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1. Background

Definition of Multi-talker Speech Recognition:

To transcribe texts for different speakers from multi-talker overlapped speech
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1. Background

Definition of Multi-talker Speech Recognition:

To transcribe texts for different speakers from multi-talker overlapped speech
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It remains a significant challenge! Q)) g -



1. Background — Literature Review

Existing multi-talker ASR strategies have their drawbacks:




1. Background — Literature Review

Existing multi-talker ASR strategies have their drawbacks:

Existing strategy I:

Cascade architecture of Separation and ASR
* Need further joint fine-tuning

 The fine-tuned modules cannot work well
individually anymore.

[1] Shane Settle et al. “End-to-End Multi-Speaker Speech Recognition,” ICASSP 2018
[2] Song Li et al. "Real-time End-to-End Monaural Multi-speaker Speech Recognition," Interspeech 2021
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1. Background — Literature Review

Existing multi-talker ASR strategies have their drawbacks:
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* Complicated customization . T
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[3] Xuankai Chang et al. “End-to-End Multi-speaker Speech Recognition with Transformer,” Interspeech 2020 7

[4] Naoyuki Naoyuki et al. "Serialized output training for end-to-end overlapped speech recognition," Interspeech 2020
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2. Objective

To develop an approach to adapt well-trained common ASR models for
multi-talker scenes.

The approach should be and
: leverage well-trained models; need only slight training effort

: plug-and-play, without distorting original ASR model



2. Objective — Two Inspirations (1/2)

RHODES ISLAND, GREECE

»

local acoustic features
(Sec. 5.2.1)

= = phone identity (Sec. 5.2.2)
word identity (Sec. 5.2.3)
= word meaning (Sec. 5.3)

Different
Attention Maps

o[l : ‘ Text script
Audio features
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[5] [6]

wav2vec 2.0 LARGE wav2vec 2.0 BASE

» Inspired by recent Layer-wise analyses of ASR models

* Different levels of information are captured with different encoder layers.

[5] Shim, Kyuhong, Jungwook Choi, and Wonyong Sung. "Understanding the role of self attention for efficient speech recognition." ICLR 2022, 10
[6] Pasad, Ankita, Ju-Chieh Chou, and Karen Livescu. "Layer-wise analysis of a self-supervised speech representation model." IEEE ASRU 2021.



2. Objective — Two Inspirations (2/2)
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» Inspired by methodologies in speech separation

* Speech separation usually only involves low-semantic-level operations.
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[7] Luo, Yi, and Nima Mesgarani. "Conv-TasNet: Surpassing ideal time—frequency magnitude masking for speech separation." IEEE/ACM TASLP, 2019.



2. Objective

A potential solution to the objective:

Separate the speech embeddings for different speakers from a lower layer
of a well-trained ASR model.
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3. Proposed Approach — Multi-talker ASR system with Sidecar ¢
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3. Proposed Approach — Detailed implementation

text.1 text2 — Char-level prediction
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3. Proposed Approach— A baseline system for control

masks

Baseline system:
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4. Experiments — LibriMix 2-speaker dataset

LibriMix Dataset: The shorter speech 1s fully overlapped with the longer one

Systems Dev Test
PIT-Transformer 26.58 26.55
Conditional Conformer 24.50 24.90
ConvTasNet+Transformer 21.00 21.90
DPRNN-TasNet+Transformer 15.30 14.50
Baseline (proposed) 11.60 12.27
W2V-Sidecar (proposed) 9.76 10.36
W2V-Sidecar (finetune the whole model) 7.68 8.12

Achieved new state-of-the-art results
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4. Experiments — LibriSpeech2Mix 2-speaker dataset

LibriSpeechMix Dataset: The two speech are partially overlapped

Systems Dev Test
PIT-BiLSTM - 11.1
SOT-BiLSTM - 11.2
SURT - 7.2
SOT-transformer - 5.3
Baseline (proposed) 9.50 9.41
W2V-Sidecar (proposed) 7.76 7.56
W2V-Sidecar (finetune the whole model) 6.01 5.69

Achieved competitive results with far less training effort
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T We trained our model with 8 GPUs for 100k iterations, compared to SOT-transformer’s 32 GPUs for 480k.



4. Experiments — Ablation Study

» The Location (in between two encoder layers) of the Sidecar
* Location 2 (between layers 2 and 3) gave the best performance

- Intermediate location between lower-layer acoustics and upper-layer linguistics

Locations

LibriMix O 1 2 3 4 6 9 12

Dev  12.18 11.22 9.76 12.06 16.14 30.03 56.38 61.78
Test 13.01 11.87 10.36 12.65 16.88 30.32 57.11 62.72
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4. Experiments — Visualizations on Sidecar Predicted Masks

Steps of visualizing the masks:
1. Softmax

2. Normalize

time 3. Cluster

I
Speaker-1
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4. Experiments — Visualizations on Sidecar Predicted Masks

Channel dimension: Sidecar encodes
speaker information with different channels

time

I
Speaker-1

23
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4. Experiments — Visualizations on Sidecar Predicted Masks

Channel dimension: Sidecar encodes
speaker information with different channels

channel

—

J\ J\

I
Speaker-1

26



4. Experiments — Visualizations on Sidecar Predicted Masks
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Channel dimension: Sidecar encodes
speaker information with different channels

Time dimension: Clear boundary for
different part of the utterances
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channel

(a) Almost non-overlapped
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(c) Shorter speech is fully overlapped

Channel dimension: Sidecar encodes
speaker information with different channels

Time dimension: Clear boundary for
different part of the utterances

Speaker diarization?
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5. Conclusion

As a multi-talker ASR strategy, Sidecar achieved good performance. It 1s:

* Low-cost: Efficient training , without complicated customization.

* Loose-coupling: plug-and-play, without distorting original model’s parameters.
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5. Conclusion

As a multi-talker ASR strategy, Sidecar achieved good performance. It 1s:

* Low-cost: Efficient training , without complicated customization.

* Loose-coupling: plug-and-play, without distorting original model’s parameters.

Further Work:
*  Works on 3-spk LibriSpeechMix and LibriMix

* Still works on 1-spk LibriSpeech even trained with multi-speaker
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