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Handout 1: Spectrum of a Gaussian Random Matrix

Instructor: Anthony Man—Cho So January 21, 2022

Our goal in this handout is to give upper and lower bounds on the singular values of a Gaussian
random matrix. Before we proceed, let us recall some basic definitions and results concerning the
singular values of a matrix.

Let A € R™*™ be a given matrix. The i-th singular value of A can be computed as s;(A) =

M\i(AT A), where \;(AT A) is the i-th eigenvalue of AT A. The spectral norm (i.e., the largest
singular value) of A is given by

|A| = max [|Avl|2 = max ul Aw, (1)
vesSn—1 ucSm—1 peSn—1

where S*! = {v € R” : ||v|l2 = 1}. Observe that when m = n and A is symmetric, we have
y

|A|l = max |ul Aul.
uesn—1

This can be established by considering the spectral decomposition of A.

Suppose that m > n. It is easy to show that for any ¢ € (0,1), if |ATA — I,|| < t, then
1—t<s;(A)<1l+tforie{l,...,n}. This gives us a handle to bound all the singular values of
A.

Now, let X € R™*" be a matrix whose entries are independent and identically distributed (iid)
standard Gaussian random variables; i.e., X;; ~ A47(0,1) for i € {1,...,m} and j € {1,...,n}.
Observe that E[X? X] = mlI,. Hence, our goal of bounding the singular values of X can be
achieved by bounding

1
HXTX —1I,
m

1 Computing Spectral Norm on a Net

Recall from (1) that the spectral norm of a matrix involves the maximization of a certain quantity
over the sphere S"~!. In the study of random matrices, it is often useful to perform the maximization
over a finite subset N of S*~!. To get a small approximation error, the set A/ should cover S"~!
sufficiently well. This motivates the following definition:

Definition 1 (e-Net) We say that N is an e-net of S*~1 if (i) N C S*~' and (i) for every
v € S" L, there exists a vg € N such that ||v — vgll2 < €.

By considering suitable nets on S™~! and S"~!, we have the following result:

Proposition 1 (Bilinear Form on a net) Let A € R™*™ be a given matriz. Let M be a §-net
of S™ 1 and N be an e-net of S*~1, where 6,¢ € [0,1). Then,

1 T
< .
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Proof Let © € S"~! be such that ||A|| = ||A%|2. By definition of a net, we can find a v € N
such that || — vg||2 < €. Hence, we have

Al = | A(vo + (v — o) 2 < [[Avoll2 + [[A]] - [|[o — voll2 = [[Avoll2 + €[ A,
which implies that

1 _
Al < 7—[lADo]l2- (2)

Now, let 4 € S™~! be such that ||Avy||2 = u? Avg. Again, by definition of a net, we can find a
ug € M such that || — ug||2 < 0. Hence, we have

||A’l70||2 = ﬁgA’DO + (’a - ﬂo)TA@O < max ul Av + (SHA'BOHQ (3)
ueM,veN

Putting (2) and (3) together yields the desired result. O
In the case where A € R™*™ is symmetric, we have the following result:

Proposition 2 (Quadratic Form on a net) Let A € R™ " be a given symmetric matriz. Let
N be an e-net of S*™!, where € € [0,1/2). Then,

1
1Al < 7 max u” Aul.

Proof Let @ € S"~! be such that ||A| = |u” Au| and @y € N be such that ||@ — ]2 < €. Noting
that || Al = max,cgn—1 || Aull2 and ||ugl|2 = 1 by definition, we compute

IA| = [a” Aa| < |a” A(u — uo)| + |a” Ady|
< el|Ally + |(@ — o) Aol + |ug Auyl
< €l|A]l + [|A(@ — o) (|2 + max [u” Aul

ueN

< 2¢|| Al + max |u” Aul.
ueN

This completes the proof. O

Next, let us bound the size of an e-net of S"~! using a volume argument.

Proposition 3 (Size of a Net) Let € € (0,1) be given. Then, there exists an e-net N' of S*~1

with . "
V| < <2+1> <21> .
€ €

Proof Let N be a maximal cardinality subset of S?~! such that for any distinct w,v € A, we
have ||u —v||2 > e. By the maximality of A/, we see that N is an e-net of S”~!. Now, observe that
B(u,€/2) N B(v,€/2) = ( for every distinct u,v € N, where B(x,¢) denotes the Euclidean ball
centered at & € R™ with radius e. Moreover, it is clear that

U B(u,e/2) € B(0,1+¢/2)\B(0,1 — ¢/2).
ueN

Hence, by comparing the volumes of the balls, we have

IN|-vol(B(0,€/2)) < vol(B(0,1+¢/2)) — vol(B(0,1 — €/2)). (4)



Now, recall that
vol(B(xz,¢)) = €"vol(B(0,1)) for any x € R".

Hence, upon dividing both sides of (4) by vol(B(0, 1)), we obtain

W (5) < (e g) - (1-5)"

This implies the desired result. O

2 Concentration Inequality for y*> Random Variable

Let N be an e-net of S*~!. Using Proposition 2, we have

1 1
u' ([ =XTX -1, ) ul = max
m 1 — 2€ ueN

XTx -1,

max
- 1 — 2€ ueN

- cIxulg-1). 6

Now, using the fact that X;; are iid according to .47(0,1) for i € {1,...,m}, j € {1,...,n} and
|ul|2 =1 for any w € N, we have

m

1 1
I Xuli-1=— 2_q
m” U’HQ mZ(gz )7

=1

where g1,...,gm are iid according to .#7(0,1). As an aside, the random variable y ;*, 91‘2 follows
the so-called y2-distribution with m degrees of freedom. The above development motivates us to
estabish the following result:

Proposition 4 (Concentration Inequality for x> Random Variable) Let gi,...,g, be iid
according to A (0,1). Then, for any t € [0, 1],

~3 -1

> t) < 2exp(—mt?/8).

Proof Note that

Pr<;§:(giz—1)2t>§Pr<1ig—l >t>+Pr<;§:g—1 _t) (6)
i=1 i=1 i=1

Hence, it suffices to bound the two terms on the right-hand side of (6) separately. To bound the
first term in (6), observe that by Markov’s inequality, for any A > 0, we have

(;i —1) >t> = Pr [exp ()\Zg - 1) ) zexp(Amt)]

=1

< exp(—Amt) exp (AZ )] . (7)
Since g1, ..., gy are iid, we have
E |exp ()\ 2(912 — 1))] = HE [exp ()\(gi2 — 1))] = (E [exp ()\(g% — 1))])m
i=1 i=1




Using the density function of a standard Gaussian random variable, for any A < 1/2, we have
2 1 > 2 2
E lexp (A(g7 —1))| = exp(A(z® —1)) - exp(—x“/2) dx
fexp (Aot~ 1)) = 7= [ exp(\a? = 1) exp(—a?/2

1 o
=0 -exp(—A)- \/%/ exp(—22/20?) du,

where o = (1 — 2X)~'/2. Upon noting that

1
\2mo

is the density function of a Gaussian random variable with mean 0 and variance o and using the
inequality —z — 22 < In(1 — x), which is valid for any z € [0, 1/2], we obtain, for any A € [0,1/4],

X —

exp(—x2/20?)

exp(—A)

V1—2\

Substituting the above into (7), we get, for any A € [0,1/4],

E [exp (A\gf — 1)] = < exp(2)\?).

m

Pr (1 S (gE-1) > t) < exp(m(2)2 — At)).

m “
i=1

Since the above bound holds for any A € [0,1/4], we can get the best bound by minimizing the
right-hand side over A. In particular, by setting A\ = ¢/4 and noting that A € [0,1/4] whenever
t € [0, 1], we obtain

Pr <1 i(gf -1) > t) < exp(—mt*/8).

m “
=1

To bound the second term in (6), we proceed in a similar manner. Specifically, by Markov’s
inequality, for any A > 0, we have

Pr <; Z(gf -1) < —t) < exp(—Amt) - (E [exp ()\(1 - 9%))])m
i=1

Since the inequality (1 4 2x)~1/2 < exp(222 — z) holds for all > 0, a simple calculation yields

E [exp (A(1 — g%))] = ;}% < exp(2)\?).

Using the same argument as before, we obtain, for any ¢ € [0, 1],
m

Pr (1 Y g -1 < —t> < exp(—mt*/8).

m <
=1

This completes the proof. O



3 Bounding the Spectrum of Gaussian Random Matrix

With the results in the previous sections, we are now ready to give upper and lower bounds on
the singular values of a Gaussian random matrix. Let A be a (1/4)-net of S*~!. By (5) and
Propositions 3 and 4, we have

> Qt) < Pr <max
ueN

<2-9" . exp(—mt?/8).

Pr <HXTX ~- I,

1
m

1 1
— | Xul3-1]>t) < Pr(|—|Xul3—1| >t
xulg =1 =) < Y pr (| Lixulg 1] > )

ueN

By setting t? = %(n + n?) for some 1 > 0 and noting that va + b < v/a + v/b for any a,b > 0,

we get,

8In9
m

>2.

1
Pr (HXTX -1,
m

(Vn+ n)) < 2exp(—(In9)n?).
It follows that when 1 > 0 is sufficiently large, we have

Vm —e(yn+n) < s:(X) < Vm+ c(vr+n) (8)

for i € {1,...,n} with high probability, where ¢ = 2v/81n9.

4 Remarks

1. It is possible to establish upper and lower bounds on the singular values of more general
classes of random matrices; see [3, Chapter 4] for a development in this direction.

2. Note that the lower bound in (8) becomes less useful as m tends to n; i.e., the matrix X
becomes more square. To estimate the least singular value of an almost-square Gaussian
random matrix, one needs more sophisticated machinery. We refer the interested reader to
the paper [1] and survey [2] for further reading.
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