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Our goal in this handout is to give upper and lower bounds on the singular values of a Gaussian
random matrix. Before we proceed, let us recall some basic definitions and results concerning the
singular values of a matrix.

Let A ∈ Rm×n be a given matrix. The i-th singular value of A can be computed as si(A) =√
λi(ATA), where λi(A

TA) is the i-th eigenvalue of ATA. The spectral norm (i.e., the largest
singular value) of A is given by

‖A‖ = max
v∈Sn−1

‖Av‖2 = max
u∈Sm−1,v∈Sn−1

uTAv, (1)

where Sn−1 = {v ∈ Rn : ‖v‖2 = 1}. Observe that when m = n and A is symmetric, we have

‖A‖ = max
u∈Sn−1

|uTAu|.

This can be established by considering the spectral decomposition of A.
Suppose that m ≥ n. It is easy to show that for any t ∈ (0, 1), if ‖ATA − In‖ ≤ t, then

1− t ≤ si(A) ≤ 1 + t for i ∈ {1, . . . , n}. This gives us a handle to bound all the singular values of
A.

Now, let X ∈ Rm×n be a matrix whose entries are independent and identically distributed (iid)
standard Gaussian random variables; i.e., Xij ∼ N (0, 1) for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Observe that E[XTX] = mIn. Hence, our goal of bounding the singular values of X can be
achieved by bounding ∥∥∥∥ 1

m
XTX − In

∥∥∥∥ .
1 Computing Spectral Norm on a Net

Recall from (1) that the spectral norm of a matrix involves the maximization of a certain quantity
over the sphere Sn−1. In the study of random matrices, it is often useful to perform the maximization
over a finite subset N of Sn−1. To get a small approximation error, the set N should cover Sn−1
sufficiently well. This motivates the following definition:

Definition 1 (ε-Net) We say that N is an ε-net of Sn−1 if (i) N ⊆ Sn−1 and (ii) for every
v ∈ Sn−1, there exists a v0 ∈ N such that ‖v − v0‖2 ≤ ε.

By considering suitable nets on Sm−1 and Sn−1, we have the following result:

Proposition 1 (Bilinear Form on a net) Let A ∈ Rm×n be a given matrix. Let M be a δ-net
of Sm−1 and N be an ε-net of Sn−1, where δ, ε ∈ [0, 1). Then,

‖A‖ ≤ 1

(1− δ)(1− ε)
max

u∈M,v∈N
uTAv.
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Proof Let v̄ ∈ Sn−1 be such that ‖A‖ = ‖Av̄‖2. By definition of a net, we can find a v̄0 ∈ N
such that ‖v̄ − v̄0‖2 ≤ ε. Hence, we have

‖A‖ = ‖A(v̄0 + (v̄ − v̄0)‖2 ≤ ‖Av̄0‖2 + ‖A‖ · ‖v̄ − v̄0‖2 = ‖Av̄0‖2 + ε‖A‖,

which implies that

‖A‖ ≤ 1

1− ε
‖Av̄0‖2. (2)

Now, let ū ∈ Sm−1 be such that ‖Av̄0‖2 = ūTAv̄0. Again, by definition of a net, we can find a
ū0 ∈M such that ‖ū− ū0‖2 ≤ δ. Hence, we have

‖Av̄0‖2 = ūT
0 Av̄0 + (ū− ū0)

TAv̄0 ≤ max
u∈M,v∈N

uTAv + δ‖Av̄0‖2. (3)

Putting (2) and (3) together yields the desired result. tu

In the case where A ∈ Rn×n is symmetric, we have the following result:

Proposition 2 (Quadratic Form on a net) Let A ∈ Rn×n be a given symmetric matrix. Let
N be an ε-net of Sn−1, where ε ∈ [0, 1/2). Then,

‖A‖ ≤ 1

1− 2ε
max
u∈N
|uTAu|.

Proof Let ū ∈ Sn−1 be such that ‖A‖ = |ūTAū| and ū0 ∈ N be such that ‖ū− ū0‖2 ≤ ε. Noting
that ‖A‖ = maxu∈Sn−1 ‖Au‖2 and ‖ū0‖2 = 1 by definition, we compute

‖A‖ = |ūTAū| ≤ |ūTA(ū− ū0)|+ |ūTAū0|
≤ ε‖Aū‖2 + |(ū− ū0)

TAū0|+ |ūT
0 Aū0|

≤ ε‖A‖+ ‖A(ū− ū0)‖2 + max
u∈N
|uTAu|

≤ 2ε‖A‖+ max
u∈N
|uTAu|.

This completes the proof. tu

Next, let us bound the size of an ε-net of Sn−1 using a volume argument.

Proposition 3 (Size of a Net) Let ε ∈ (0, 1) be given. Then, there exists an ε-net N of Sn−1
with

|N | ≤
(

2

ε
+ 1

)n

−
(

2

ε
− 1

)n

.

Proof Let N be a maximal cardinality subset of Sn−1 such that for any distinct u,v ∈ N , we
have ‖u− v‖2 > ε. By the maximality of N , we see that N is an ε-net of Sn−1. Now, observe that
B(u, ε/2) ∩ B(v, ε/2) = ∅ for every distinct u,v ∈ N , where B(x, ε) denotes the Euclidean ball
centered at x ∈ Rn with radius ε. Moreover, it is clear that⋃

u∈N
B(u, ε/2) ⊆ B(0, 1 + ε/2)\B(0, 1− ε/2).

Hence, by comparing the volumes of the balls, we have

|N | · vol(B(0, ε/2)) ≤ vol(B(0, 1 + ε/2))− vol(B(0, 1− ε/2)). (4)
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Now, recall that
vol(B(x, ε)) = εnvol(B(0, 1)) for any x ∈ Rn.

Hence, upon dividing both sides of (4) by vol(B(0, 1)), we obtain

|N | ·
( ε

2

)n
≤
(

1 +
ε

2

)n
−
(

1− ε

2

)n
.

This implies the desired result. tu

2 Concentration Inequality for χ2 Random Variable

Let N be an ε-net of Sn−1. Using Proposition 2, we have∥∥∥∥ 1

m
XTX − In

∥∥∥∥ ≤ 1

1− 2ε
max
u∈N

∣∣∣∣uT

(
1

m
XTX − In

)
u

∣∣∣∣ =
1

1− 2ε
max
u∈N

∣∣∣∣ 1

m
‖Xu‖22 − 1

∣∣∣∣ . (5)

Now, using the fact that Xij are iid according to N (0, 1) for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and
‖u‖2 = 1 for any u ∈ N , we have

1

m
‖Xu‖22 − 1 =

1

m

m∑
i=1

(g2i − 1),

where g1, . . . , gm are iid according to N (0, 1). As an aside, the random variable
∑m

i=1 g
2
i follows

the so-called χ2-distribution with m degrees of freedom. The above development motivates us to
estabish the following result:

Proposition 4 (Concentration Inequality for χ2 Random Variable) Let g1, . . . , gm be iid
according to N (0, 1). Then, for any t ∈ [0, 1],

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

(g2i − 1)

∣∣∣∣∣ ≥ t
)
≤ 2 exp(−mt2/8).

Proof Note that

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

(g2i − 1)

∣∣∣∣∣ ≥ t
)
≤ Pr

(
1

m

m∑
i=1

(g2i − 1) ≥ t

)
+ Pr

(
1

m

m∑
i=1

(g2i − 1) ≤ −t

)
. (6)

Hence, it suffices to bound the two terms on the right-hand side of (6) separately. To bound the
first term in (6), observe that by Markov’s inequality, for any λ ≥ 0, we have

Pr

(
1

m

m∑
i=1

(g2i − 1) ≥ t

)
= Pr

[
exp

(
λ

m∑
i=1

(g2i − 1)

)
≥ exp(λmt)

]

≤ exp(−λmt) · E

[
exp

(
λ

m∑
i=1

(g2i − 1)

)]
. (7)

Since g1, . . . , gm are iid, we have

E

[
exp

(
λ

m∑
i=1

(g2i − 1)

)]
=

m∏
i=1

E
[
exp

(
λ(g2i − 1)

)]
=
(
E
[
exp

(
λ(g21 − 1)

)])m
.
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Using the density function of a standard Gaussian random variable, for any λ < 1/2, we have

E
[
exp

(
λ(g21 − 1)

)]
=

1√
2π

∫ ∞
−∞

exp(λ(x2 − 1)) · exp(−x2/2) dx

= σ · exp(−λ) · 1√
2πσ

∫ ∞
−∞

exp(−x2/2σ2) dx,

where σ = (1− 2λ)−1/2. Upon noting that

x 7→ 1√
2πσ

exp(−x2/2σ2)

is the density function of a Gaussian random variable with mean 0 and variance σ2 and using the
inequality −x− x2 ≤ ln(1− x), which is valid for any x ∈ [0, 1/2], we obtain, for any λ ∈ [0, 1/4],

E
[
exp

(
λ(g21 − 1)

)]
=

exp(−λ)√
1− 2λ

≤ exp(2λ2).

Substituting the above into (7), we get, for any λ ∈ [0, 1/4],

Pr

(
1

m

m∑
i=1

(g2i − 1) ≥ t

)
≤ exp(m(2λ2 − λt)).

Since the above bound holds for any λ ∈ [0, 1/4], we can get the best bound by minimizing the
right-hand side over λ. In particular, by setting λ = t/4 and noting that λ ∈ [0, 1/4] whenever
t ∈ [0, 1], we obtain

Pr

(
1

m

m∑
i=1

(g2i − 1) ≥ t

)
≤ exp(−mt2/8).

To bound the second term in (6), we proceed in a similar manner. Specifically, by Markov’s
inequality, for any λ ≥ 0, we have

Pr

(
1

m

m∑
i=1

(g2i − 1) ≤ −t

)
≤ exp(−λmt) ·

(
E
[
exp

(
λ(1− g21)

)])m
.

Since the inequality (1 + 2x)−1/2 ≤ exp(2x2 − x) holds for all x ≥ 0, a simple calculation yields

E
[
exp

(
λ(1− g21)

)]
=

exp(λ)√
1 + 2λ

≤ exp(2λ2).

Using the same argument as before, we obtain, for any t ∈ [0, 1],

Pr

(
1

m

m∑
i=1

(g2i − 1) ≤ −t

)
≤ exp(−mt2/8).

This completes the proof. tu
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3 Bounding the Spectrum of Gaussian Random Matrix

With the results in the previous sections, we are now ready to give upper and lower bounds on
the singular values of a Gaussian random matrix. Let N be a (1/4)-net of Sn−1. By (5) and
Propositions 3 and 4, we have

Pr

(∥∥∥∥ 1

m
XTX − In

∥∥∥∥ ≥ 2t

)
≤ Pr

(
max
u∈N

∣∣∣∣ 1

m
‖Xu‖22 − 1

∣∣∣∣ ≥ t) ≤ ∑
u∈N

Pr

(∣∣∣∣ 1

m
‖Xu‖22 − 1

∣∣∣∣ ≥ t)
≤ 2 · 9n · exp(−mt2/8).

By setting t2 = 8 ln 9
m (n + η2) for some η ≥ 0 and noting that

√
a+ b ≤

√
a +
√
b for any a, b ≥ 0,

we get

Pr

(∥∥∥∥ 1

m
XTX − In

∥∥∥∥ ≥ 2 ·
√

8 ln 9

m
· (
√
n+ η)

)
≤ 2 exp(−(ln 9)η2).

It follows that when η > 0 is sufficiently large, we have

√
m− c(

√
n+ η) ≤ si(X) ≤

√
m+ c(

√
n+ η) (8)

for i ∈ {1, . . . , n} with high probability, where c = 2
√

8 ln 9.

4 Remarks

1. It is possible to establish upper and lower bounds on the singular values of more general
classes of random matrices; see [3, Chapter 4] for a development in this direction.

2. Note that the lower bound in (8) becomes less useful as m tends to n; i.e., the matrix X
becomes more square. To estimate the least singular value of an almost-square Gaussian
random matrix, one needs more sophisticated machinery. We refer the interested reader to
the paper [1] and survey [2] for further reading.
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