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1 Introduction

The theory of LP has found many applications in various disciplines. In this lecture, we will consider
some of those applications and see how the machineries developed in previous lectures can be used
to obtain some interesting results.

2 Arbitrage–Free Asset Pricing

Consider a market in which n different assets are traded. We are interested in the performance
of the assets in one period, which naturally is influenced by the events during that period. For
simplicity’s sake, let us assume that there are m possible states at the end of the period. Now,
suppose that for every unit of asset i ∈ {1, . . . , n} owned, we can receive a payoff of rsi dollars if
state s ∈ {1, . . . ,m} is realized at the end of the period. In other words, the payoff information
can be captured by the following m× n payoff matrix R:

R =


r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 .

Let xi ∈ R be number of units of asset i held. Note that if xi ≥ 0, then we can get rsixi dollars at
the end of the period if state s is realized. On the other hand, if xi < 0, then we are in a “short”
position with respect to asset i. This means that we are selling |xi| units of asset i at the beginning
of the period, with a promise to buy them back at the end of the period. In particular, we need to
pay rsi|xi| dollars if state s is realized, which of course is equivalent to receiving a payoff of rsixi
dollars.

Clearly, given an initial portfolio x = (x1, . . . , xn), our wealth at the end of the period is

ws =

n∑
i=1

rsixi

if state s is realized. Upon letting w = (w1, . . . , wm), we see that w = Rx. Now, one of the most
fundamental problems in finance is to determine the prices of the assets at the beginning of the
period. To formalize the problem, let pi be the price of asset i at the beginning of the period, and
set p = (p1, . . . , pn). Then, the cost of acquiring the portfolio x is given by pTx. A fundamental
assumption in finance theory is that the prices should not give rise to arbitrage opportunities;
i.e., no investor should be able to get a non–negative payoff out of a negative investment. In
other words, any portfolio that guarantees a non–negative payoff in every state must be valuable
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to investors and hence must have a non–negative price. The arbitrage–free assumption can be
expressed as follows:

if Rx ≥ 0 then pTx ≥ 0. (1)

Now, given the payoff matrix R, do there exist arbitrage–free prices of the assets? As the following
result shows, such a question can be answered by Farkas’ lemma:

Theorem 1 There is no arbitrage opportunity (i.e., condition (1) holds) if and only if there exists
a q ∈ Rm

+ such that the price of asset i ∈ {1, . . . , n} is given by

pi =
m∑
s=1

qsrsi.

Proof The arbitrage–free condition (1) is equivalent to the statement that the following system
has no solution:

Rx ≥ 0, pTx < 0. (2)

By Farkas’ lemma, there exists a q ∈ Rm
+ such that RT q = p, which is precisely the condition

claimed in the theorem’s statement. ⊔⊓
We should point out that in the above market model, arbitrage opportunities can be detected by
simply solving a linear programming problem. Indeed, it suffices to determine the feasibility of the
following linear system:

Rx ≥ 0, pTx = −1. (3)

This follows from the fact that we can always scale a solution to (2) to get a solution to (3).
For further reading on the application of optimization theory to economics and finance, we refer

the reader to [3, 2].

3 An Application in Cooperative Game Theory

Consider a set N = {1, . . . , n} of n players. Let v : 2N → R+ be a value function (also known as
a characteristic function); i.e., for S ⊆ N , the value v(S) is the worth of the coalition S. In
other words, v(S) represents the total worth that the members of S can earn without any help from
the players outside S. By default, we set v(∅) = 0. Naturally, the total worth v(N ) is shared among
all the players, and we would like to know how to share it so that no coalition has the incentive
to deviate and obtain an outcome that is better for all of its members. Specifically, consider an
allocation vector x ∈ Rn

+, where xi ≥ 0 represents the payoff to player i, where i = 1, . . . , n. We
say that a coalition S can improve upon an allocation x iff v(S) > x(S) ≡

∑
i∈S xi. Equivalently,

S can improve upon x iff there exists some allocation y ∈ Rn
+ such that y(S) = v(S) and yi > xi

for all i ∈ S. Finally, we say that an allocation x is in the core if

x(N ) = v(N ), x(S) ≥ v(S) for all S ⊆ N .

The first condition simply indicates that we are dividing the total worth v(N ) among the players.
Note that if an allocation x such that x(N ) = v(N ) is not in the core, then there is some coalition
S in which all of its members can do strictly better than in x by cooperating together and dividing
the worth v(S) among themselves. On the other hand, if x is in the core, then the allocation is
stable, and no coalition has the incentive to deviate.

Now, a natural question is whether the core always exists. Before we address that question, let
us consider an example.
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Example 1 Suppose that an expedition of n people has discovered treasure in the mountains. How-
ever, it takes two people to carry out each piece of treasure, in which case the value of the treasure is
equally shared between the two. To model this game, we define the value function via v(S) = ⌊|S|/2⌋
for any S ⊆ N . Consider first the case where n is even. Then, the allocation (1/2, 1/2, . . . , 1/2) is
stable. Now, suppose that n = 3. Note that the allocation (1/2, 1/2, 0) does not belong to the core,
since if the third player pairs up with, say, the second player and promises to give her 1/2 + ϵ for
some ϵ > 0 while keeping 1/2− ϵ for herself, then both of them are better off. Similarly, the alloca-
tion (1/3, 1/3, 1/3) is not in the core, since two players can each get 1/2 if they form a coalition.
Indeed, it is not hard to show that when n ≥ 3 is odd, then the core is empty.

From the previous example, we see that given an arbitrary coalition game (N , v), the core
may be empty. It turns out that the problem of characterizing those coalition games that have
non–empty cores can be resolved using LP.

Theorem 2 (Bondareva–Shapley; see [6]) The coalition game (N , v) has a non–empty core iff
the following balancedness condition is satisfied: For any set of weights {yS}S such that yS ≥ 0
and

∑
S:i∈S yS = 1 for i = 1, . . . , n, we have

∑
S ySv(S) ≤ v(N ).

Proof Consider the following LP:

minimize x(N )

subject to x(S) ≥ v(S) for all S ⊆ N .
(4)

The dual of Problem (4) is given by

maximize
∑
S

ySv(S)

subject to
∑
S:i∈S

yS = 1 for i = 1, . . . , n,

y ≥ 0.

(5)

Since Problem (4) is feasible and its optimal value is lower bounded by v(N ), by Corollary 1 of
Handout 3 and the LP strong duality theorem, there exist optimal solutions x∗ and y∗ to (4) and
(5), respectively, with

x∗(N ) =
∑
S

y∗Sv(S).

Now, observe that the allocation x∗ is in the core iff x∗(N ) ≤ v(N ). The latter is equivalent to the
fact that the balancedness condition is satisfied, and the proof is completed. ⊔⊓

For further reading on game theory, we refer the reader to [5]. Lloyd S. Shapley was awarded The
Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 “for the theory of
stable allocations and the practice of market design”; see http://www.nobelprize.org/nobel_

prizes/economics/laureates/2012/ for details.

4 An Approximation Algorithm for Vertex Cover

The theory of LP has been employed very successfully in the design of approximation algorithms in
recent years (see, e.g., [7]). We say that an algorithm A is an α–approximation algorithm for a
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minimization problem P if for every instance I of P, it delivers in polynomial time a solution whose
objective value is at most α times the optimal value. Clearly, we have α ≥ 1, and the closer it is
to 1, the better. In a similar fashion, one may define the notion of an α–approximation algorithm
for a maximization problem. In this section we study the so–called vertex cover problem and see
how the theory of LP can be used to obtain a 2–approximation algorithm for it.

To begin, consider a simple undirected graph G = (V,E), where each vertex vi ∈ V has an
associated cost ci ∈ R+. A vertex cover of G is a subset S ⊂ V such that for every edge
(vi, vj) ∈ E, at least one of the endpoints belongs to S. We are interested in finding a vertex cover
S of G of minimal cost.

Now, let xi ∈ {0, 1} be a binary variable indicating whether vi belongs to the vertex cover S or
not (i.e., xi = 1 iff vi ∈ S). Then, the minimum–cost vertex cover problem can be formulated as
the following integer program:

v∗ = minimize cTx =

|V |∑
i=1

cixi

subject to xi + xj ≥ 1 for (vi, vj) ∈ E,

x ∈ {0, 1}|V |.

(6)

Due to the presence of the integer constraint x ∈ {0, 1}|V |, Problem (6) is generally difficult to
solve. One intuitive strategy for circumventing this difficulty is to replace the integer constraint
x ∈ {0, 1}|V | with the linear constraint 0 ≤ x ≤ e. Using the fact that c ≥ 0, it is not hard to show
that the resulting problem is equivalent to the following LP, which is called an LP relaxation of
Problem (6):

v∗r = minimize cTx

subject to xi + xj ≥ 1 for (vi, vj) ∈ E,

x ≥ 0.

(7)

Clearly, we have v∗r ≤ v∗. Suppose that x′ is an optimal solution to Problem (7). It is then natural
to ask whether we can convert x′ into a solution x′′ that is feasible for Problem (6) and satisfies
cTx′′ ≤ αv∗r for some α > 0. Note that if this is possible, then we would obtain an α–approximation
algorithm for the minimum–cost vertex cover problem because v∗r ≤ v∗. As it turns out, the answer
to the above question is indeed affirmative. The key to proving this is the following theorem:

Theorem 3 (cf. [4]) Let P ⊂ R|V | be the polyhedron defined by the following system:{
xi + xj ≥ 1 for (vi, vj) ∈ E,

x ≥ 0.

Suppose that x is an extreme point of P . Then, we have xi ∈ {0, 1/2, 1} for i = 1, . . . , |V |.

Proof Let x ∈ P and consider the sets

U−1 = {i ∈ {1, . . . , |V |} : xi ∈ (0, 1/2)} ,

U1 = {i ∈ {1, . . . , |V |} : xi ∈ (1/2, 1)} .
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For i = 1, . . . , |V | and k ∈ {−1, 1}, define

yi =

{
xi + kϵ if i ∈ Uk,

xi otherwise
, zi =

{
xi − kϵ if i ∈ Uk,

xi otherwise.

By definition, we have x = (y + z)/2. If either U−1 or U1 is non–empty, then we may choose ϵ > 0
to be sufficiently small so that y, z ∈ P , and that x, y, z are all distinct. It follows that Uk = ∅ for
k ∈ {−1, 1} if x is an extreme point of P . ⊔⊓

Corollary 1 There exists a 2–approximation algorithm for the minimum–cost vertex cover prob-
lem.

Proof We first solve the LP (7) and obtain an optimal extreme point solution x′. Now, by
Theorem 3, all the entries of x′ belong to {0, 1/2, 1}. Hence, the vector x′′ defined by

x′′i =

{
x′i if x′i = 0 or 1,

1 if x′i = 1/2
for i = 1, . . . , |V |

is feasible for Problem (6). Moreover, it has objective value cTx′′ ≤ 2cTx′ = 2v∗r ≤ 2v∗. This
completes the proof. ⊔⊓

5 Blind Separation of Non–Negative Sources

In various image processing applications, a problem of fundamental interest is that of separating
non–negative source signals in a blind fashion. For simplicity, consider the following linear mixture
model:

x[ℓ] = As[ℓ] for ℓ = 1, . . . , L, (8)

where s[ℓ] ∈ Rn
+ is the ℓ–th source vector, x[ℓ] ∈ Rm is the ℓ–th observation vector, and A ∈ Rm×n

is a mixing matrix describing the input–output relationship. Our goal here is to extract the source
vectors s[1], . . . , s[L] ∈ Rn from the observation vectors x[1], . . . , x[ℓ] ∈ Rm without knowledge of
the mixing matrix A ∈ Rm×n. Note that such a task is not well–defined. For instance, if the pair(
{s[ℓ]}Lℓ=1, A

)
satisfies (8), then so does the pair

(
{s[ℓ]/c}Lℓ=1, cA

)
for any constant c > 0. Thus,

it is necessary to impose additional assumptions on the model (8). Towards that end, let us first
rewrite (8) as

xi =
n∑

j=1

aijs
j for i = 1, . . . ,m, (9)

where xi = (xi[1], . . . , xi[L]) ∈ RL is the i–th observed signal and sj = (sj [1], . . . , sj [L]) ∈ RL
+ is

the signal from the j–th source. We shall make the following assumptions:

(a) The mixing matrix A ∈ Rm×n has full column rank (in particular, m ≥ n) and satisfies

n∑
j=1

aij = 1 for i = 1, . . . ,m.

Moreover, the number of observations L satisfies L ≫ m.
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(b) Each source signal is locally dominant; i.e., for each source j ∈ {1, . . . , n}, there exists an
(unknown) undex ℓ(j) ∈ {1, . . . , L} such that sj [ℓ(j)] > 0 and sk[ℓ(j)] = 0 for all k ̸= j.

The above assumptions are satisfied in a wide variety of settings; see, e.g., [1] for a more detailed
discussion. Now, observe that from Assumption (a), we have xi ∈ aff({s1, . . . , sn}) for i = 1, . . . ,m.
In fact, more can be said:

Proposition 1 Under Assumption (a), we have aff({x1, . . . , xm}) = aff({s1, . . . , sn}).

Proof Suppose that x ∈ aff({x1, . . . , xm}). Then, there exist α1, . . . , αm ∈ R such that

x =
m∑
i=1

αix
i and

m∑
i=1

αi = 1.

Substituting this into (9) yields

x =

m∑
i=1

n∑
j=1

αiaijs
j =

n∑
j=1

βjs
j ,

where βj =
∑m

i=1 αiaij , for j = 1, . . . , n. Using Assumption (a), we have

n∑
j=1

βj =
m∑
i=1

αi

 n∑
j=1

aij

 = 1.

It follows that x ∈ aff({s1, . . . , sn}).
Conversely, suppose that x ∈ aff({s1, . . . , sn}). Then, there exist β1, . . . , βn ∈ R such that

x =

n∑
j=1

βjs
j and

n∑
j=1

βj = 1.

Consider now the following system of linear equations in α = (α1, . . . , αm) ∈ Rm:

βj =
m∑
i=1

αiaij for j = 1, . . . , n. (10)

By Assumption (a), we have m ≥ n, which implies that the above system is solvable. Upon
summing (10) over j = 1, . . . , n, we have

1 =

n∑
j=1

βj =

m∑
i=1

αi

 n∑
j=1

aij

 =

m∑
i=1

αi.

This shows that x ∈ aff({x1, . . . , xm}), as desired. ⊔⊓
The upshot of Proposition 1 is that although we do not know the source vectors s1, . . . , sn ∈ RL

+,
their affine hull is completely determined by the observed vectors x1, . . . , xm ∈ RL. Such an
observation can help us in recovering the source vectors s1, . . . , sn ∈ RL

+. Indeed, consider the
polyhedron

P = aff({s1, . . . , sn}) ∩ RL
+. (11)

Since si ∈ RL
+, we have si ∈ P for i = 1, . . . , n. As the following result shows, the source vectors

can be recovered by considering the vertices of P:
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Proposition 2 Under Assumption (b), we have P = conv({s1, . . . , sn}). Moreover, the vertices of
P are {s1, . . . , sn}.

Proof Suppose that x ∈ P. Then, there exist β1, . . . , βn ∈ R such that

0 ≤ x =
n∑

j=1

βjs
j and

n∑
j=1

βj = 1.

For each j ∈ {1, . . . , n}, we have 0 ≤ x[ℓ(j)] = βjs
j [ℓ(j)] by Assumption (b), which implies that

βj ≥ 0. Thus, we have x ∈ conv({s1, . . . , sn}).

Conversely, suppose that x ∈ conv({s1, . . . , sn}). Since s1, . . . , sn ∈ RL
+, it is clear that x ∈ P.

In view of the above, the vertices of P must belong to the set {s1, . . . , sn}. Thus, to complete
the proof of Proposition 2, it remains to show that s1, . . . , sn are all vertices of P. Towards that
end, let us fix k ∈ {1, . . . , n} and suppose that sk = θx1+(1−θ)x2, where x1, x2 ∈ P and θ ∈ (0, 1).
Then, there exist α1

1, . . . , α
1
n ∈ R+ and α2

1, . . . , α
2
n ∈ R+ such that

sk =

n∑
j=1

(
θα1

j + (1− θ)α2
j

)
sj and

n∑
j=1

α1
j =

n∑
j=1

α2
j = 1.

Now, by Assumption (b), we have

sk[ℓ(k)] =
(
θα1

k + (1− θ)α2
k

)
sk[ℓ(k)],

which implies that θα1
k +(1− θ)α2

k = 1. This is possible if and only if α1
k = α2

k = 1, or equivalently,
x1 = x2 = sk. It follows that sk is a vertex of P, as desired. ⊔⊓

To obtain a representation of P that is more amenable to computation, we first observe that
dim

(
aff({s1, . . . , sn})

)
= n − 1. Thus, by Proposition 1 and Assumption (b), there are n − 1

linearly independent vectors in the collection {xi−x1}mi=2. Now, let v
1, . . . , vL−n+1 ∈ RL be a basis

of span({x2−x1, . . . , xm−x1})⊥, which can be computed by the Gram–Schmidt orthogonalization
procedure. Then, we have

aff({x1, . . . , xm}) =
{
x ∈ RL : (vi)Tx = (vi)Tx1 for i = 1, . . . , L− n+ 1

}
,

which, together with (11), implies that

P =
{
x ∈ RL

+ : (vi)Tx = (vi)Tx1 for i = 1, . . . , L− n+ 1
}
.
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