem
w.r.t. arbitrary graphs to the class of K-modular graphs
[17] with K densely connected components. The number
of densely connected components naturally determines the
parameter K for the low-pass filter. It then exploits the spectral
pattern of graphs to formulate a K-means score detector1.
The detector is proven to produce accurate result under mild
assumptions on the noise statistics and graph filter properties.

This paper aims to extend the aforementioned detector in
[16] to the partial observation context. Interestingly, we show
that the K-means score detector is still robust in this scenario,
whose performance loss depends naturally with the ratio n/N .

III. LOW-PASS DETECTION WITH PARTIAL OBSERVATIONS

This section develops a detector for Problem 1 under the
partial observation setting. Our development begins by inves-
tigating the covariance matrix of partially observed signals:

Co = E[yo,my⊤
o,m] = Voh(Λ)2V⊤

o + σ2I

= Uoh
2U⊤

o + σ2I,
(5)

where we have used yo,m to denote the mth realization of
the partially observed signal in (4). We have defined the row-
sampled eigenmatrices Vo = EoV,Uo = EoU ∈ Rn×N .
The noiseless covariance is Co = Co − σ2I = Uoh

2U⊤
o .

Following the insight from [12], we note that when the
graph filter has a sharp cut-off (e.g., ηK ≪ 1 under T0), the
following approximation holds

Co ≈ Uo,Kh2
KU⊤

o,K , (6)

where Uo,K takes the K left-most column vectors from Uo.
Under T0, the matrix Uo,K corresponds to the row-sampled

1We remark that when K = 1, i.e., the graph contains only one dense
component, applying the Perron Frobenius theorem [21] suffices to detect the
1-low-pass graph signals. Here, we shall focus on the case of K ≥ 2.



Algorithm 1 Low-pass Detection with Partial Observations
1: Input: Partially observed graph signals {yo,m}Mm=1, no.

of clusters K ≥ 2, detection threshold δ > 0.
2: Calculate “Co := (1/M)

∑M
m=1 yo,my⊤

o,m.
3: Compute the top-K eigenvectors “QK ∈ Rn×K of “Co.
4: Output: “T = T0 if K∗(“QK) < δ; or “T = T1 otherwise.

and column permuted version of VK = [v1, ...,vK ]. To
this end, the row vectors of VK are clusterizable when G
is K-modular. Meanwhile, under T1 when the graph filter
is not K-low-pass, Uo,K corresponds to the row sampled
versions of the bulk eigenvectors {vK+1, ...,vN} which are
not clusterizable [22]. Together, they motivate the following
K-means score: for any N ∈ RN×K , we denote

K∗(N) := minC K(N, C),
K(N, C) :=

∑K
k=1

∑
i∈Ck

||nrow
i − 1

|Ck|
∑

j∈Ck
nrow
j ||22,

(7)

where C = {C1, . . . , CK} is a set of non-overlapping partition
for {1, ..., N} and nrow

i denotes the ith row vector of N.
Define the sampled covariance matrix “Co :=

(1/M)
∑M

m=1 yo,my⊤
o,m and its top-K eigenvectors are

stacked up as “QK . Following the insights from [12], [16] and
observe that “QK ≈ Uo,K when n is sufficiently close to N ,
we propose to tackle Problem 1 by detecting T0/T1 based on
K∗(“QK). From the above discussions, K∗(“QK) will be small
(resp. large) when the graph filter is (resp. not) K-low-pass.
This motivates the proposed detector in Algorithm 1.

A. Performance Analysis and Theoretical Insights

We next present the analysis on the finite-sample perfor-
mance of Algorithm 1. In addition to verifying the correctness
of the detector, our analysis shall demonstrate the favorable
conditions where the detector is effective. Note that there are
multiple sources of error that need to be controlled carefully.
For instance, the approximation in (6) is not exact, the columns
of Uo,K are not orthogonal, etc.

To set up the analysis, we require the following condition
on spectral gap of the covariance matrix:

H1. With probability at least 1− δgap, there exists ρgap such
that λn−K−1(Co)− λn−K(Co)− ||“Co −Co||2 ≥ ρgap > 0.

The above can be satisfied when “Co is sufficiently close to
Co, e.g., when sufficient number of samples are observed and
the noise level σ2 is small, and the noiseless covariance Co

is approximately rank K. We also let:

H2. The graph filter H(S) is at least η-sharp and γ-flat:

maxi=K+1,...,N |hi|
mini=1,...,K |hi|

≤ η < 1,
max1≤i≤K h2

i

min1≤j≤K h2
j

≤ γ. (8)

The above specifies the class of graph filters that we detect.
Notice if the graph filter is K-low-pass, then the above η takes
the same role as ηK in (3).

As mentioned in the previous section, the proposed detector
relies on the clusterizability of the top-K eigenvectors for

the normalized Laplacian in K-modular graphs. To obtain
theoretical insights, we assume that the full graph G is
generated from the stochastic block model (SBM) with:

H3. We have G ∼ SBM(N,K, r, p) with p ≥ r > 0, p/K +
r ≥ (32 logN + 1)/N .

By G ∼ SBM(N,K, r, p), we denote a random graph with
N nodes equally partitioned into K blocks, described by a
membership matrix Z ∈ {0, 1}N×K such that Zij = 1 if
and only if node i is in block j, and a connectivity matrix
B ∈ [0, 1]K×K , whose entries Bij being the probability of
edges between nodes in block i and block j. The parameters
r, p describes the connectivity such that B = pI+ r11⊤. We
also assume the following on the bulk eigenvectors of Lnorm:

H4. With probability at least 1− δSBM, there exists cSBM > 0
independent of N, r, p with minl=K+1,...,N K∗(vl) ≥ cSBM.

Note that H4 is observed for G ∼ SBM(N,K, r, p) em-
pirically [16], yet it remains an open conjecture to be ver-
ified theoretically. With H3, H4, it is easy to deduce that
K∗(VK) = O(logN/N) [23], while the K-means score for
the bulk eigenvectors is bounded away by cSBM > 0.

Let Tgnd ∈ {T0, T1} be the ground truth hypothesis. Our
main analytical result is summarized below:

Theorem 1. Under H1, H2, H3, H4. Suppose that the follow-
ing threshold-dependent term satisfies

δ̃min := min

{
δ −
…

N

n

 
1225K3 logN

p(N −K)
,…

N

n

 
cSBM − 2450K3 logN

p(N −K)
− δ

}
> 0,

and that

σ̃ :=
ρgap(δ̃min −

√
K(||I−RK ||2 + 6γη))

2
√
K

− σ2 > 0,

where RK ∈ RK×K is an upper triangular matrix in the
QR factorization of Uo,K =

√
N/nQKRK . If the number of

samples M satisfies 
M

logM
≥

√
2c1 tr(Co)

σ̃
(9)

where c1 is a constant independent of N,M , then we have

P(“T = Tgnd) ≥ 1− 4/N − 5/M − δgap − δSBM. (10)

The above result considers randomnesses in the graph signals
generation (2) and the SBM graph properties in H3, H4.

The theorem asserts that when δ̃min > 0, σ̃ > 0, then with a
sufficiently large number of samples, Algorithm 1 will return
a correct detection with high probability as N,M → ∞. To
satisfy δ̃min > 0, as cSBM = Θ(1), the requirement can be
fulfilled with δ = Θ(

√
N/n). Furthermore, to satisfy σ̃ > 0,

we require two criterion: (i) the noise level σ2 is sufficiently
small, (ii) the filter constant γη, and the factor ∥I − RK∥2
are smaller than O(δ̃min). Note that ∥I−RK∥2 decreases to
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Fig. 1. Monte-Carlo simulation of ||I − RK ||2 as n → N , where the
corresponding Uo,K = QKRK is from Lnorm of a graph generated by
SBM(180,K, logN/N, 4 logN/N), with K ∈ {2, 3, 4}.

0 as n → N ; see Fig. 1 for illustration. Finally, we note that
the sample complexity, i.e., minimal M needed to satisfy (9),
is proportional to σ̃−1. From the above discussions, σ̃−1 is
reduced when the graph filters to be detected are sharp and
flat, i.e., η ≪ 1, γ ≈ 1, and the number of observed nodes is
large enough n → N . Lastly, we remark that the proof for
Theorem 1 is adapted from our prior works [12], [16] which
applied [23], [24]. It can be found in the online appendix2.

IV. NUMERICAL EXPERIMENTS

This section presents numerical experiments to validate our
findings. We first evaluate the direct detection performance
in tackling Problem 1, then we consider an application on
robustifying the blind community detection method.

A. Detecting Low-pass Signals from Partial Observations

We use synthetic data to evaluate the performance of
our proposed detector in various settings. In the follow-
ing experiment, the graph G with N = 150 nodes and
K = 3 blocks is generated according to H3 such that G ∼
SBM(150, 3, logN/N, 4 logN/N). The full graph signals in
(2) are generated with x ∈ RN ∼ N (0, I) and w ∼ N (0, σ2I)
where σ2 = 10−2, then we select n nodes uniformly at
random to form the partial observations (4). We benchmark
Algorithm 1 in distinguishing signals generated by a low-pass
filter e−τLnorm (null hypothesis T0) from signals by a non-
low-pass filter eτLnorm (alternative hypothesis T1), where the
sharpness of the filter η decreases as τ > 0 increases. The
performance is measured by the area under ROC (AUROC)
such that AUROC = 1 when the detection is perfect. Figure 2
reports the results from 1000 Monte-Carlo trials.

We observe that the performance improves as n,M in-
creases, as well as the sharpness parameter η controlled by
τ . Moreover, Algorithm 1 delivers reliable performance (with
AUROC ≈ 1) when n ≥ 100,M ≥ 100. This indicates that
the spectral pattern of low-pass graph signals are significant
enough despite that 1/3 of the nodes are not observed and
only M ≈ n samples are observed. The above observations
coincide with our finite-sample analysis in Theorem 1.

B. Application: Robustifying Blind Community Detection

We illustrate an application of Algorithm 1 as a pre-
screening procedure before applying prior work that demands
low-pass graph signals. We consider the blind community

2https://www1.se.cuhk.edu.hk/∼htwai/pdf/sam24-appendix.pdf
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detection method [12] which directly infer communities in
a graph from low-pass graph signals that are partially ob-
served. To satisfy the low-pass graph signal requirement, we
apply Algorithm 1 on small batches of Mbatch graph signal
observations and retain (resp. drop) the small batches that are
identified as low-pass (resp. non-low-pass). The pre-screened
dataset is then provided to [12] to infer the communities.

We consider G ∼ SBM(150, 3, logN/N, 7 logN/N ), with
N = 150 nodes and K = 3 clusters. The normal graph signals
are generated using (2), (4) with σ2 = 10−2 and the filter
H(S) = (I−0.5Lnorm)

3, where 10% of samples are corrupted
in a burst of length mburst = 10, such that ps-fraction of nodal
observations are replaced with N (0, 1). For the pre-screening
procedure, we apply Algorithm 1 on small batches of size
Mbatch = 50 from M = 103 samples, with δ = 0.5. Figure 3
reports the results of 1000 Monte-Carlo trials.

Observe the dataset corruption severely affects the perfor-
mance of blind community detection [12]. Meanwhile, our
pre-screening procedure robustifies the method in [12]. We
note the effectiveness of pre-screening improves with n as it
approaches the performance of non-corrupted dataset, coin-
ciding with Theorem 1 that low-pass detection becomes more
accurate as n increases. Pre-screening also delivers consistent
improvement across different levels of signal corruption.

Conclusions. This paper studies the low-pass graph signal
detection problem with partial observations. We showed that a
simple K-means score detector can distinguish spectral pattern
of the low-pass/non-low-pass signals and analyzed its sample
complexity. Our work can robustify GSP on partially observed
signals. Future work includes deriving an explicit bound
w.r.t. no. of observed nodes n and explore other applications.

https://www1.se.cuhk.edu.hk/~htwai/pdf/sam24-appendix.pdf
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APPENDIX: PROOF OF THEOREM 1

Additional Notations. In the following analysis, we define
the QR decomposition of Uo,K as Uo,K = c0QKRK , in
which c0 =

√
n/N is a normalization parameter, QK ∈

Rn×K is an orthogonal matrix spanning the range of Uo,K

and RK is upper-triangular. We also set the diagonal of
RK to be non-negative. Moreover, under H3, A satisfies
E[A] = ZBZ⊤ =: A; the population normalized Laplacian
matrix of the SBM is then Lnorm = I−D−1/2AD−1/2, where
D = diag(

∑N
j=1 A1j , ...,

∑N
j=1 ANj). Lastly, the set Rm×n

K

consists of m× n matrices having at most K unique rows.
Our proof is adapted from [12], [16]. First, consider the

ground truth as Tgnd = T0, which implies UK = VKΠ for
some permutation matrix Π. Define the indicator matrix X∗

be associated with the partition C∗ ∈ argminC K(QK , C):

X∗
ik :=

®
1/
√

|C∗
i | if i ∈ C∗

i ,
0 otherwise.

We observe that»
K∗(“QK) ≤ ||(I−X∗(X∗)⊤)“QK ||F

= ||(I−X∗(X∗)⊤)“QK
“Q⊤

K ||F
≤ ||(I−X∗(X∗)⊤)QKQ⊤

K ||F + ||QKQ⊤
K − “QK

“QK ||F
=
»
K∗(QK) + ||QKQ⊤

K − “QK
“QK ||F.

Similarly, we further have»
K∗(QK) ≤ c−1

0

»
K∗(Uo,K) + ||QK − c−1

0 Uo,K ||F

≤ c−1
0

»
K∗(Uo,K) + ||QK ||F||I−RK ||2

= c−1
0

»
K∗(Uo,K) +

√
K||I−RK ||2.

Define the orthogonal matrix OK = OKΠ, where OK is from
Lemma 4. Since VKOK ∈ RN×K

K [23], we have EoVKOK ∈
Rn×K

K . Consequently, by H3 and Lemma 4, with probability
at least 1− 2/N ,»

K∗(Uo,K) = min
U∈Rn×K

K

||Uo,K −U||F

≤ ||Uo,K −EoVKOK ||F ≤ ||Eo||2||UK − VKOK ||F

= ||UK − VKOK ||F ≤ 35
√
K3 logN√

p(N −K)
.

Combining the upper-bound of
√

K∗(QK) with Lemma 2 as
well as H1, H2, we conclude that when the null hypothesis
holds, with probability at least 1− 2/N − 5/M − δgap,

K∗(“QK) ≤

[…
N

n

35
√
K3 logN√

p(N −K)
+
√
K||I−RK ||2

+ 2
√
K

(
3γη +

c1 tr(Co)
√
2 logM/M + σ2

ρgap

)]2
. (11)

The next case is to consider the ground truth as Tgnd = T1.
Define “X associated with Ĉ ∈ argminC K(“QK , C). Similar to
the previous case, we have»

K∗(QK) ≤ ||(I− “X“X⊤)QK ||F
= ||(I− “X“X⊤)QKQ⊤

K ||F
≤ ||(I− “X“X⊤)“QK

“Q⊤
K ||F + ||QKQ⊤

K − “QK
“QK ||F

=
»

K∗(“QK) + ||QKQ⊤
K − “QK

“QK ||F,

which implies
»

K∗(“QK) ≥
√

K∗(QK) − ||QKQ⊤
K −“QK

“QK ||F. By the same technique, we obtain
√
K∗(QK) ≥

c−1
0

√
K∗(Uo,K)−

√
K||I−RK ||2.

Our remaining task is to lower bound
√
K∗(Uo,K) using

H4. Let Ur,s = [ur, ...,us] consist of column vectors from
U, with r ≤ s. Also, let π be a permutation function on
{1, ..., N}, satisfying |hi| = |h(λπ(i))|. We can see that the
set P := {i : 1 ≤ i ≤ K,K + 1 ≤ π(i) ≤ N} is non-empty
under Tgnd = T1. Then, for any r ≤ s such that [r, s] ∈ P , by
Lemma 1,

K∗(Uo,K) ≥ K∗(UK)− |K∗(Uo,K)−K∗(UK)|

≥ K∗(UK)− 2450K3 logN

p(N −K)

≥ K∗(Ur,s)−
2450K3 logN

p(N −K)
.

By H4, we have K∗(Ur,s) ≥ cSBM. Together with H1, H2,
with probability at least 1 − 4/N − 5/M − δgap − δSBM, the
following lower bound holds

K∗(“QK) ≥

[…
N

n

 
cSBM − 2450K3 logN

p(N −K)
−

√
K||I−RK ||2

− 2
√
K

(
3γη +

c1 tr(Co)
√

2 logM/M + σ2

ρgap

)]2
. (12)

Finally, we can conclude the proof by noting that “T = Tgnd
holds when δ upper bounds the right-hand side of (11) and also
lower bounds the right-hand side of (12).

Technical Lemmas

Lemma 1. Under H3. Let UK denote the columns of the
first K eigenvectors of Lnorm, and Uo,K = EoUK . With
probability at least 1− 4/N ,

|K∗(Uo,K)−K∗(UK)| ≤ 2450K3 logN

p(N −K)
.

Proof. By the triangular inequality,

|K∗(Uo,K)−K∗(UK)| ≤ K∗(Uo,K) +K∗(UK).

Applying Lemma 3 yields K∗(UK) ≤ 352K3 logN
pN(N−K) with

probability at least 1− 2/N .



We now derive an upper-bound for K∗(Uo,K). As VKOK ∈
RN×K

K , we have EoVKOK ∈ Rn×K
K . Then, with probability

at least 1− 2/N ,

K∗(Uo,K) ≤ ||Uo,K −EoVKOK ||2F ≤ ||Eo||22||UK − VKOK ||2F

= ||UK − VKOK ||2F =
352K3 logN

p(N −K)
.

This concludes the proof.

Lemma 2. Under H1, H2, the following inequality holds with
probability at least 1− 5/M

||QKQ⊤
K − “QK

“QK ||F ≤

2
√
K

(
3γη +

c1 tr(Co)
√
2 logM/M + σ2

ρgap

)
.

where c1 is a constant independent of N,M [24].

Proof. By [12, Proposition 1], we have a deterministic upper-
bound:

||QKQ⊤
K − “QK

“QK ||F ≤
√
2K

Ç
√
2γ(2||UK ||2 + ||UN−K ||2)ηK +

||“Co −Co||2
ρgap

å
where we further have ||UK ||2 ≤ 1 and ||UN−K ||2 ≤ 1 due to
their orthogonality. In addition, applying [24, Theorem 2.1] on
{yo,m}Mm=1 yields the following inequality: with probability
at least 1− 5/M ,

||“Co −Co||2 ≤ 2c1 tr(Co)

…
logM

M
+ σ2.

This concludes the proof.

The last two auxiliary lemmas are borrowed from [16],
which have been inspired by [23], [24]:

Lemma 3 ( [16, Proposition 2]). Under H3. For VK consist-
ing of K bottom eigenvectors of Lnorm, with probability at
least 1− 2/N ,

K∗(VK) ≤ 352K3 logN

p(N −K)
.

Lemma 4 ( [16, Lemma 2]). Under H3. Let VK ,VK denote
the columns of the first K eigenvectors of Lnorm,Lnorm. With
probability at least 1−2/N , there exists an orthogonal matrix
OK ∈ RK×K such that

||VK − VKOK ||F ≤ 35
√
K3 logN√

p(N −K)
.
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