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1 Introduction

Conic linear programming (CLP), and in particular, semidefinite programming (SDP), has received
a lot of attention in recent years. Such a popularity can partly be attributed to the wide applicability
of CLP, as well as recent advances in the design of provably efficient interior–point algorithms.
In this lecture we will consider some applications that arise in engineering and show how CLP
techniques can be used to model them.

2 Robust Linear Programming

To motivate the problem considered in this section, consider the LP

minimize c̄Tx

subject to Âx ≤ b̂,
(1)

where Â ∈ Rm×n, b̂ ∈ Rm, and c̄ ∈ Rn are given. As it often occurs in practice, the data of the
above LP, namely Â and b̂, are uncertain. In an attempt to tackle such uncertainties, Ben–Tal and
Nemirovski [4] introduced the idea of robust optimization. In the robust optimization setting,
we assume that the uncertain data lie in some given uncertainty set U . Our goal is then to find a
solution that is feasible for all possible realizations of the uncertain data and optimizes some given
objective.

To derive the robust counterpart of (1), let us first rewrite it as

minimize cT z

subject to Az ≤ 0,

zn+1 = −1,

(2)

where A = [Â b̂] ∈ Rm×(n+1), c = (c̄, 0) ∈ Rn+1, and z ∈ Rn+1. Now, suppose that each row
ai ∈ Rn+1 of the matrix A lies in an ellipsoidal region Ui whose center ui ∈ Rn+1 is given (here,
i = 1, . . . ,m). Specifically, we impose the constraint that

ai ∈ Ui =
{
x ∈ Rn+1 : x = ui +Biv, ∥v∥2 ≤ 1

}
for i = 1, . . . ,m,

where ai is the i–th row of A, ui ∈ Rn+1 is the center of the ellipsoid Ui, andBi is some (n+1)×(n+1)
positive semidefinite matrix. Then, the robust counterpart of (2) is the following optimization
problem:

minimize cT z

subject to Az ≤ 0 for all ai ∈ Ui, i = 1, . . . ,m,

zn+1 = −1.

(3)
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Note that in general there are uncountably many constraints in (3). However, we claim that (3) is
equivalent to an SOCP problem. To see this, observe that aTi z ≤ 0 for all ai ∈ Ui iff

0 ≥ max
v∈Rn+1:∥v∥2≤1

{
(ui +Biv)

T z
}
= uTi z + ∥Biz∥2,

where i = 1, . . . ,m. Hence, we conclude that (3) is equivalent to

minimize cT z

subject to ∥Biz∥2 ≤ −uTi z for i = 1, . . . ,m,

zn+1 = −1,

which is an SOCP problem.
For further readings on robust optimization, we refer the readers to [14, 1, 5, 3].

3 Chance Constrained Linear Programming

In the previous section, we showed how one can handle data uncertainties in a linear optimization
problem using the robust optimization approach. Such an approach is particularly suitable if there
is little information about the nature of the data uncertainty, and/or if the constraints are not
to be violated under any circumstance. However, it can produce very conservative solutions. In
situations where the distribution of the data uncertainty is (partially) known, one can often obtain
a better solution by allowing the constraints to be violated with small probability. To illustrate
this possibility, let us consider the following simple LP:

minimize cTx

subject to aTx ≤ b,

x ∈ P,

(4)

where a, c ∈ Rn are given vectors, b ∈ R is a given scalar, and P ⊆ Rn is a given polyhedron.
For the sake of simplicity, suppose that P is deterministic, but the data a, b are randomly affinely
perturbed; i.e.,

a = a0 +

l∑
i=1

ϵia
i, b = b0 +

l∑
i=1

ϵibi,

where a0, a1, . . . , al ∈ Rn and b0, b1, . . . , bl ∈ R are given, and ϵ1, . . . , ϵl are i.i.d. mean zero random
variables supported on [−1, 1]. Then, for any given tolerance parameter δ ∈ (0, 1), we can formulate
the following chance constrained counterpart of (4):

minimize cTx

subject to Pr(aTx > b) ≤ δ, (†)
x ∈ P.

(5)

In other words, a solution x̄ ∈ P is feasible for (5) if it only violates the constraint aTx ≤ b with
probability at most δ. The constraint (�) is known as a chance constraint. Note that when δ = 0,
(5) reduces to a robust linear optimization problem. Moreover, if x̄ ∈ Rn is feasible for (5) at some
tolerance level δ̄ ≥ 0, then it is also feasible for (5) at any δ ≥ δ̄. Thus, by varying δ, we will be
able to adjust the conservatism of the solution.
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Despite the attractiveness of the chance constraint formulation, it has one major drawback;
namely, it is generally computationally intractable. Indeed, even when the distributions of ϵ1, . . . , ϵl
are very simple, the feasible set defined by the chance constraint (�) can be non–convex. One way to
tackle this problem is to replace the chance constraint by its safe tractable approximation; i.e.,
a system of deterministic constraints H such that (i) x̄ ∈ Rn is feasible for (�) whenever it is feasible
for H (safe approximation), and (ii) the constraints in H are efficiently computable (tractability).
To develop a safe tractable approximation of (�), we first observe that (�) is equivalent to the
following system of constraints:

Pr

(
y0 +

l∑
i=1

ϵiyi > 0

)
≤ δ, (6)

yi = (ai)Tx− bi for i = 0, 1, . . . , l. (7)

Since ϵ1, . . . , ϵl are i.i.d. mean zero random variables supported on [−1, 1], by Hoeffding’s inequal-
ity [12], we have

Pr

(
l∑

i=1

ϵiyi > t

)
≤ exp

(
− t2

2
∑l

i=1 y
2
i

)
for any t > 0. It follows that when

−y0 ≥

√√√√(2 ln 1

δ

) l∑
i=1

y2i , (8)

we have

Pr

(
y0 +

l∑
i=1

ϵiyi > 0

)
≤ exp

(
− y20

2
∑l

i=1 y
2
i

)
≤ δ.

In other words, (8) is a sufficient condition for (6) to hold. The upshot of (8) is that it is a second–
order cone constraint. Hence, we conclude that constraints (7) and (8) together serve as a safe
tractable approximation of the chance constraint (�).

So far we have only discussed how to handle a single scalar chance constraint. Of course, the
case of joint scalar chance constraints; i.e., chance constraints of the form

Pr
(
(ai)Tx > bi for i = 1, 2, . . . ,m

)
≤ δ

are also of great interest. However, they are not as easy to handle as a single scale chance constraint.
For some recent results in this direction, see [3, 6, 20, 8].

It is instructive to examine the relationship between the robust optimization approach and the
safe tractable approximation approach. Upon following the derivations in the previous section, we
see that constraint (8) is equivalent to the following robust constraint:

dT y ≤ 0 for all d ∈ U ,

where U is the ellipsoidal uncertainty set given by

U =
{
x ∈ Rl+1 : x = e1 +Bv, ∥v∥2 ≤ 1

}
,
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and B ∈ R(l+1)×(l+1) is given by

B =

√
2 ln

1

δ
·
[

0 0T

0 I

]
.

In other words, we are using the following robust optimization problem

minimize cTx

subject to
l∑

i=0

di
(
(ai)Tx− bi

)
≤ 0 for all d ∈ U ,

x ∈ P

as a safe tractable approximation of the chance constrained optimization problem (5). For further
elaboration on the connection between robust optimization and chance constrained optimization,
see [7, 6].

We remark that chance constrained optimization has been employed in many recent applications;
see, e.g., [9, 19, 13, 23, 22]. For a more comprehensive treatment and some recent advances of chance
constrained optimization, we refer the reader to [18, Chapter 4] and [21].

4 Quadratically Constrained Quadratic Optimization

A class of optimization problems that has frequently arisen in applications is that of quadratically
constrained quadratic optimization problems (QCQPs); i.e., problems of the form

minimize xTCx

subject to xTAix ≥ bi for i = 1, . . . ,m,
(9)

where C,A1, . . . , Am ∈ Sn are given. In general, due to the non–convexity of the objective func-
tion and constraints, problem (9) is intractable. Nevertheless, it can be tackled by the so–called
semidefinite relaxation technique. To introduce this technique, we first observe that for any
C ∈ Sn,

xTCx = tr(xTCx) = tr(CxxT ) = C • xxT .

Hence, problem (9) is equivalent to

minimize C • xxT

subject to Ai • xxT ≥ bi for i = 1, . . . ,m.

Now, using the spectral theorem for symmetric matrices, one can verify that

X = xxT ⇐⇒ X ⪰ 0, rank(X) ≤ 1.

It follows that problem (9) is equivalent to the following rank–constrained SDP problem:

minimize C •X

subject to Ai •X ≥ bi for i = 1, . . . ,m,

X ⪰ 0, rank(X) ≤ 1.

(10)
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The advantage of the formulation in (10) over that in (9) is that it reveals where the difficulty of
the problem lies; namely, in the non–convex constraint rank(X) ≤ 1. By dropping this constraint,
we obtain the following semidefinite relaxation of problem (9):

minimize C •X

subject to Ai •X ≥ bi for i = 1, . . . ,m,

X ⪰ 0.

(11)

Problem (11) is an SDP and can be efficiently solved. However, an optimal solution X∗ to prob-
lem (11) may not be feasible for problem (9), since we need not have rank(X∗) ≤ 1. This motivates
us to consider two fundamental questions:

1. Under what conditions would the relaxation (11) be tight? In particular, when would it be
possible to convert an optimal solution X∗ to (11) into an optimal solution x∗ to (9)?

2. In the case where the relaxation (11) is not tight, how can we extract a feasible solution
to (9) from an optimal solution to (11)? More ambitiously, can we establish any theoretical
guarantees on the approximation quality of the extracted solution?

In the sequel, we shall present some possible approaches to tackling the above questions.

4.1 Rank Bound via Constraint Counting

Consider the following standard form SDP:

v∗SDP = inf C •X
subject to Ai •X = bi for i = 1, . . . ,m,

X ⪰ 0,

(SDP)

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R are given. The following theorem, which is discovered
independently by Shapiro [17], Barvinok [2], and Pataki [16], shows that if (SDP) has an optimal
solution, then it has an optimal solution whose rank is bounded by a function of m, the number of
constraints.

Theorem 1 Suppose that (SDP) has an optimal solution. Then, there exists an optimal solution
X∗ to (SDP) satisfying r(r + 1)/2 ≤ m, where r = rank(X∗). Moreover, such an optimal solution
can be computed efficiently.

Proof Let X̄∗ be an optimal solution to (SDP) and r̄ = rank
(
X̄∗). Suppose that r̄(r̄+1)/2 > m.

Let X̄∗ = LLT be the Cholesky factorization of X̄∗, where L ∈ Rn×r̄. Set C̄ = LTCL ∈ S r̄ and
Āi = LTAiL ∈ S r̄ for i = 1, . . . ,m, and consider the following auxiliary SDP:

v∗ASDP = inf C̄ •W
subject to Āi •W = bi for i = 1, . . . ,m,

W ⪰ 0.

(ASDP)

We claim that v∗SDP = v∗ASDP, and that W = I ∈ S r̄ is an optimal solution to (ASDP). Indeed,
observe that the solution W = I is feasible for (ASDP) and has an objective value

C̄ • I = C • LLT = C •X∗ = v∗SDP.
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This implies that v∗ASDP ≤ v∗SDP. On the other hand, every feasible solution W to (ASDP) corre-
sponds to a feasible solution Z(W ) = LWLT to (SDP), which implies that v∗ASDP ≥ v∗SDP. Thus,
the claim is established.

Next, we show that every feasible solution to (ASDP) is in fact optimal for (ASDP). Towards
that end, consider the dual of (ASDP):

sup bT y

subject to C̄ −
m∑
i=1

yiĀi ⪰ 0,

y ∈ Rm.

(ASDD)

Since (ASDP) is bounded below and strictly feasible, by the CLP Strong Duality Theorem, (ASDD)
has an optimal solution y∗. Moreover, since W = I is optimal for (ASDP), the CLP Strong Duality
Theorem yields

I •

(
C̄ −

m∑
i=1

y∗i Āi

)
= 0.

This, together with the fact that C̄ −
∑m

i=1 y
∗
i Āi ⪰ 0, implies

C̄ −
m∑
i=1

y∗i Āi = 0.

It follows that every feasible solution W̄ to (ASDP) satisfies the complementarity condition

W̄ •

(
C̄ −

m∑
i=1

y∗i Āi

)
= 0.

Hence, by the CLP Strong Duality Theorem, we conclude that W̄ is optimal for (ASDP).
To complete the proof of Theorem 1, consider the following system of homogeneous linear

equations:
Āi •W = 0 for i = 1, . . . ,m, W ∈ S r̄. (12)

Since W ∈ S r̄, it is completely determined by the entries on and above the diagonal. Thus, we
see that (12) is a system of m equations in r̄(r̄ + 1)/2 variables. Now, since we assume that
r̄(r̄ + 1)/2 > m, there exists a non–zero W̄ ∈ S r̄ satisfying (12). We may assume without loss
that W̄ has at least one negative eigenvalue, for otherwise we can simply consider −W̄ , which also
satisfies (12). Consider the matrix W̄+ = I − (1/λmin(W̄ ))W̄ ∈ S r̄, where λmin(W̄ ) < 0 is the
smallest eigenvalue of W̄ . Note that W̄+ ⪰ 0, since for any u ∈ Rr̄ with ∥u∥2 = 1, we have

uT W̄+u = 1− 1

λmin(W̄ )
uT W̄u ≥ 1− 1

λmin(W̄ )

(
min

∥u∥2=1
uT W̄u

)
= 0

by the Courant–Fischer theorem. In addition, it can be verified that rank
(
W̄+

)
< r̄. Lastly, a

direct calculation yields
Āi • W̄+ = Āi • I = bi for i = 1, . . . ,m.

It follows that W̄+ is feasible and hence optimal for (ASDP). This implies that X
(
W̄+

)
= LW̄+LT

is optimal for (SDP) and satisfies rank
(
X
(
W̄+

))
< r̄.
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By repeating the above procedure until W = 0 is the only solution to (12), we obtain an optimal
solution X∗ with r(r+1)/2 ≤ m, where r = rank(X∗). Moreover, note that an optimal solution to
(SDP) and a non–zero solution to (12), if exists, can be found efficiently. This completes the proof
of Theorem 1. ⊔⊓

The following is an easy corollary of Theorem 1:

Corollary 1 Consider the following SDP:

inf C •X
subject to Ai •X = bi for i = 1, . . . ,m′,

Ai •X ≥ bi for i = m′ + 1, . . . ,m,

X ⪰ 0,

(13)

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R are given. If problem (13) has an optimal solution,
then it has an optimal solution X∗ satisfying r(r+1)/2 ≤ m, where r = rank(X∗). Moreover, such
an optimal solution can be found efficiently.

Proof Let X̄∗ be an optimal solution to (13). Then, X̄∗ is an optimal solution to the following
SDP:

inf C •X
subject to Ai •X = Ai • X̄∗ for i = 1, . . . ,m,

X ⪰ 0.

(14)

By Theorem 1, an optimal solution X∗ to (14) satisfying r(r + 1)/2, where r = rank(X∗), can be
found efficiently. To complete the proof, it suffices to note that X∗ is also optimal for (13). ⊔⊓

Using Corollary 1, we obtain the following tightness result concerning the relaxation (11).

Corollary 2 The semidefinite relaxation (11) is tight for (9) when m ≤ 2.

4.2 An Approximation Algorithm for Maximum Cut in Graphs

Suppose that we are given a simple undirected graph G = (V,E) and a function w : E → R+ that
assigns to each edge e ∈ E a non–negative weight we. The Maximum Cut Problem (Max–Cut) is
that of finding a set S ⊆ V of vertices such that the total weight of the edges in the cut (S, V \S);
i.e., sum of the weights of the edges with one endpoint in S and the other in V \S, is maximized.
By setting wij = 0 if (i, j) ̸∈ E, we may denote the weight of a cut (S, V \S) by

w(S, V \S) =
∑

i∈S,j∈V \S

wij , (15)

and our goal is to choose a set S ⊆ V such that the quantity in (15) is maximized. The Max–Cut
problem is one of the fundamental computational problems on graphs and has been extensively
studied by many researchers. It has been shown that the Max–Cut problem is unlikely to have
a polynomial–time algorithm (see, e.g, [10]). On the other hand, in a seminal work, Goemans and
Williamson [11] showed how SDP can be used to design a 0.878–approximation algorithm for the
Max–Cut problem; i.e., given an instance (G,w) of the Max–Cut problem, the algorithm will
find a cut (S, V \S) whose value w(S, V \S) is at least 0.878 times the optimal value. In this section,
we will describe the algorithm of Goemans and Williamson and prove its approximation guarantee.
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To begin, let (G,w) be a given instance of the Max–Cut problem, with n = |V |. Then, we
can formulate the Max–Cut problem as an integer quadratic program, viz.

v∗ = maximize
1

2

∑
(i,j)∈E

wij(1− xixj)

subject to x2i = 1 for i = 1, . . . , n.

(16)

Here, the variable xi indicates which side of the cut vertex i belongs to. Specifically, the cut
(S, V \S) is given by S = {i ∈ {1, . . . , n} : xi = 1}. Note that if vertices i and j belong to the same
side of a cut, then xi = xj , and hence its contribution to the objective function in (16) is zero.
Otherwise, we have xi ̸= xj , and its contribution to the objective function is wij(1− (−1))/2 = wij .

In general, problem (16) is hard to solve. Thus, we consider relaxations of (16). One approach
is to observe that both the objective function and the constraints in (16) are linear in xixj , where
1 ≤ i, j ≤ n. In particular, if we let X = xxT ∈ Rn×n, then problem (16) can be written as

v∗ = maximize
1

2

∑
(i,j)∈E

wij(1−Xij)

subject to diag(X) = e,

X = xxT .

(17)

Since X = xxT iff X ⪰ 0 and rank(X) ≤ 1, from our earlier discussion, we can drop the non–convex
rank constraint and arrive at the following relaxation of (17):

v∗sdp = maximize
1

2

∑
(i,j)∈E

wij(1−Xij)

subject to diag(X) = e,

X ⪰ 0.

(18)

Note that (18) is an SDP. Moreover, since (18) is a relaxation of (17), we have v∗sdp ≥ v∗.
Now, suppose that we have an optimal solution X∗ to (18). In general, the matrix X∗ need not

be in the form xxT , and hence it does not immediately yield a feasible solution to (17). However,
we can extract from X∗ a solution x′ ∈ {−1, 1}n to (17) via the following randomized rounding
procedure:

1. Compute the Cholesky factorization X∗ = UTU of X∗, where U ∈ Rn×n. Let ui ∈ Rn be the
i–th column of U . Note that ∥ui∥22 = 1 for i = 1, . . . , n.

2. Let r ∈ Rn be a vector uniformly distributed on the unit sphere Sn−1 = {x ∈ Rn : ∥x∥2 = 1}.

3. Set x′i = sgn
(
uTi r

)
for i = 1, . . . , n, where

sgn(z) =

{
1 if z ≥ 0,

−1 otherwise.

In other words, we choose a random hyperplane through the origin (with r as its normal) and
partition the vertices according to whether their corresponding vectors lie “above” or “below” the
hyperplane.
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Since the solution x′ ∈ {−1, 1}n is produced via a randomized procedure, we are interested in
its expected objective value; i.e.,

1

2
E

 ∑
(i,j)∈E

wij

(
1− x′ix

′
j

) =
1

2

∑
(i,j)∈E

wijE
[
1− x′ix

′
j

]
=

∑
(i,j)∈E

wij Pr
[
sgn

(
uTi r

)
̸= sgn

(
uTj r

)]
.

(19)
The following theorem provides a lower bound on the expected objective value (19) and allows us
to compare it with the optimal value v∗sdp of (17).

Theorem 2 Let u, v ∈ Sn−1, and let r be a vector uniformly distributed on Sn−1. Then, we have

Pr
[
sgn

(
uT r

)
̸= sgn

(
vT r

)]
=

1

π
arccos

(
uT v

)
. (20)

Furthermore, for any z ∈ [−1, 1], we have

1

π
arccos(z) ≥ α · 1

2
(1− z) > 0.878 · 1

2
(1− z), (21)

where

α = min
0≤θ≤π

2θ

π(1− cos θ)
.

Proof To establish (20), observe that by symmetry, we have

Pr
[
sgn

(
uT r

)
̸= sgn

(
vT r

)]
= 2Pr

(
uT r ≥ 0, vT r < 0

)
.

Now, by projecting r onto the plane containing u and v, we see that uT r ≥ 0 and vT r < 0 iff the
projection lies in the wedge formed by u and v. Since r is chosen from a spherically symmetric
distribution, its projection will be a random direction on the plane containing u and v. Hence, we
have

Pr
(
uT r ≥ 0, vT r < 0

)
=

arccos
(
uT v

)
2π

,

as desired.
To establish the first inequality in (21), consider the change of variable z = cos θ. Since z ∈

[−1, 1], we have θ ∈ [0, π]. Thus, it follows that

1

π
arccos(z) =

θ

π
=

2θ

π(1− cos θ)
· 1
2
(1− cos θ) ≥ α · 1

2
(1− z),

as desired. The second inequality in (21) can be established using calculus and we leave the proof
to the readers. ⊔⊓

Corollary 3 Given an instance (G,w) of the Max–Cut problem and an optimal solution to (18),
the randomized rounding procedure above will produce a cut (S′, V \S′) whose expected objective
value satisfies w(S′, V \S′) ≥ 0.878v∗.
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Proof Let x′ be the solution obtained from the randomized rounding procedure, and let S′ be the
corresponding cut. By (19) and Theorem 2, we have

E
[
w(S′, V \S′)

]
=

1

π

∑
(i,j)∈E

wij · arccos
(
uTi uj

)
≥ 0.878 · 1

2

∑
(i,j)∈E

wij

(
1− uTi uj

)
= 0.878v∗sdp

≥ 0.878v∗,

as desired. ⊔⊓

For a survey of the theory and the many applications of the semidefinite relaxation technique,
we refer the reader to [15].
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