

A *Sidecar* Separator Can Convert a Single-Talker Speech Recognition System to a Multi-Talker One

Lingwei Meng, Jiawen Kang, Mingyu Cui, Yuejiao Wang, Xixin Wu, Helen Meng

> Human-Computer Communications Laboratory, The Chinese University of Hong Kong

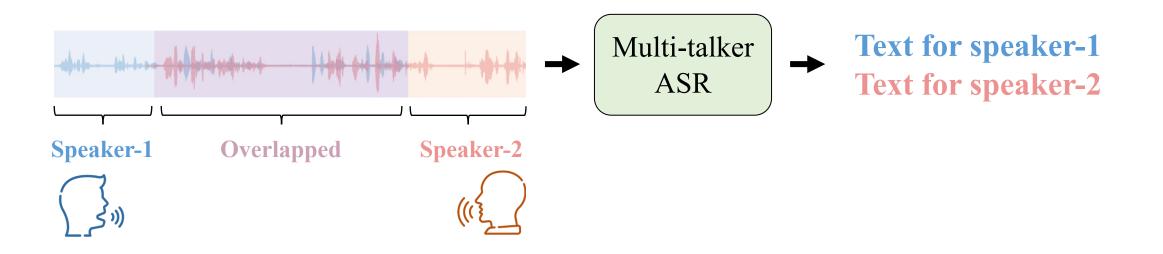
Outline

- 1. Background
- 2. Objective
- 3. Proposed Approach
- 4. Experiments
- 5. Conclusion

1. Background

Definition of Multi-talker Speech Recognition:

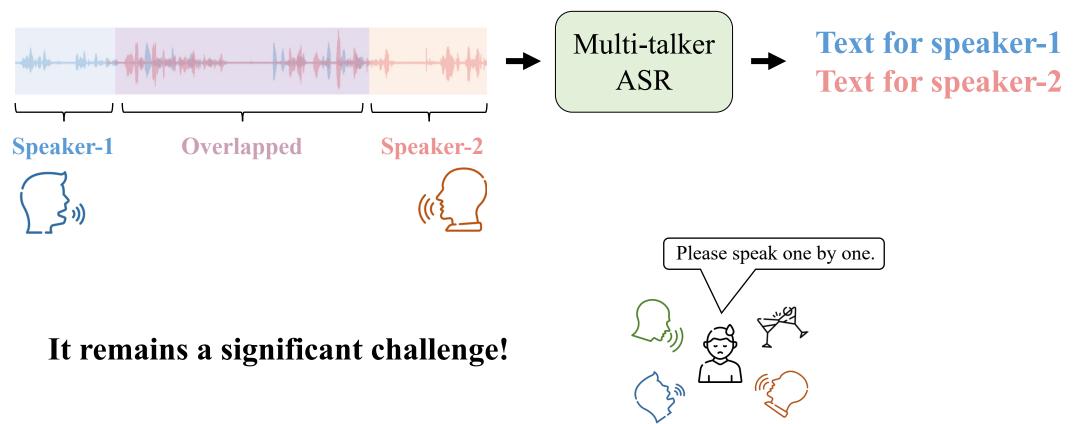
To transcribe texts for different speakers from multi-talker overlapped speech



1. Background

Definition of Multi-talker Speech Recognition:

To transcribe texts for different speakers from multi-talker overlapped speech



1. Background – Literature Review

Existing multi-talker ASR strategies have their <u>drawbacks</u>:

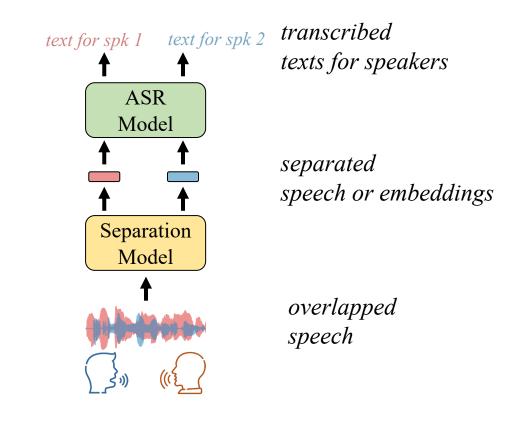
1. Background – Literature Review

Existing multi-talker ASR strategies have their <u>drawbacks</u>:

Existing strategy I:

Cascade architecture of Separation and ASR

- Need further joint fine-tuning
- The fine-tuned modules cannot work well individually anymore.



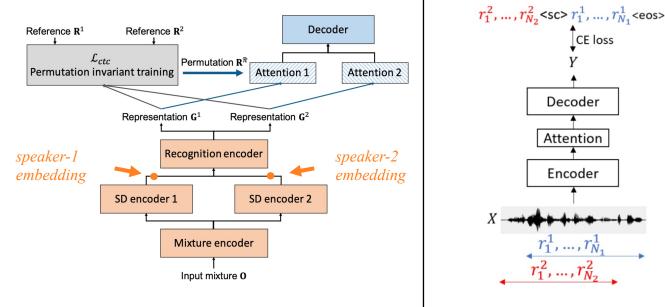
1. Background – Literature Review

Existing multi-talker ASR strategies have their drawbacks:

Existing strategy II:

Full end-to-end models

- Usually train from scratch
- Complicated customization



Permutation Invariant Training [3]

Serialized Output Training [4]

Outline

- 1. Background
- 2. Objective
- 3. Proposed Approach
- 4. Experiments
- 5. Conclusion

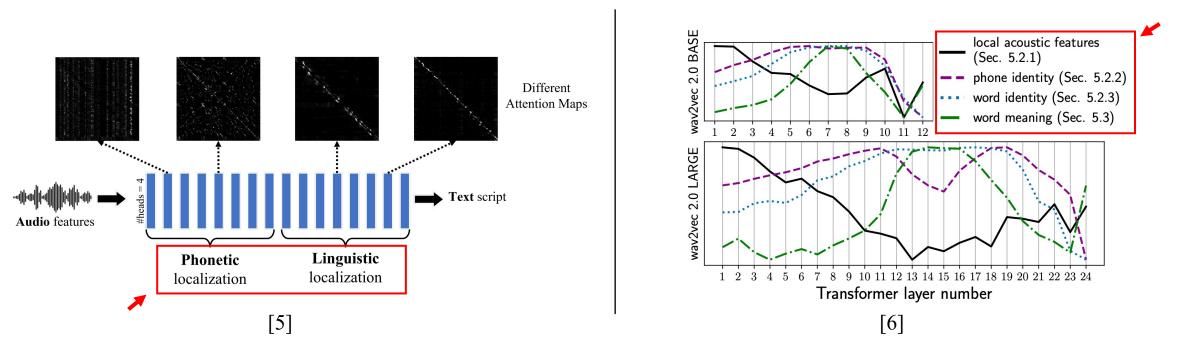
2. Objective

To develop an approach to adapt <u>well-trained common ASR models</u> for multi-talker scenes.

The approach should be low-cost and loose-coupling.

- Low-cost: leverage well-trained models; need only slight training effort
- Loose-coupling: plug-and-play, without distorting original ASR model

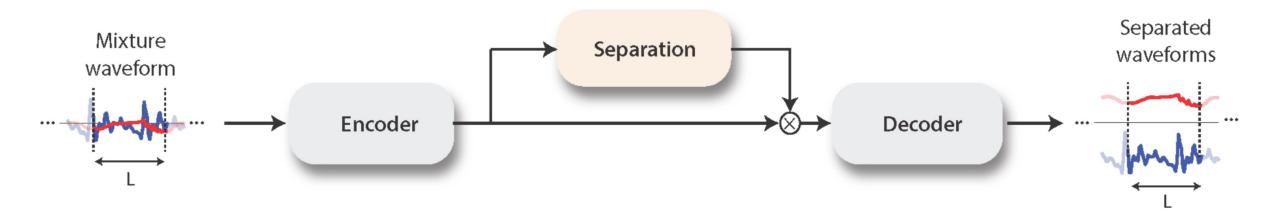
2. Objective – Two Inspirations (1/2)



> Inspired by recent Layer-wise analyses of ASR models

• Different levels of information are captured with different encoder layers.

2. Objective – Two Inspirations (2/2)



> Inspired by methodologies in speech separation

• Speech separation usually only involves *low-semantic-level operations*.

[7] Luo, Yi, and Nima Mesgarani. "Conv-TasNet: Surpassing ideal time-frequency magnitude masking for speech separation." IEEE/ACM TASLP, 2019.

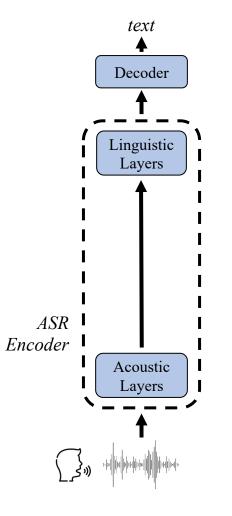
A potential solution to the objective:

Separate the speech embeddings for different speakers from a lower layer of a well-trained ASR model.

Outline

- 1. Background
- 2. Objective
- 3. Proposed Approach
- 4. Experiments
- 5. Conclusion

3. Proposed Approach – Multi-talker ASR system with Sidecar

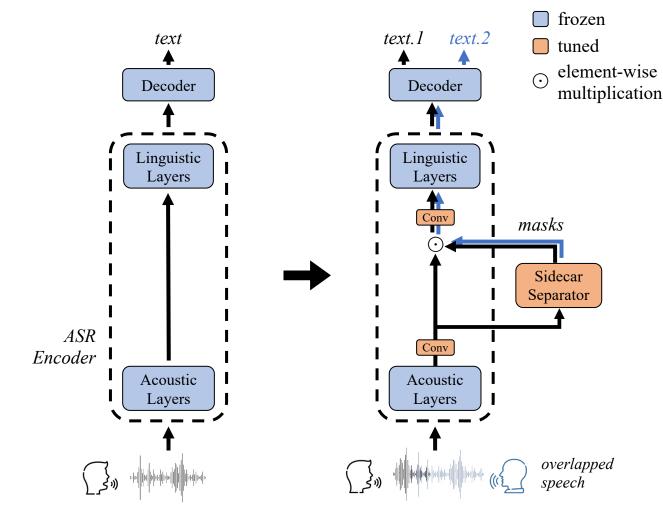


Single-Talker ASR sys. # params: 94.4M

 \odot element-wise multiplication

Leverage a well-trained ASR model, whose parameter is frozen.

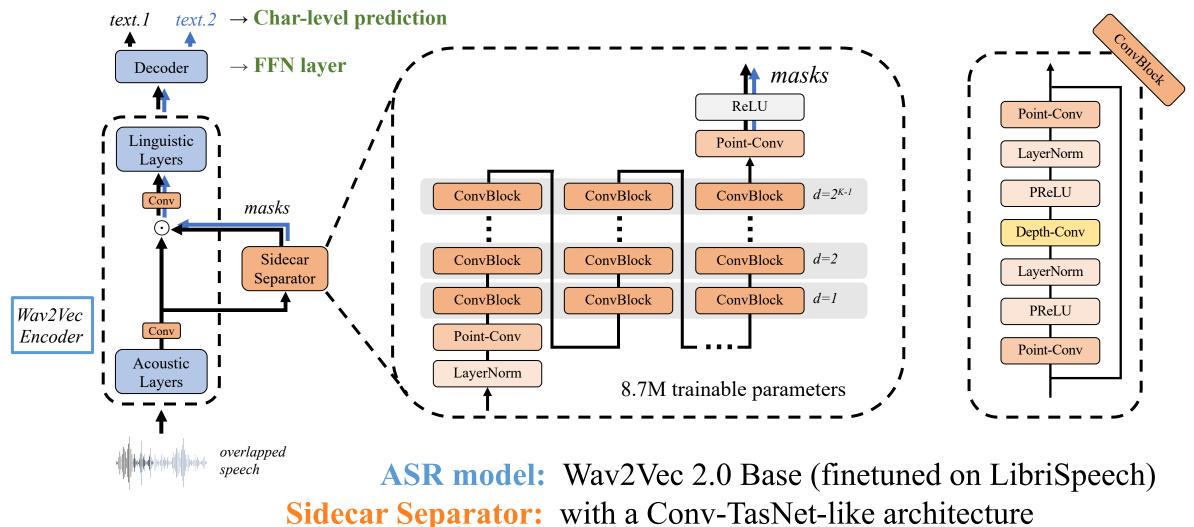
3. Proposed Approach – Multi-talker ASR system with Sidecar



Single-Talker ASR sys. # params: 94.4M (Sidecar) Multi-talker ASR sys. # params: 103.1M (8.7M trainable) Leverage a well-trained ASR model, whose parameter is frozen.

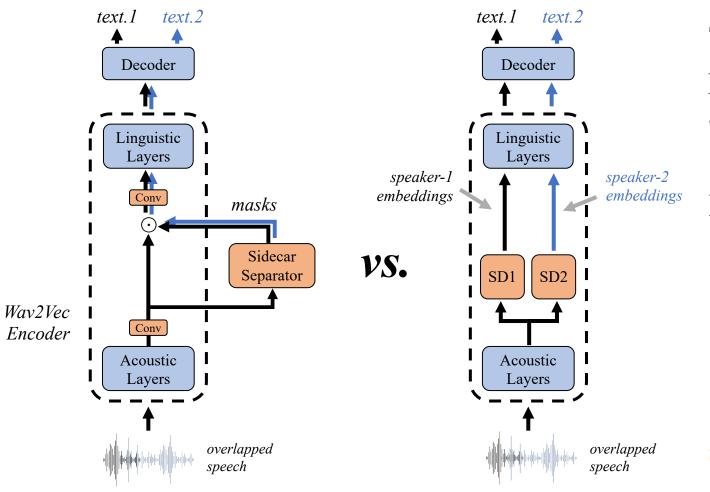
Use a "*Sidecar*" to separate speech embeddings. The Sidecar is tunable with ASR loss.

3. Proposed Approach – Detailed implementation



Objective Function: CTC loss

3. Proposed Approach–A baseline system for control



To investigate the improvement provided by Sidecar, we also designed a baseline system.

Baseline system:

- Also leverages a well-trained ASR model
- Directly predicts speaker-dependent speech embeddings.

SD: two duplicated layers of the ASR encoder

(Sidecar) Multi-talker ASR sys. # params: 103.1M (8.7M trainable)

(Baseline) Multi-speaker ASR sys. #params: 101.5M (14.2M trainable)

Outline

- 1. Background
- 2. Objective
- 3. Proposed Approach
- 4. Experiments
- 5. Conclusion

4. Experiments – LibriMix 2-speaker dataset

LibriMix Dataset: The shorter speech is fully overlapped with the longer one

Systems	Dev	Test
PIT-Transformer	26.58	26.55
Conditional Conformer	24.50	24.90
ConvTasNet+Transformer	21.00	21.90
DPRNN-TasNet+Transformer	15.30	14.50
Baseline (proposed)	11.60	12.27
W2V-Sidecar (proposed)	9.76	10.36
W2V-Sidecar (finetune the whole model)	7.68	8.12

Achieved new state-of-the-art results

4. Experiments – LibriSpeech2Mix 2-speaker dataset

LibriSpeechMix Dataset: The two speech are partially overlapped

Systems	Dev	Test
PIT-BiLSTM	-	11.1
SOT-BiLSTM	-	11.2
SURT	-	7.2
SOT-transformer	-	5.3
Baseline (proposed)	9.50	9.41
W2V-Sidecar (proposed)	7.76	7.56
W2V-Sidecar (finetune the whole model)	6.01	5.69

Achieved competitive results with far less training effort *†*

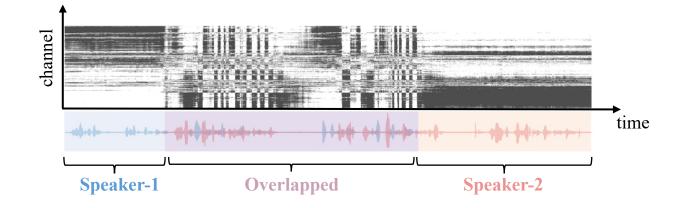
[†] We trained our model with 8 GPUs for 100k iterations, compared to SOT-transformer's 32 GPUs for 480k.

4. Experiments – Ablation Study

> The Location (in between two encoder layers) of the Sidecar

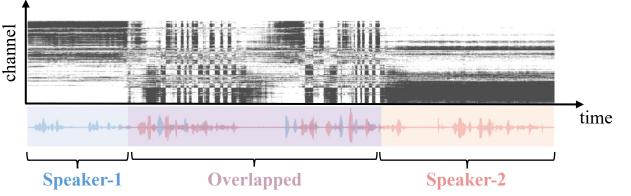
- Location 2 (between layers 2 and 3) gave the best performance
 - Intermediate location between lower-layer acoustics and upper-layer linguistics

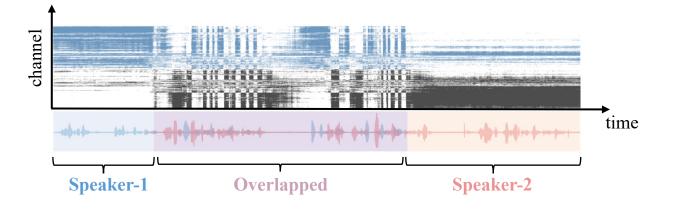
	Locations							
LibriMix	0	1	2	3	4	6	9	12
Dev	12.18	11.22	9.76	12.06	16.14	30.03	56.38	61.78
Test	13.01	11.87	10.36	12.65	16.88	30.32	57.11	62.72

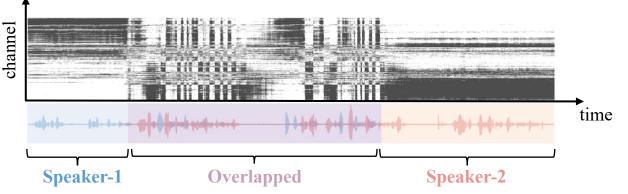


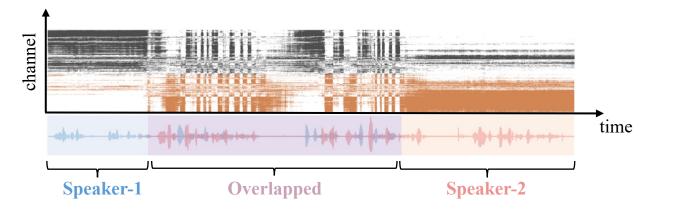
Steps of visualizing the masks:

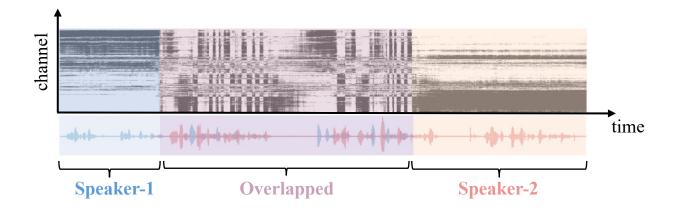
- 1. Softmax
- 2. Normalize
- 3. Cluster





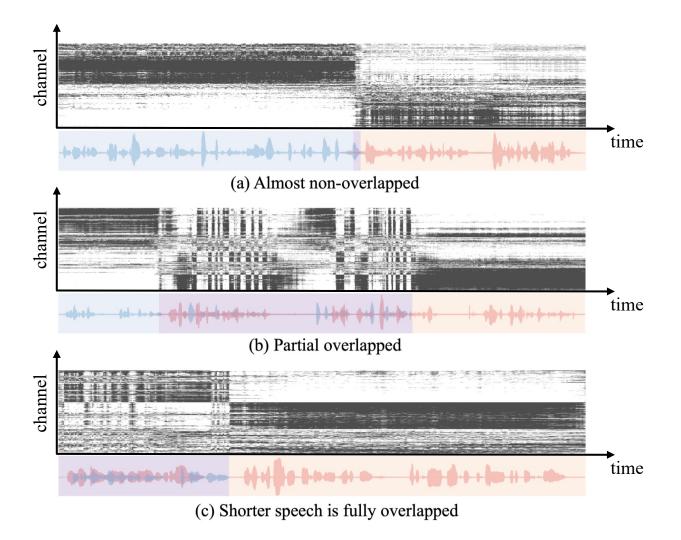






Channel dimension: Sidecar encodes speaker information with different channels

Time dimension: Clear boundary for different part of the utterances



Channel dimension: Sidecar encodes speaker information with different channels

Time dimension: Clear boundary for different part of the utterances

Speaker diarization?

Outline

- 1. Background
- 2. Objective
- 3. Proposed Approach
- 4. Experiments
- 5. Conclusion

5. Conclusion

As a multi-talker ASR strategy, Sidecar achieved good performance. It is:

- Low-cost: Efficient training, without complicated customization.
- Loose-coupling: plug-and-play, without distorting original model's parameters.

5. Conclusion

As a multi-talker ASR strategy, Sidecar achieved good performance. It is:

- Low-cost: Efficient training, without complicated customization.
- Loose-coupling: plug-and-play, without distorting original model's parameters.

Further Work:

- Works on 3-spk LibriSpeechMix and LibriMix
- Still works on 1-spk LibriSpeech even trained with multi-speaker

Thank you!

Image source: https://ridermagazine.com/2011/05/13/a-short-history-of-sidecars/