
ENGG 5501: Foundations of Optimization 2024–25 First Term

Handout B: Linear Algebra Cheat Sheet

Instructor: Anthony Man–Cho So Updated: August 24, 2024

The purpose of this handout is to give a brief review of some of the basic concepts and results
in linear algebra. If you are not familiar with the material and/or would like to do some further
reading, you may consult, e.g., the books [1, 2, 3].

1 Basic Notation, Definitions, and Results

1.1 Vectors and Matrices

We denote the set of real numbers (also referred to as scalars) by R. For positive integers m,n ≥ 1,
we use Rm×n to denote the set of m × n arrays whose components are from R. In other words,
Rm×n is the set of n–dimensional real matrices, and an element A ∈ Rm×n can be written as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , (1)

where aij ∈ R for i = 1, . . . ,m and j = 1, . . . , n. A row vector is a matrix with m = 1, and
a column vector is a matrix with n = 1. The word vector will always mean a column vector
unless otherwise stated. The set of all n–dimensional real vectors is denoted by Rn, and an element
x ∈ Rn can be written as x = (x1, . . . , xn). Note that we still view x = (x1, . . . , xn) as a column
vector, even though typographically it does not appear so. The reason for such a notation is simply
to save space. Now, given an m× n matrix A of the form (1), its transpose AT is defined as the
following n×m matrix:

AT =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

 .

An m ×m real matrix A is said to be symmetric if A = AT . The set of m ×m real symmetric
matrices is denoted by Sm.

We use x ≥ 0 to indicate that all the components of x are non–negative, and x ≥ y to mean
that x− y ≥ 0. The notations x > 0, x ≤ 0, x < 0, x > y, x ≤ y, and x < y are to be interpreted
accordingly.

We say that a finite collection C = {x1, x2, . . . , xm} of vectors in Rn is

� linearly dependent if there exist scalars α1, . . . , αm ∈ R, not all of them zero, such that∑m
i=1 αix

i = 0;

� affinely dependent if the collection C′ = {x2−x1, x3−x1, . . . , xm−x1} is linearly dependent.
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The collection C (resp. C′) is said to be linearly independent (resp. affinely independent) if
it is not linearly dependent (resp. affinely dependent).

1.2 Inner Product and Vector Norms

Given two vectors x, y ∈ Rn, their inner product is defined as

xT y ≡
n∑

i=1

xiyi.

We say that x and y are orthogonal if xT y = 0. The Euclidean norm of x ∈ Rn is defined as

∥x∥2 ≡
√
xTx =

(
n∑

i=1

|xi|2
)1/2

.

A fundamental inequality that relates the inner product of two vectors and their respective Eu-
clidean norms is the Cauchy–Schwarz inequality:∣∣xT y∣∣ ≤ ∥x∥2 · ∥y∥2.

Equality holds iff the vectors x and y are linearly dependent; i.e., x = αy for some α ∈ R.
Note that the Euclidean norm is not the only norm one can define on Rn. In general, a function

∥ · ∥ : Rn → R is called a vector norm on Rn if for all x, y ∈ Rn, we have

(a) (Non–Negativity) ∥x∥ ≥ 0;

(b) (Positivity) ∥x∥ = 0 iff x = 0;

(c) (Homogeneity) ∥αx∥ = |α| · ∥x∥ for all α ∈ R;

(d) (Triangle Inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

For instance, for p ≥ 1, the ℓp–norm on Rn, which is given by

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

,

is a vector norm on Rn. It is well known that

∥x∥∞ = lim
p→∞

∥x∥p = max
1≤i≤n

|xi|.

1.3 Matrix Norms

We say that a function ∥ · ∥ : Rn×n → R is a matrix norm on the set of n× n matrices if for any
A,B ∈ Rn×n, we have

(a) (Non–Negativity) ∥A∥ ≥ 0;

(b) (Positivity) ∥A∥ = 0 iff A = 0;

2



(c) (Homogeneity) ∥αA∥ = |α| · ∥A∥ for all α ∈ R;

(d) (Triangle Inequality) ∥A+B∥ ≤ ∥A∥+ ∥B∥;

(e) (Submultiplicativity) ∥AB∥ ≤ ∥A∥ · ∥B∥.

As an example, let ∥ · ∥v : Rn → R be a vector norm on Rn. Define the function ∥ · ∥ : Rn×n → R
via

∥A∥ = max
x∈Rn:∥x∥v=1

∥Ax∥v.

Then, it is straightforward to verify that ∥ · ∥ is a matrix norm on the set of n× n matrices.

1.4 Linear Subspaces and Bases

A non–empty subset S of Rn is called a (linear) subspace of Rn if αx+βy ∈ S whenever x, y ∈ S
and α, β ∈ R. Clearly, we have 0 ∈ S for any subspace S of Rn.

The span (or linear hull) of a finite collection C = {x1, . . . , xm} of vectors in Rn is defined as

span(C) ≡

{
m∑
i=1

αix
i : α1, . . . , αm ∈ R

}
.

In particular, every vector y ∈ span(C) is a linear combination of the vectors in C. It is easy to
verify that span(C) is a subspace of Rn.

We can extend the above definition to an arbitrary (i.e., not necessarily finite) collection C of
vectors in Rn. Specifically, we define span(C) as the set of all finite linear combinations of the
vectors in C. Equivalently, we can define span(C) as the intersection of all subspaces containing C.
Note that when C is finite, this definition coincides with the one given above.

Given a subspace S of Rn with S ̸= {0}, a basis B of S is a linearly independent collection of
vectors whose span is equal to S. If the vectors in B are orthogonal to each other and have unit
norm, then we call B an orthonormal basis of S. Recall that every basis of a given subspace S
has the same number of vectors. This number is called the dimension of the subspace S and is
denoted by dim(S). By definition, the dimension of the subspace {0} is zero. The orthogonal
complement S⊥ of S is defined as

S⊥ =
{
y ∈ Rn : xT y = 0 for all x ∈ S

}
.

It can be verified that S⊥ is a subspace of Rn, and that if dim(S) = k ∈ {0, 1, . . . , n}, then we have
dim(S⊥) = n − k. Moreover, we have S⊥⊥ = (S⊥)⊥ = S. Finally, every vector x ∈ Rn can be
uniquely decomposed as x = x1 + x2, where x1 ∈ S and x2 ∈ S⊥.

Now, let A be an m× n real matrix. The column space of A is the subspace of Rm spanned
by the columns of A. It is also known as the range of A (viewed as a linear transformation
A : Rn → Rm) and is denoted by

range(A) ≡ {Ax : x ∈ Rn} ⊆ Rm.

Similarly, the row space of A is the subspace of Rn spanned by the rows of A. It is well known
that the dimension of the column space is equal to the dimension of the row space, and this number
is known as the rank of the matrix A (denoted by rank(A)). In particular, we have

rank(A) = dim(range(A)) = dim(range(AT )).
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Moreover, we have rank(A) ≤ min{m,n}, and if equality holds, then we say that A has full
rank. The nullspace of A is the set null(A) ≡ {x ∈ Rn : Ax = 0}. It is a subspace of Rn and has
dimension n−rank(A). The following summarizes the relationships among the subspaces range(A),
range(AT ), null(A), and null(AT ):

(range(A))⊥ = null(AT ),(
range(AT )

)⊥
= null(A).

The above implies that given an m×n real matrix A of rank r ≤ min{m,n}, we have rank(AAT ) =
rank(ATA) = r. This fact will be frequently used in the course.

1.5 Affine Subspaces

Let S0 be a subspace of Rn and x0 ∈ Rn be an arbitrary vector. Then, the set S =
{
x0
}
+ S0 =

{x+ x0 : x ∈ S0} is called an affine subspace of Rn, and its dimension is equal to the dimension
of the underlying subspace S0.

Now, let C = {x1, . . . , xm} be a finite collection of vectors in Rn, and let x0 ∈ Rn be arbitrary.
By definition, the set S =

{
x0
}
+span(C) is an affine subspace of Rn. Moreover, it is easy to verify

that every vector y ∈ S can be written in the form

y =
m∑
i=1

[
αi(x

0 + xi) + βi(x
0 − xi)

]
for some α1, . . . , αm, β1, . . . , βm ∈ R such that

∑m
i=1 (αi + βi) = 1; i.e., the vector y ∈ Rn is an

affine combination of the vectors x0 ± x1, . . . , x0 ± xm ∈ Rn. Conversely, let C = {x1, . . . , xm}
be a finite collection of vectors in Rn, and define

S =

{
m∑
i=1

αix
i : α1, . . . , αm ∈ R,

m∑
i=1

αi = 1

}

to be the set of affine combinations of the vectors in C. We claim that S is an affine subspace of
Rn. Indeed, it can be readily verified that

S =
{
x1
}
+ span

(
{x2 − x1, . . . , xm − x1}

)
.

This establishes the claim.
Given an arbitrary (i.e., not necessarily finite) collection C of vectors in Rn, the affine hull of

C, denoted by aff(C), is the set of all finite affine combinations of the vectors in C. Equivalently, we
can define aff(C) as the intersection of all affine subspaces containing C.

1.6 Some Special Classes of Matrices

The following classes of matrices will be frequently encountered in this course.

� Invertible Matrix. An n×n real matrix A is said to be invertible if there exists an n×n
real matrix A−1 (called the inverse of A) such that A−1A = I, or equivalently, AA−1 = I.
Note that the inverse of A is unique whenever it exists. Morever, recall that A ∈ Rn×n is
invertible iff rank(A) = n.
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Now, let A be a non–singular n× n real matrix. Suppose that A is partitioned as

A =

[
A11 A12

A21 A22

]
,

where Aii ∈ Rni×ni for i = 1, 2, with n1 + n2 = n. Then, provided that the relevant inverses
exist, the inverse of A has the following form:

A−1 =

[ (
A11 −A12A

−1
22 A21

)−1
A−1

11 A12

(
A21A

−1
11 A12 −A22

)−1(
A21A

−1
11 A12 −A22

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

]
.

� Submatrix of a Matrix. Let A be an m× n real matrix. For index sets α ⊆ {1, 2, . . . ,m}
and β ⊆ {1, 2, . . . , n}, we denote the submatrix that lies in the rows of A indexed by α and
the columns indexed by β by A(α, β). If m = n and α = β, the matrix A(α, α) is called a
principal submatrix of A and is denoted by A(α). The determinant of A(α) is called a
principal minor of A.

Now, let A be an n×n matrix, and let α ⊆ {1, 2, . . . , n} be an index set such that A(α) is non–
singular. We set α′ = {1, 2, . . . , n}\α. The following is known as the Schur determinantal
formula:

det(A) = det(A(α))det
[
A(α′)−A(α′, α)A(α)−1A(α, α′)

]
.

� Orthogonal Matrix. An n × n real matrix A is called an orthogonal matrix if AAT =
ATA = I. Note that if A ∈ Rn×n is an orthogonal matrix, then for any u, v ∈ Rn, we have
uT v = (Au)T (Av); i.e., orthogonal transformations preserve inner products.

� Positive Semidefinite/Definite Matrix. An n×n real matrix A is positive semidefinite
(resp. positive definite) if A is symmetric and for any x ∈ Rn\{0}, we have xTAx ≥ 0
(resp. xTAx > 0). We use A ⪰ 0 (resp. A ≻ 0) to denote the fact that A is positive
semidefinite (resp. positive definite). We remark that although one can define a notion of
positive semidefiniteness for real matrices that are not necessarily symmetric, we shall not
pursue that option in this course.

� Projection Matrix. An n × n real matrix A is called a projection matrix if A2 = A.
Given a projection matrix A ∈ Rn×n and a vector x ∈ Rn, the vector Ax ∈ Rn is called the
projection of x ∈ Rn onto the subspace range(A). Note that a projection matrix need
not be symmetric. As an example, consider

A =

[
0 1

0 1

]
.

We say that A defines an orthogonal projection onto the subspace S ⊆ Rn if for every
x = x1 + x2 ∈ Rn, where x1 ∈ S and x2 ∈ S⊥, we have Ax = x1. Note that if A defines
an orthogonal projection onto S, then I −A defines an orthogonal projection onto S⊥. Fur-
thermore, it can be shown that A is an orthogonal projection onto S iff A is a symmetric
projection matrix with range(A) = S.

As an illustration, consider an m × n real matrix A, with m ≤ n and rank(A) = m. Then,
the projection matrix corresponding to the orthogonal projection onto the nullspace of A is
given by Pnull(A) = I −AT (AAT )−1A.
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2 Eigenvalues and Eigenvectors

Let A be an n × n real matrix. We say that λ ∈ C is an eigenvalue of A with corresponding
eigenvector u ∈ Cn\{0} if Au = λu. Note that the zero vector 0 ∈ Rn cannot be an eigenvector,
although zero can be an eigenvalue. Also, recall that given an n×n real matrix A, there are exactly
n eigenvalues (counting multiplicities).

The set of eigenvalues {λ1, . . . , λn} of an n × n matrix A is closely related to the trace and
determinant of A (denoted by tr(A) and det(A), respectively). Specifically, we have

tr(A) =

n∑
i=1

λi and det(A) =

n∏
i=1

λi.

These formulae can be established by considering the characteristic polynomial λ 7→ pA(λ) =
det(λI −A) of A. Moreover, we have the following results:

(a) The eigenvalues of AT are the same as those of A.

(b) For any c ∈ R, the eigenvalues of cI +A are c+ λ1, . . . , c+ λn.

(c) For any integer k ≥ 1, the eigenvalues of Ak are λk
1, . . . , λ

k
n.

(d) If A is invertible, then the eigenvalues of A−1 are λ−1
1 , . . . , λ−1

n .

2.1 Spectral Properties of Real Symmetric Matrices

The Spectral Theorem for Real Symmetric Matrices states that an n × n real matrix A is
symmetric iff there exists an orthogonal matrix U ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such
that

A = UΛUT . (2)

If the eigenvalues of A are λ1, . . . , λn, then we can take Λ = diag(λ1, . . . , λn) and ui, the i–th column
of U , to be the eigenvector associated with the eigenvalue λi for i = 1, . . . , n. In particular, the
eigenvalues of a real symmetric matrix are all real, and their associated eigenvectors are orthogonal
to each other. Note that (2) can be equivalently written as

A =

n∑
i=1

λiu
i(ui)T ,

and the rank of A is equal to the number of non–zero eigenvalues.
Note that the set of eigenvalues {λ1, . . . , λn} of A is unique. Specifically, if {γ1, . . . , γn} is

another set of eigenvalues of A, then there exists a permutation π = (π1, . . . , πn) of {1, . . . , n} such
that λi = γπi for i = 1, . . . , n. This follows from the fact that the eigenvalues of A are the solutions
to the characteristic polynomial

det(λI −A) = 0.

On the other hand, the set of unit–norm eigenvectors {u1, . . . , un} of A is not unique. A simple
reason is that if u is a unit–norm eigenvector, then −u is also a unit–norm eigenvector. However,
there is a deeper reason. Suppose that A has repeated eigenvalues, say, λ1 = · · · = λk = λ̄ for some
k > 1, with corresponding eigenvectors u1, . . . , uk. Then, it can be verified that any vector in the
k–dimensional subspace L̄ = span{u1, . . . , uk} is an eigenvector of A with eigenvalue λ̄. Moreover,
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all the remaining eigenvectors are orthogonal to L̄. Consequently, each orthonormal basis of L̄
gives rise to a set of k eigenvectors of A whose associated eigenvalue is λ̄. It is worth noting that if
{v1, . . . , vk} is an orthonormal basis of L̄, then we can find an orthogonal matrix P k

1 ∈ Rk×k such
that V k

1 = Uk
1P

k
1 , where Uk

1 (resp. V k
1 ) is the n × k matrix whose i–th column is ui (resp. vi), for

i = 1, . . . , k. In particular, if A = UΛUT = V ΛV T are two spectral decompositions of A with

Λ =


λi1In1

λi2In2

. . .

λilInl

 ,

where λi1 , . . . , λil are the distinct eigenvalues of A, Ik denotes a k × k identity matrix, and n1 +
n2 + · · ·+ nl = n, then there exists an orthogonal matrix P with the block diagonal structure

P =


Pn1

Pn2

. . .

Pnl

 ,

where Pnj is an nj × nj orthogonal matrix for j = 1, . . . , l, such that V = UP .
Now, suppose that we order the eigenvalues of A as λ1 ≥ λ2 ≥ · · · ≥ λn. Then, the Courant–

Fischer theorem states that the k–th largest eigenvalue λk, where k = 1, . . . , n, can be found by
solving the following optimization problems:

λk = min
w1,...,wk−1∈Rn

max
x ̸=0,x∈Rn

x⊥w1,...,wk−1

xTAx

xTx
= max

w1,...,wn−k∈Rn
min

x ̸=0,x∈Rn
x⊥w1,...,wn−k

xTAx

xTx
. (3)

2.2 Properties of Positive Semidefinite Matrices

By definition, a real positive semidefinite matrix is symmetric, and hence it has the properties
listed above. However, much more can be said about such matrices. For instance, the following
statements are equivalent for an n× n real symmetric matrix A:

(a) A is positive semidefinite.

(b) All the eigenvalues of A are non–negative.

(c) There exists a unique n× n positive semidefinite matrix A1/2 such that A = A1/2A1/2.

(d) There exists an k × n matrix B, where k = rank(A), such that A = BTB.

Similarly, the following statements are equivalent for an n× n real symmetric matrix A:

(a) A is positive definite.

(b) A−1 exists and is positive definite.

(c) All the eigenvalues of A are positive.

(d) There exists a unique n× n positive definite matrix A1/2 such that A = A1/2A1/2.
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Sometimes it would be useful to have a criterion for determining the positive semidefiniteness of a
matrix from a block partitioning of the matrix. Here is one such criterion. Let

A =

[
X Y

Y T Z

]

be an n× n real symmetric matrix, where both X and Z are square. Suppose that Z is invertible.
Then, the Schur complement of the matrix A is defined as the matrix SA = X − Y Z−1Y T . If
Z ≻ 0, then it can be shown that A ⪰ 0 iff X ⪰ 0 and SA ⪰ 0. There is of course nothing special
about the block Z. If X is invertible, then we can similarly define the Schur complement of A as
S′
A = Z − Y TX−1Y . If X ≻ 0, then we have A ⪰ 0 iff Z ⪰ 0 and S′

A ⪰ 0.

3 Singular Values and Singular Vectors

Let A be an m × n real matrix of rank r ≥ 1. Then, there exist orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n such that
A = UΛV T , (4)

where Λ ∈ Rm×n has Λij = 0 for i ̸= j and Λ11 ≥ Λ22 ≥ · · · ≥ Λrr > Λr+1,r+1 = · · · = Λqq = 0 with
q = min{m,n}. The representation (4) is called the Singular Value Decomposition (SVD)
of A; cf. (2). The entries Λ11, . . . ,Λqq are called the singular values of A, and the columns of U
(resp. V ) are called the left (resp. right) singular vectors of A. For notational convenience, we
write σi ≡ Λii for i = 1, . . . , q. Note that (4) can be equivalently written as

A =
r∑

i=1

σiu
i(vi)T ,

where ui (resp. vi) is the i–th column of the matrix U (resp. V ), for i = 1, . . . , r. The rank of A is
equal to the number of non–zero singular values.

Now, suppose that we order the singular values of A as σ1 ≥ σ2 ≥ · · · ≥ σq, where q =
min{m,n}. Then, the Courant–Fischer theorem states that the k–th largest singular value σk,
where k = 1, . . . , q, can be found by solving the following optimization problems:

σk = min
w1,...,wk−1∈Rn

max
x ̸=0,x∈Rn

x⊥w1,...,wk−1

∥Ax∥2
∥x∥2

= max
w1,...,wn−k∈Rn

min
x ̸=0,x∈Rn

x⊥w1,...,wn−k

∥Ax∥2
∥x∥2

. (5)

The optimization problems (3) and (5) suggest that singular value and eigenvalue are closely related
notions. Indeed, if A is an m× n real matrix, then

λk(A
TA) = λk(AA

T ) = σ2
k(A) for k = 1, . . . , q,

where q = min{m,n}. Moreover, the columns of U and V are the eigenvectors of AAT and ATA,
respectively. In particular, our discussion in Section 2.1 implies that the set of singular values
of A is unique, but the sets of left and right singular vectors are not. Finally, we note that the
largest singular value function induces a matrix norm, which is known as the spectral norm and
is sometimes denoted by

∥A∥2 = σ1(A).
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Given an SVD of an m× n matrix A as in (4), we can define another n×m matrix A† by

A† = V Λ†UT ,

where Λ† ∈ Rn×m has Λ†
ij = 0 for i ̸= j and

Λ†
ii =

{
1/Λii for i = 1, . . . , r,

0 otherwise.

The matrices A and A† possess the following nice properties:

(a) AA† and A†A are symmetric.

(b) AA†A = A.

(c) A†AA† = A†.

(d) A† = A−1 if A is square and non–singular.

The matrix A† is known as the Moore–Penrose generalized inverse of A. It can be shown that
A† is uniquely determined by the conditions (a)–(c) above.

References

[1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.

[2] G. Strang. Introduction to Linear Algebra. Wellesley–Cambridge Press, Wellesley, Mas-
sachusetts, third edition, 2003.

[3] G. Strang. Linear Algebra and Its Applications. Brooks/Cole, Boston, Massachusetts, fourth
edition, 2006.

9


