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Introduction

Graphs are used to model real-world entities and their relationship.
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Figure: telecommunication network

LRGCN

Figure: traffic network
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Introduction

Structure dynamics and temporal dependency

Figure: time series are observed on each
node

Figure: graph structures are evolving

In this work, we focus on path classification in a time-evolving graph,
which predicts the status of a path in the near future.
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Definition

Time-evolving graph

Denote the adjacency matrix At € RV*N and the observed signals
Xt € RV*9 a5 a graph snapshot at time t, a sequence of graph snapshots
over time steps 0,1,...,t is defined as a time-evolving graph.

Path availability

Denote a path as a sequence p = (vi, Vo, ..., Vy) of length m in the
time-evolving graph. For the same path, we use s = (xf,x},... xL) to

represent the observations of the path nodes at time t. We utilize the past
M time steps to predict the availability of this path in the next F time
steps.
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Problem Definition

Example

M time steps F time steps

Figure: A time-evolving graph in which four nodes a, b, ¢, d correspond to four
switches in a telecommunication network. Given the observations and graph
snapshots in the past M time steps, we want to infer if path (a, b, ¢, d) will fail or
not in the next F time steps.
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Problem Definition

Path classification

We formulate this prediction task as a classification problem and our goal

is to learn a function f(-) that can minimize the cross-entropy loss £ over
the training set D.

argmin £ = Z Z c log f(P (1)

P;eD c=1

where P; = ([s{~ M+l 1, pj, [ATMTL, . Af]) is a training instance,

Y; € {0, l}C is the training label representing the availability of this path

in the next F time steps, f.(P;) is the predicted probability of class ¢, and
C is the number of classes.
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Methodology Framework

Three properties

@ Node correlation: Observations on nodes are correlated:

@ Graph structure dynamics: Observations on nodes are influenced by
the changes on the graph structure;

o Temporal dependency: The time series recorded on each node
demonstrates strong temporal dependency.
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Methodology Framework

Framework

Our model uses a two-layer LRGCN, to obtain the hidden representation of
each node. Then it utilizes a self-attentive mechanism to learn the node

importance and encode it into a unified path representation.

input
evolving graphs
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Figure: Framework of the proposed model for path classification.
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Time-Evalving Graph Modeling
Static graph modeling

Relational GCN (R-GCN) by Kipf et al. is developed to deal with
multi-relational static graphs.

R-GCN

Z=0(_ (D5 TTAX W, + X W), (2)

PER
R = {in,out}. (D). =>; (A;)U
Al = A" represents the incoming relation.

AL = (A!)T represents the outgoing relation.
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Methodology Time-Evolving Graph Modeling

We view the effect of self-connection normalization as a linear combination
of incoming and outgoing normalization.

Simplified R-GCN

Zo=o(>_ ALX'W,), (3)
PER

where At = (D(’z“;)flAé). Ay = A+ In. (Dh)ii =32 (AY)jj
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Methodology Time-Evolving Graph Modeling

Two-hop simplified R-GCN

Osxg X' =3 Ao (3 Ax WP ywg?. (4)
oER PER

where ©; represents the parameter set used in the static graph modeling,
quo) € R9%" is an input-to-hidden weight matrix for a hidden layer with h

feature maps. Wd(,l) € R is a hidden-to-output weight matrix, xg

stands for this two-hop graph convolution operation and shall be used
thereafter.
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Methodology

Adjacent graph snapshots modeling

Before diving into a sequence of graph snapshots, we first focus on two

adjacent time steps t — 1 and t.

e

.

(t-1)

(t)

Time-Evolving Graph Modeling

inter-time
relation

—_—>
intra-time
relation

Figure: Plot of intra-time relation (in solid line) and inter-time relation (in dotted

line) modeled for two adjacent graph snapshots.
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Methodology Time-Evolving Graph Modeling

There are four types of relations, i.e., intra-incoming, intra-outgoing,
inter-incoming and inter-outgoing relations.

This operation is named time-evolving graph G_unit, which has a similar
role of unit in RNN.

time-evolving graph unit
G_unit(©,[Xt, X)) = 6(Osxg Xt + Opxg XT1). (5)
where ©, stands for the parameter set used in inter-time modeling, and it

does not change over time. For Opxg X1, A;‘l is used to represent the
graph structure.
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The proposed LRGCN model

We first design a RNN-style neural network working on a time-evolving
graph.

H' = o(Ouxg [XE, HY)). (6)

where ©4 includes ©5 and ©y,.
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Methodology Time-Evolving Graph Modeling

We propose a Long Short-Term Memory R-GCN. LRGCN utilizes three
gates to achieve the long-term memory or accumulation.

it = 0(Oxg [XE, HIY)) (7)

f' = o(Opxg [X*, H) (8)

o' = 0(O,xg [XF, Ht_l]) 9)

ct=f o ! +it ©tanh(Og [XE, HTY)) (10)
Ht=o'®ct (11)

where © stands for element-wise multiplication, if, f, of are input gate,
forget gate and output gate at time t respectively.
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sl
Two challenges

For the final path classification task, however, we still identify several
challenges:

@ Size invariance: How to produce a fixed-length vector representation
for any path of arbitrary length?

@ Node importance: How to encode the importance of different nodes
into a unified path representation?
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(VST  Self-Attentive Path Embedding

We propose a self-attentive path embedding method, called SAPE, to
address the challenges listed above.

N o i
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Figure: The proposed self-attentive path embedding method SAPE.
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(VST  Self-Attentive Path Embedding

In SAPE, we first utilize LSTM to sequentially take in node representation
of a path. Then we use the self-attentive mechanism to learn the node
importance and transform a path of variable length into a fixed-length
embedding vector.

[ = LSTM(P) (12)
S = softmax(Wiatanh(Wpi 7)) (13)
E=ST (14)

where I € R™<V. Wj; € R%E*Y and Wy, € R™% are two weight matrices.
E is size invariant since it does not depend on the number of nodes m.
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We validate our model on two real-world data sets: (1) predicting path
failure in a telecommunication network, and (2) predicting path congestion
in a traffic network.

Table: Statistics of path instances

Telecom Traffic
No. of failure/congestion 385,896 85,083
No. of availability 6,821,101 346,917

Average length of paths  7.05+ 4.39 32.56+ 12.48
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Figure: Sensor distribution in District 7 of California. Each dot represents a sensor
station.
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DTW, does not use graph structure.
FC-LSTM, does not use graph structure.
DCRNN, it works on a static graph.
STGCN, it works on a static graph.
LRGCN, it works on a static graph.

LRGCN-SAPE (static), which is similar to LRGCN except that we
replace the path representation method LSTM with SAPE.

e LRGCN-SAPE (evolving), which is similar to LRGCN-SAPE (static)
except that the underlying graph structure evolves over time.

e 6 6 o6 o o
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Table: Comparison of different methods on path failure prediction on Telecom

Algorithm Precision Recall Macro-F1

1 DTW 15.47% 9.63% 53.23%

2 FC-LSTM 13.29% 5227 %  53.78 %
DCRNN 1397 % 5781 % 5442 %

3 STGCN 16.35% 5253%  56.29 %

LRGCN 1738% 61.34% 5770 %

4 LRGCN-SAPE (static) 1767 % 65.28 % 60.55 %
LRGCN-SAPE (evolving) 19.23 % 65.07% 61.89 %
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Table: Comparison of different methods on path congestion prediction on Traffic

Algorithm Precision Recall Macro-F1
1 DTW 12.05% 39.12% 51.62%
2 FC-LSTM 5444 % 8797 %  76.55 %
DCRNN 63.05% 88.55% 82.60 %
3 STGCN 6452 % 86.15% 8241 %
LRGCN 65.15% 87.65%  83.74 %
4 LRGCN-SAPE (static) 67.74 %  88.44% 84.84 %
LRGCN-SAPE (evolving) 71.04 % 8850% 86.74 %
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Benefits of graph evolution modeling
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Figure: Visualization of learned attention weights of a path on Traffic (left: the
original map; middle: attention weights by LRGCN-SAPE (evolving); right:
attention weights by LRGCN-SAPE (static)).

LRGCN SV



Training efficiency
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Figure: Learning curve of different methods. LRGCN-SAPE (evolving) achieves

the lowest validation loss.
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Path embedding visualization

®  path congestion ®  path availability

Figure: Two-dimensional visualization of path embeddings on Traffic using SAPE.
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Conclusion

Conclusion

@ We study path classification in time-evolving graphs.

@ We design a new dynamic graph neural network LRGCN, which views
node correlation within a graph snapshot as intra-time relations, and
views temporal dependency between adjacent graph snapshots as
inter-time relations.
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Conclusion

Data and code:
https://github.com/chocolates/Predicting-Path-Failure-In-Time-Evolving-

Graphs

Thank you.
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