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Introduction

Graphs are used to model real-world entities and their relationship.

Figure: telecommunication network Figure: traffic network
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Introduction

Structure dynamics and temporal dependency

Figure: graph structures are evolving
Figure: time series are observed on each
node

In this work, we focus on path classification in a time-evolving graph,
which predicts the status of a path in the near future.
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Problem Definition

Definition

Time-evolving graph

Denote the adjacency matrix At ∈ RN×N and the observed signals
X t ∈ RN×d as a graph snapshot at time t, a sequence of graph snapshots
over time steps 0, 1, . . . , t is defined as a time-evolving graph.

Path availability

Denote a path as a sequence p = 〈v1, v2, . . . , vm〉 of length m in the
time-evolving graph. For the same path, we use st = 〈x t1, x t2, . . . , x tm〉 to
represent the observations of the path nodes at time t. We utilize the past
M time steps to predict the availability of this path in the next F time
steps.
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Problem Definition

Example
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Figure: A time-evolving graph in which four nodes a, b, c , d correspond to four
switches in a telecommunication network. Given the observations and graph
snapshots in the past M time steps, we want to infer if path 〈a, b, c , d〉 will fail or
not in the next F time steps.

J. Li et al. LRGCN 6 / 29



Problem Definition

Path classification

We formulate this prediction task as a classification problem and our goal
is to learn a function f (·) that can minimize the cross-entropy loss L over
the training set D.

arg minL = −
∑

Pj∈D

C∑
c=1

Yjc log fc(Pj), (1)

where Pj = ([st−M+1
j , . . . , stj ], pj , [A

t−M+1, . . . ,At ]) is a training instance,

Yj ∈ {0, 1}C is the training label representing the availability of this path
in the next F time steps, fc(Pj) is the predicted probability of class c , and
C is the number of classes.
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Methodology Framework

Three properties

Node correlation: Observations on nodes are correlated;

Graph structure dynamics: Observations on nodes are influenced by
the changes on the graph structure;

Temporal dependency: The time series recorded on each node
demonstrates strong temporal dependency.
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Methodology Framework

Framework

Our model uses a two-layer LRGCN, to obtain the hidden representation of
each node. Then it utilizes a self-attentive mechanism to learn the node
importance and encode it into a unified path representation.
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Figure: Framework of the proposed model for path classification.
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Methodology Time-Evolving Graph Modeling

Static graph modeling

Relational GCN (R-GCN) by Kipf et al. is developed to deal with
multi-relational static graphs.

R-GCN

Z = σ(
∑
φ∈R

(Dt
φ)
−1

At
φX

tWφ + X tW0), (2)

R = {in, out}. (Dt
φ)

ii
=
∑

j (At
φ)

ij
.

At
in = At represents the incoming relation.

At
out = (At)T represents the outgoing relation.
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Methodology Time-Evolving Graph Modeling

We view the effect of self-connection normalization as a linear combination
of incoming and outgoing normalization.

Simplified R-GCN

Zs = σ(
∑
φ∈R

Ãt
φX

tWφ), (3)

where Ãt
φ = (D̂t

φ)−1Ât
φ. Ât

φ = At
φ + IN . (D̂t

φ)ii =
∑

j (Ât
φ)ij .
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Methodology Time-Evolving Graph Modeling

Two-hop simplified R-GCN

Θs?g X t =
∑
φ∈R

Ãt
φσ(
∑
φ∈R

Ãt
φX

tW
(0)
φ )W

(1)
φ . (4)

where Θs represents the parameter set used in the static graph modeling,

W
(0)
φ ∈ Rd×h is an input-to-hidden weight matrix for a hidden layer with h

feature maps. W
(1)
φ ∈ Rh×u is a hidden-to-output weight matrix, ?g

stands for this two-hop graph convolution operation and shall be used
thereafter.
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Methodology Time-Evolving Graph Modeling

Adjacent graph snapshots modeling

Before diving into a sequence of graph snapshots, we first focus on two
adjacent time steps t − 1 and t.
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Figure: Plot of intra-time relation (in solid line) and inter-time relation (in dotted
line) modeled for two adjacent graph snapshots.
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Methodology Time-Evolving Graph Modeling

There are four types of relations, i.e., intra-incoming, intra-outgoing,
inter-incoming and inter-outgoing relations.
This operation is named time-evolving graph G unit, which has a similar
role of unit in RNN.

time-evolving graph unit

G unit(Θ, [X t ,X t−1]) = σ(Θs?g X t + Θh?g X t−1). (5)

where Θh stands for the parameter set used in inter-time modeling, and it
does not change over time. For Θh?g X t−1, Ãt−1

φ is used to represent the
graph structure.
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Methodology Time-Evolving Graph Modeling

The proposed LRGCN model

We first design a RNN-style neural network working on a time-evolving
graph.

Ht = σ(ΘH?g [X t ,Ht−1]). (6)

where ΘH includes Θs and Θh.
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Methodology Time-Evolving Graph Modeling

We propose a Long Short-Term Memory R-GCN. LRGCN utilizes three
gates to achieve the long-term memory or accumulation.

it = σ(Θi?g [X t ,Ht−1]) (7)

ft = σ(Θf ?g [X t ,Ht−1]) (8)

ot = σ(Θo?g [X t ,Ht−1]) (9)

ct = ft � ct−1 + it � tanh(Θc?g [X t ,Ht−1]) (10)

Ht = ot � ct (11)

where � stands for element-wise multiplication, it , ft , ot are input gate,
forget gate and output gate at time t respectively.
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Methodology Self-Attentive Path Embedding

Two challenges

For the final path classification task, however, we still identify several
challenges:

Size invariance: How to produce a fixed-length vector representation
for any path of arbitrary length?

Node importance: How to encode the importance of different nodes
into a unified path representation?
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Methodology Self-Attentive Path Embedding

SAPE

We propose a self-attentive path embedding method, called SAPE, to
address the challenges listed above.

P ∈ ℝ$×&
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LSTM

Figure: The proposed self-attentive path embedding method SAPE.
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Methodology Self-Attentive Path Embedding

In SAPE, we first utilize LSTM to sequentially take in node representation
of a path. Then we use the self-attentive mechanism to learn the node
importance and transform a path of variable length into a fixed-length
embedding vector.

Γ = LSTM(P) (12)

S = softmax
(
Wh2tanh(Wh1ΓT )

)
(13)

E = SΓ (14)

where Γ ∈ Rm×v . Wh1 ∈ Rds×v and Wh2 ∈ Rr×ds are two weight matrices.
E is size invariant since it does not depend on the number of nodes m.
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Experiment Data

We validate our model on two real-world data sets: (1) predicting path
failure in a telecommunication network, and (2) predicting path congestion
in a traffic network.

Table: Statistics of path instances

Telecom Traffic

No. of failure/congestion 385,896 85,083
No. of availability 6,821,101 346,917

Average length of paths 7.05± 4.39 32.56± 12.48
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Experiment Data

Figure: Sensor distribution in District 7 of California. Each dot represents a sensor
station.
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Experiment Baselines

DTW, does not use graph structure.

FC-LSTM, does not use graph structure.

DCRNN, it works on a static graph.

STGCN, it works on a static graph.

LRGCN, it works on a static graph.

LRGCN-SAPE (static), which is similar to LRGCN except that we
replace the path representation method LSTM with SAPE.

LRGCN-SAPE (evolving), which is similar to LRGCN-SAPE (static)
except that the underlying graph structure evolves over time.
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Experiment Results and Interpretation

Table: Comparison of different methods on path failure prediction on Telecom

Algorithm Precision Recall Macro-F1

1 DTW 15.47% 9.63% 53.23%

2 FC-LSTM 13.29 % 52.27 % 53.78 %

3
DCRNN 13.97 % 57.81 % 54.42 %
STGCN 16.35 % 52.53 % 56.29 %
LRGCN 17.38 % 61.34 % 57.70 %

4
LRGCN-SAPE (static) 17.67 % 65.28 % 60.55 %

LRGCN-SAPE (evolving) 19.23 % 65.07 % 61.89 %
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Experiment Results and Interpretation

Table: Comparison of different methods on path congestion prediction on Traffic

Algorithm Precision Recall Macro-F1

1 DTW 12.05% 39.12% 51.62%

2 FC-LSTM 54.44 % 87.97 % 76.55 %

3
DCRNN 63.05 % 88.55 % 82.60 %
STGCN 64.52 % 86.15 % 82.41 %
LRGCN 65.15 % 87.65 % 83.74 %

4
LRGCN-SAPE (static) 67.74 % 88.44% 84.84 %

LRGCN-SAPE (evolving) 71.04 % 88.50 % 86.74 %
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Experiment Results and Interpretation

Benefits of graph evolution modeling

closed station
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Figure: Visualization of learned attention weights of a path on Traffic (left: the
original map; middle: attention weights by LRGCN-SAPE (evolving); right:
attention weights by LRGCN-SAPE (static)).
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Experiment Results and Interpretation

Training efficiency
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Figure: Learning curve of different methods. LRGCN-SAPE (evolving) achieves
the lowest validation loss.
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Experiment Results and Interpretation

Path embedding visualization

path congestion path availability

Figure: Two-dimensional visualization of path embeddings on Traffic using SAPE.
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Conclusion

Conclusion

We study path classification in time-evolving graphs.

We design a new dynamic graph neural network LRGCN, which views
node correlation within a graph snapshot as intra-time relations, and
views temporal dependency between adjacent graph snapshots as
inter-time relations.
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Conclusion

Data and code:
https://github.com/chocolates/Predicting-Path-Failure-In-Time-Evolving-
Graphs

Thank you.
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