SEEM 5380: Optim. Methods for High-Dim. Statistics 2021–22 Second Term Handout 1: Spectrum of a Gaussian Random Matrix

Instructor: Anthony Man–Cho So

January 21, 2022

Our goal in this handout is to give upper and lower bounds on the singular values of a Gaussian random matrix. Before we proceed, let us recall some basic definitions and results concerning the singular values of a matrix.

Let $A \in \mathbb{R}^{m \times n}$ be a given matrix. The *i*-th singular value of A can be computed as $s_i(A) = \sqrt{\lambda_i(A^T A)}$, where $\lambda_i(A^T A)$ is the *i*-th eigenvalue of $A^T A$. The spectral norm (i.e., the largest singular value) of A is given by

$$\|\boldsymbol{A}\| = \max_{\boldsymbol{v} \in \mathbb{S}^{n-1}} \|\boldsymbol{A}\boldsymbol{v}\|_2 = \max_{\boldsymbol{u} \in \mathbb{S}^{m-1}, \, \boldsymbol{v} \in \mathbb{S}^{n-1}} \boldsymbol{u}^T \boldsymbol{A} \boldsymbol{v}, \tag{1}$$

where $\mathbb{S}^{n-1} = \{ \boldsymbol{v} \in \mathbb{R}^n : \|\boldsymbol{v}\|_2 = 1 \}$. Observe that when m = n and \boldsymbol{A} is symmetric, we have

$$\|\boldsymbol{A}\| = \max_{\boldsymbol{u} \in \mathbb{S}^{n-1}} |\boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u}|.$$

This can be established by considering the spectral decomposition of A.

Suppose that $m \ge n$. It is easy to show that for any $t \in (0,1)$, if $||\mathbf{A}^T \mathbf{A} - \mathbf{I}_n|| \le t$, then $1 - t \le s_i(\mathbf{A}) \le 1 + t$ for $i \in \{1, \ldots, n\}$. This gives us a handle to bound all the singular values of \mathbf{A} .

Now, let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be a matrix whose entries are independent and identically distributed (iid) standard Gaussian random variables; i.e., $X_{ij} \sim \mathcal{N}(0,1)$ for $i \in \{1,\ldots,m\}$ and $j \in \{1,\ldots,n\}$. Observe that $\mathbb{E}[\mathbf{X}^T \mathbf{X}] = m\mathbf{I}_n$. Hence, our goal of bounding the singular values of \mathbf{X} can be achieved by bounding

$$\left\| \frac{1}{m} \boldsymbol{X}^T \boldsymbol{X} - \boldsymbol{I}_n \right\|.$$

1 Computing Spectral Norm on a Net

Recall from (1) that the spectral norm of a matrix involves the maximization of a certain quantity over the sphere \mathbb{S}^{n-1} . In the study of random matrices, it is often useful to perform the maximization over a *finite* subset \mathcal{N} of \mathbb{S}^{n-1} . To get a small approximation error, the set \mathcal{N} should cover \mathbb{S}^{n-1} sufficiently well. This motivates the following definition:

Definition 1 (c-Net) We say that \mathcal{N} is an ϵ -net of \mathbb{S}^{n-1} if (i) $\mathcal{N} \subseteq \mathbb{S}^{n-1}$ and (ii) for every $v \in \mathbb{S}^{n-1}$, there exists a $v_0 \in \mathcal{N}$ such that $||v - v_0||_2 \leq \epsilon$.

By considering suitable nets on \mathbb{S}^{m-1} and \mathbb{S}^{n-1} , we have the following result:

Proposition 1 (Bilinear Form on a net) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix. Let \mathcal{M} be a δ -net of \mathcal{S}^{m-1} and \mathcal{N} be an ϵ -net of \mathbb{S}^{n-1} , where $\delta, \epsilon \in [0, 1)$. Then,

$$\|\boldsymbol{A}\| \leq rac{1}{(1-\delta)(1-\epsilon)} \max_{\boldsymbol{u} \in \mathcal{M}, \, \boldsymbol{v} \in \mathcal{N}} \boldsymbol{u}^T \boldsymbol{A} \boldsymbol{v}.$$

Proof Let $\bar{\boldsymbol{v}} \in \mathbb{S}^{n-1}$ be such that $\|\boldsymbol{A}\| = \|\boldsymbol{A}\bar{\boldsymbol{v}}\|_2$. By definition of a net, we can find a $\bar{\boldsymbol{v}}_0 \in \mathcal{N}$ such that $\|\bar{\boldsymbol{v}} - \bar{\boldsymbol{v}}_0\|_2 \leq \epsilon$. Hence, we have

$$\|\boldsymbol{A}\| = \|\boldsymbol{A}(\bar{\boldsymbol{v}}_0 + (\bar{\boldsymbol{v}} - \bar{\boldsymbol{v}}_0)\|_2 \le \|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2 + \|\boldsymbol{A}\| \cdot \|\bar{\boldsymbol{v}} - \bar{\boldsymbol{v}}_0\|_2 = \|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2 + \epsilon \|\boldsymbol{A}\|_2$$

which implies that

$$\|\boldsymbol{A}\| \leq \frac{1}{1-\epsilon} \|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2.$$
⁽²⁾

Now, let $\bar{\boldsymbol{u}} \in \mathbb{S}^{m-1}$ be such that $\|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2 = \bar{\boldsymbol{u}}^T \boldsymbol{A}\bar{\boldsymbol{v}}_0$. Again, by definition of a net, we can find a $\bar{\boldsymbol{u}}_0 \in \mathcal{M}$ such that $\|\bar{\boldsymbol{u}} - \bar{\boldsymbol{u}}_0\|_2 \leq \delta$. Hence, we have

$$\|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2 = \bar{\boldsymbol{u}}_0^T \boldsymbol{A}\bar{\boldsymbol{v}}_0 + (\bar{\boldsymbol{u}} - \bar{\boldsymbol{u}}_0)^T \boldsymbol{A}\bar{\boldsymbol{v}}_0 \le \max_{\boldsymbol{u}\in\mathcal{M},\,\boldsymbol{v}\in\mathcal{N}} \boldsymbol{u}^T \boldsymbol{A}\boldsymbol{v} + \delta \|\boldsymbol{A}\bar{\boldsymbol{v}}_0\|_2.$$
(3)

Putting (2) and (3) together yields the desired result.

In the case where $A \in \mathbb{R}^{n \times n}$ is symmetric, we have the following result:

Proposition 2 (Quadratic Form on a net) Let $A \in \mathbb{R}^{n \times n}$ be a given symmetric matrix. Let \mathcal{N} be an ϵ -net of \mathbb{S}^{n-1} , where $\epsilon \in [0, 1/2)$. Then,

$$\|\boldsymbol{A}\| \leq rac{1}{1-2\epsilon} \max_{\boldsymbol{u} \in \mathcal{N}} |\boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u}|.$$

Proof Let $\bar{\boldsymbol{u}} \in \mathbb{S}^{n-1}$ be such that $\|\boldsymbol{A}\| = |\bar{\boldsymbol{u}}^T \boldsymbol{A} \bar{\boldsymbol{u}}|$ and $\bar{\boldsymbol{u}}_0 \in \mathcal{N}$ be such that $\|\bar{\boldsymbol{u}} - \bar{\boldsymbol{u}}_0\|_2 \leq \epsilon$. Noting that $\|\boldsymbol{A}\| = \max_{\boldsymbol{u} \in \mathbb{S}^{n-1}} \|\boldsymbol{A}\boldsymbol{u}\|_2$ and $\|\bar{\boldsymbol{u}}_0\|_2 = 1$ by definition, we compute

$$egin{aligned} \|m{A}\| &= |m{ar{u}}^Tm{A}m{ar{u}}| \leq |m{ar{u}}^Tm{A}(m{ar{u}} - m{ar{u}}_0)| + |m{ar{u}}^Tm{A}m{ar{u}}_0| \ &\leq \epsilon \|m{A}m{ar{u}}\|_2 + |(m{ar{u}} - m{ar{u}}_0)^Tm{A}m{ar{u}}_0| + |m{ar{u}}_0^Tm{A}m{ar{u}}_0| \ &\leq \epsilon \|m{A}\| + \|m{A}(m{ar{u}} - m{ar{u}}_0)\|_2 + \max_{m{u}\in\mathcal{N}} |m{u}^Tm{A}m{u}| \ &\leq 2\epsilon \|m{A}\| + \max_{m{u}\in\mathcal{N}} |m{u}^Tm{A}m{u}|. \end{aligned}$$

This completes the proof.

Next, let us bound the size of an ϵ -net of \mathbb{S}^{n-1} using a volume argument.

Proposition 3 (Size of a Net) Let $\epsilon \in (0,1)$ be given. Then, there exists an ϵ -net \mathcal{N} of \mathbb{S}^{n-1} with

$$|\mathcal{N}| \le \left(\frac{2}{\epsilon} + 1\right)^n - \left(\frac{2}{\epsilon} - 1\right)^n$$

Proof Let \mathcal{N} be a maximal cardinality subset of \mathbb{S}^{n-1} such that for any distinct $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{N}$, we have $\|\boldsymbol{u} - \boldsymbol{v}\|_2 > \epsilon$. By the maximality of \mathcal{N} , we see that \mathcal{N} is an ϵ -net of \mathbb{S}^{n-1} . Now, observe that $B(\boldsymbol{u}, \epsilon/2) \cap B(\boldsymbol{v}, \epsilon/2) = \emptyset$ for every distinct $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{N}$, where $B(\boldsymbol{x}, \epsilon)$ denotes the Euclidean ball centered at $\boldsymbol{x} \in \mathbb{R}^n$ with radius ϵ . Moreover, it is clear that

$$\bigcup_{\boldsymbol{u}\in\mathcal{N}} B(\boldsymbol{u},\epsilon/2) \subseteq B(\boldsymbol{0},1+\epsilon/2) \setminus B(\boldsymbol{0},1-\epsilon/2).$$

Hence, by comparing the volumes of the balls, we have

$$|\mathcal{N}| \cdot \operatorname{vol}(B(\mathbf{0}, \epsilon/2)) \le \operatorname{vol}(B(\mathbf{0}, 1+\epsilon/2)) - \operatorname{vol}(B(\mathbf{0}, 1-\epsilon/2)).$$
(4)

	-	-	-	
I				
I		_	_	

Now, recall that

$$\operatorname{vol}(B(\boldsymbol{x},\epsilon)) = \epsilon^n \operatorname{vol}(B(\boldsymbol{0},1)) \text{ for any } \boldsymbol{x} \in \mathbb{R}^n.$$

Hence, upon dividing both sides of (4) by vol(B(0,1)), we obtain

$$|\mathcal{N}| \cdot \left(\frac{\epsilon}{2}\right)^n \le \left(1 + \frac{\epsilon}{2}\right)^n - \left(1 - \frac{\epsilon}{2}\right)^n.$$

This implies the desired result.

2 Concentration Inequality for χ^2 Random Variable

Let \mathcal{N} be an ϵ -net of \mathbb{S}^{n-1} . Using Proposition 2, we have

$$\left\|\frac{1}{m}\boldsymbol{X}^{T}\boldsymbol{X}-\boldsymbol{I}_{n}\right\| \leq \frac{1}{1-2\epsilon} \max_{\boldsymbol{u}\in\mathcal{N}} \left|\boldsymbol{u}^{T}\left(\frac{1}{m}\boldsymbol{X}^{T}\boldsymbol{X}-\boldsymbol{I}_{n}\right)\boldsymbol{u}\right| = \frac{1}{1-2\epsilon} \max_{\boldsymbol{u}\in\mathcal{N}} \left|\frac{1}{m}\|\boldsymbol{X}\boldsymbol{u}\|_{2}^{2}-1\right|.$$
 (5)

Now, using the fact that X_{ij} are iid according to $\mathcal{N}(0,1)$ for $i \in \{1,\ldots,m\}$, $j \in \{1,\ldots,n\}$ and $\|\boldsymbol{u}\|_2 = 1$ for any $\boldsymbol{u} \in \mathcal{N}$, we have

$$\frac{1}{m} \| \boldsymbol{X} \boldsymbol{u} \|_{2}^{2} - 1 = \frac{1}{m} \sum_{i=1}^{m} (g_{i}^{2} - 1),$$

where g_1, \ldots, g_m are iid according to $\mathcal{N}(0, 1)$. As an aside, the random variable $\sum_{i=1}^m g_i^2$ follows the so-called χ^2 -distribution with m degrees of freedom. The above development motivates us to establish the following result:

Proposition 4 (Concentration Inequality for χ^2 **Random Variable)** Let g_1, \ldots, g_m be iid according to $\mathcal{N}(0, 1)$. Then, for any $t \in [0, 1]$,

$$\Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1)\right| \ge t\right) \le 2\exp(-mt^2/8).$$

Proof Note that

$$\Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1)\right| \ge t\right) \le \Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1) \ge t\right) + \Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1) \le -t\right).$$
 (6)

Hence, it suffices to bound the two terms on the right-hand side of (6) separately. To bound the first term in (6), observe that by Markov's inequality, for any $\lambda \ge 0$, we have

$$\Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1) \ge t\right) = \Pr\left[\exp\left(\lambda\sum_{i=1}^{m}(g_i^2-1)\right) \ge \exp(\lambda m t)\right]$$
$$\le \exp(-\lambda m t) \cdot \mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{m}(g_i^2-1)\right)\right]. \tag{7}$$

Since g_1, \ldots, g_m are iid, we have

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{m}(g_i^2-1)\right)\right] = \prod_{i=1}^{m}\mathbb{E}\left[\exp\left(\lambda(g_i^2-1)\right)\right] = \left(\mathbb{E}\left[\exp\left(\lambda(g_1^2-1)\right)\right]\right)^m.$$

Using the density function of a standard Gaussian random variable, for any $\lambda < 1/2$, we have

$$\mathbb{E}\left[\exp\left(\lambda(g_1^2-1)\right)\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(\lambda(x^2-1)) \cdot \exp(-x^2/2) \, dx$$
$$= \sigma \cdot \exp(-\lambda) \cdot \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \exp(-x^2/2\sigma^2) \, dx,$$

where $\sigma = (1 - 2\lambda)^{-1/2}$. Upon noting that

$$x \mapsto \frac{1}{\sqrt{2\pi\sigma}} \exp(-x^2/2\sigma^2)$$

is the density function of a Gaussian random variable with mean 0 and variance σ^2 and using the inequality $-x - x^2 \leq \ln(1-x)$, which is valid for any $x \in [0, 1/2]$, we obtain, for any $\lambda \in [0, 1/4]$,

$$\mathbb{E}\left[\exp\left(\lambda(g_1^2-1)\right)\right] = \frac{\exp(-\lambda)}{\sqrt{1-2\lambda}} \le \exp(2\lambda^2).$$

Substituting the above into (7), we get, for any $\lambda \in [0, 1/4]$,

$$\Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1) \ge t\right) \le \exp(m(2\lambda^2-\lambda t)).$$

Since the above bound holds for any $\lambda \in [0, 1/4]$, we can get the best bound by minimizing the right-hand side over λ . In particular, by setting $\lambda = t/4$ and noting that $\lambda \in [0, 1/4]$ whenever $t \in [0, 1]$, we obtain

$$\Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2 - 1) \ge t\right) \le \exp(-mt^2/8).$$

To bound the second term in (6), we proceed in a similar manner. Specifically, by Markov's inequality, for any $\lambda \ge 0$, we have

$$\Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2-1)\leq -t\right)\leq \exp(-\lambda mt)\cdot\left(\mathbb{E}\left[\exp\left(\lambda(1-g_1^2)\right)\right]\right)^m.$$

Since the inequality $(1+2x)^{-1/2} \leq \exp(2x^2-x)$ holds for all $x \geq 0$, a simple calculation yields

$$\mathbb{E}\left[\exp\left(\lambda(1-g_1^2)\right)\right] = \frac{\exp(\lambda)}{\sqrt{1+2\lambda}} \le \exp(2\lambda^2).$$

Using the same argument as before, we obtain, for any $t \in [0, 1]$,

$$\Pr\left(\frac{1}{m}\sum_{i=1}^{m}(g_i^2 - 1) \le -t\right) \le \exp(-mt^2/8).$$

This completes the proof.

3 Bounding the Spectrum of Gaussian Random Matrix

With the results in the previous sections, we are now ready to give upper and lower bounds on the singular values of a Gaussian random matrix. Let \mathcal{N} be a (1/4)-net of \mathbb{S}^{n-1} . By (5) and Propositions 3 and 4, we have

$$\Pr\left(\left\|\frac{1}{m}\boldsymbol{X}^{T}\boldsymbol{X}-\boldsymbol{I}_{n}\right\|\geq 2t\right)\leq \Pr\left(\max_{\boldsymbol{u}\in\mathcal{N}}\left|\frac{1}{m}\|\boldsymbol{X}\boldsymbol{u}\|_{2}^{2}-1\right|\geq t\right)\leq \sum_{\boldsymbol{u}\in\mathcal{N}}\Pr\left(\left|\frac{1}{m}\|\boldsymbol{X}\boldsymbol{u}\|_{2}^{2}-1\right|\geq t\right)\\\leq 2\cdot 9^{n}\cdot \exp(-mt^{2}/8).$$

By setting $t^2 = \frac{8 \ln 9}{m} (n + \eta^2)$ for some $\eta \ge 0$ and noting that $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ for any $a, b \ge 0$, we get

$$\Pr\left(\left\|\frac{1}{m}\boldsymbol{X}^{T}\boldsymbol{X}-\boldsymbol{I}_{n}\right\|\geq 2\cdot\sqrt{\frac{8\ln9}{m}}\cdot(\sqrt{n}+\eta)\right)\leq 2\exp(-(\ln9)\eta^{2}).$$

It follows that when $\eta > 0$ is sufficiently large, we have

$$\sqrt{m} - c(\sqrt{n} + \eta) \le s_i(\boldsymbol{X}) \le \sqrt{m} + c(\sqrt{n} + \eta)$$
(8)

for $i \in \{1, \ldots, n\}$ with high probability, where $c = 2\sqrt{8 \ln 9}$.

4 Remarks

- 1. It is possible to establish upper and lower bounds on the singular values of more general classes of random matrices; see [3, Chapter 4] for a development in this direction.
- 2. Note that the lower bound in (8) becomes less useful as m tends to n; i.e., the matrix X becomes more square. To estimate the least singular value of an almost-square Gaussian random matrix, one needs more sophisticated machinery. We refer the interested reader to the paper [1] and survey [2] for further reading.

References

- M. Rudelson and R. Vershynin. Smallest Singular Value of a Random Rectangular Matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009.
- [2] M. Rudelson and R. Vershynin. Non-Asymptotic Theory of Random Matrices: Extreme Singular Values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pages 1576–1602, 2011.
- [3] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, volume 47 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018.