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ABSTRACT

This paper considers robust transmit beamforming for skt
multi-input single-output (MISO) downlink transmissiomhere im-
perfect channel state information (CSl) is assumed at the &i@tion
(BS). The imperfect CSl is captured by a moment-based raretem
ror model, in which the BS knows only the mean and covariarice o
each CSl error, but not the exact distribution. Under thisranodel,
we formulate a distributionally robust beamforming (DRB)iplem,
in which the total transmit power at the BS is to be minimizetile
each user’s SINR outage probability, evaluated wanidistribution
with the given mean and covariance, is kept below a giverstiaiel.
The DRB problem is a semi-infinite chance-constrained @bl
By employing recent results in distributionally robustiagtation,
we show that the DRB problem admits an explicit conic refdemu
tion, which can be conveniently turned into a convex optatian
problem after semidefinite relaxation (SDR). We also carsitie

the errors are adversarially chosen from some (boundedivhéath
results in worst-case robust beamformer designs [6—9]hitnap-
proach, one does not utilize any distributional propertiethe er-
rors. The second assumes that the errors follow a certalyr ful
specified distribution, whose properties are then exmlditeyield
outage-constrained robust beamformer designs [10—14falctice,
however, neither of these approaches is satisfactory, agpially
are able to obtain some, but not complete, information atimier-
ror distribution through channel estimates. This raisesrtatural
question of whether an alternative, tractable model fousbbeam-
former design can be devised to better account for the dleiths-
tributional information of the CSl error.

In this paper, we depart from the aforementioned error mod-
els and consider anothenoment-basedandom CSI error model,
in which the BS has no a priori knowledge of the error distitou

case where the mean and covariance are not perfectly knoven. Vexcept for its first and second-order statistics. Such a sdeoti-

show that the resulting DRB problem still admits a conic refola-
tion and can be approximately solved using SDR. The robsstog
the proposed designs are demonstrated by numerical siongdat

Index Terms— robust transmit beamforming, distributionally
robust optimization, semidefinite relaxation

1. INTRODUCTION

Owing to its simplicity and capability of leveraging systgrarfor-
mance, transmit beamforming, a spatial diversity techmipas been
widely employed in wireless communications recently. lis {ha-
per, we consider multiuser multi-input single-output (MSdown-
link transmission using transmit beamforming. Under thagisg,
a classical beamformer design formulation is to minimize tital
transmit power at the base station (BS) while providingaiargual-
ity of service (QoS), e.g., the signal-to-interferencasphoise ratio
(SINR), for each user. In the last decade, different appreatave
been proposed to tackle this problem, such as the uplinkzkioky
duality approach [1,2], the semidefinite relaxation (SDfpraach [3,

4] and the second-order cone (SOCP) approach [5]. It shoald b

noted, however, that all these approaches assume perfachah
state information (CSI) at the BS, which in practice may net b
possible because of channel estimation and/or quantizatiers.
In view of this, there has been growing interest in beamfordees
signs that are robust to CSI errors. Currently, there arerham
approaches to designing such beamformers. The first asshates
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vated by the observation that it is relatively easy for a BBaee ac-
curate estimates of the error mean and covariance from adated
channel estimates. Under this moment-based error modelomwe
mulate a newdistributionally robustbeamforming (DRB) problem,
in which the beamformers are designed to minimize the toaalst
mit power at the BS, while the SINR outage probability of easér,
evaluated w.r.tanydistribution with the given mean and covariance,
is kept below a given threshold. The DRB problem is a semiritefi
chance-constrained optimization problem, which is gdhehnard to
solve. Nevertheless, by employing recent results in distionally
robust optimization [15-17], we show that the seeminglylieha-
ing DRB problem actually admits an explicit conic reformntida,
which can then be conveniently approximated using the SBR-te
nique [18]. We also consider the DRB problem for the case eher
the mean and covariance are not perfectly known. We showihbat
resulting DRB problem still admits a conic reformulatiordaran be
approximately solved using SDR.

Before we present our setup and results, let us mention some
related works. The MISO downlink transmit beamforming peoin
has been extensively studied in the past; see, e.g., [1Zhangfer-
ences therein. Some representative works include [2—3héocase
of perfect CSI at the BS, and [6—13] for the case of imperfest. C
The robust beamformer design problem can also be tackled) usi
the sample average approximation approach developed netkat
work [19]. Such an approach uses channel estimates to apyatex
the outage probability and hence does not require any knigelef
the error distribution. However, the size of the resultipgjmization
problem can be huge, which limits the practicality of therapgh.



2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a multiuser downlink transmission, where a basgost
(BS) simultaneously send&” data streams td< users with each
data stream exclusively for one user. The BS is equipped Mitm-
tennas and all the receivers have a single antenna, i.eQMt8vn-
link. Assuming that transmit beamforming is employed at B8
the transmit signak:(¢) € C* at timet may be expressed as

x(t) =0 wisi(t), 1)

wheres; (t) is the data stream for uséwith unit power; i.e[E[s; (¢)]
1,V i, andw; € C is the beamforming vector for thah data
stream. Assuming frequency-flat and slow fading channkésyé-
ceived signal; (¢) at theith user is given by

yi(t) = hi'x(t) + ni(t), i € K, 2

wherelC 2 {1,...,K}, h; € C" is the channel vector from the
BS to theith user, andn;(t) ~ CN(0,0?) is the additive white
Gaussian noise with mean zero and variang¢e According to (1)
and (2), the received SINR at thin user may be calculated as

|h w;|?
Zj;éi |hffw; 2 + o7

Due to imperfect channel estimation and/or feedback ertioes
BS usually has only some rough knowledgehef To describe the
imperfect CSl at the BS, we consider the following random &8&ir

model: B

h; =h; + Ah;, i€k, 4
where h; is the presumed CSI at the BS, andh; is the associ-
ated CSI error, which is randomly distributed with megane C%
and covarianc&; € HY . Different from [10-13], herein we do
not impose any particular distribution (such as Gaussiamdorm
distribution) onAh;. Instead, we allonAh; to be arbitrarily dis-
tributed as long as its distribution, denotedAy;, has mearg; and
covariancex;; i.e.,

SINR; & Vielk.

®)

Ah; ~ AF; € 9(£:, %)), (%)

where2(¢&;,3;) denotes the set of distributions with megnand
covarianceX;. We assume for now th&t and3; are known, and
the case of imperfeq; and32; will be considered in Sec. 4. The
error model (5) is motivated by the fact that it is more cotweh
and easier for the BS to have the statistics rather than theate
distribution of the CSI error from the accumulated CSI eatis.

Under the above system model, we consider the following dis-

tributionally robust beamforming (DRB) problem:

min 50 | (6a)
wy,..., w e €CN
s.t. min ]P)AhiwAFi {S|NRZ > ’Yi} >1—¢, Vi, (6b)

AF,€2(€:,%;)

wherev; > 0,V i € K is a given SINR threshold required by user
i, and0 < ¢; < 1 specifies the SINR outage probability; i.e., the
chance of theth receiver’s SINR falling belowy; in the presence
of CSl error. Clearly, the DRB problem (6) is a chance-caised
problem, which is generally difficult to solve. In particyléhe dif-
ficulty of (6) mainly arises from the following two aspectsirsF,
the outage probabilitY’an;~ar, {SINR; > 7;} generally has no
closed form. Even if it has, the resulting constraint is lijkeo
be non-convex. Secondly, the s8(¢&;, X;) typically contains in-
finitely many distributions, which gives rise to an infinitember of
chance constraints in (6b). Therefore, the DRB problenpés)seis

a semi-infinite chance-constrained optimization problem.

Nevertheless, in the next section, we will develop a trdetap-
proach to problem (6) by employing recent results in distidgnally
robust optimization [15-17] and the SDR technique [18]. Tdre
mer gives an explicit conic reformulation of (6b), while tlater
provides us with a tractable approach to obtaining an (aqmate)
solution to (6).

3. ATRACTABLE APPROACH TO THE DRB PROBLEM

For ease of exposition, let us den®é = wﬂgf, Vi € K. Clearly,
it follows from (4) and (5) thak; ~ F; € Z(h; + &, ;). Hence,
the constraint (6b) can be expressed as

min

Ph,~r {Li(hi, {Wi}iex) <0} > 1—¢;,Vi, (7)

Fie?(hi+£i,%)

WhereLZ—(hi7 {Wl}lelc) = hLH(Zk¢7, Wi — fy;le)hL + 0'2-2.
Next, we show that the semi-infinite chance constraint ()it
an explicit conic reformulation. Specifically, we have

Theorem 1. The constrain{(7) is equivalent to

0> i i Z‘ilTI‘ Q,M; 8a
Z a0 Bi+e ( ) (8a)
Wi ='W 0

st. M; = Fk# ST . ﬂ} ., (8b)
M; > 0, (8c)

(B Ny NH p .
forall i € KC, whereQ2; = [22 + (h(%jfzéz()h}} +&i) hi —f&} .
Proof. See the Appendix. [ |

Invoking Theorem 1, we can express the DRB problem (6) as

. K
min - Tr(W; 9a
{Wiwihiex 2171 (W) (%)
st. min  Bi+e 'Tr(QM,;) <0, VieK, (9b)
(B, M;)EZ;

W; = wiwl’, VieK, (9c)

wherez; £ {8; € R,M; € HY*' : (8b)and (8c) hold}. It
is easy to see that (9b) holds if and only if there exists ailiéas
point (3, M;) € Z; such that3; + e, ' Tr($:M;) < 0. Thus,
problem (9) can be rewritten as

. K

in - Tr(W;
{Wi,wi,81,M }ex Zz_l (W)
s.t. ﬂl + EiilTr(QiMi) <0,VieK,

(8b)— (8c)and (9¢), Vi € K.

(10)

Thus far, we have derived an equivalent reformulation of (6)
However, problem (10) is still non-convex due to the nonvesn
constraint (9c). To circumvent this difficulty, we resorttte SDR
approach. Specifically, we replad¥; = w;w}? with W; > 0 and
drop the non-convex rank-one constraint¥df to get the following
convex relaxation of (10):

. K
{Wzﬁrzr}}\l/}z}le)c 22:1 Te(W2)

s.t. ﬂl =+ EiilTI‘(QZ‘Mi) <0,Vie K:7
Wk —’y;lWi 0

() ol — B
M; =0, W, =0, VieK.

()

M; ~ Zk#i s Vi € ’C,



Problem (11) is a semidefinite program, which can be effitient The proof of Theorem 2 is omitted due to page limit. A key step
solved with off-the-shelf optimization softwares, suchCGéX [20] in proving Theorem 2 is to apply Lemma 1 in [16]. Now, we replac
andSeDuM [21]. Let {W/ };ci be an optimal solution to (11). If (14b) with (15) and again apply SDR to obtain the followingneex
rank(W;*) < 1, Vi € K, then an optimal solutiofw; };cx for relaxation of (14):

the DRB problem (6) can be obtained through eigen-decortiposi

Otherwise, we can perform Gaussian randomization to genara W, min S, Te(Wh) (16a)
approximate solution to (6). Readers are referred to [1i8jfore de- QZ{,’qijJ;’}ie,C
tails on Gaussian randomization. Curiously, our simutatesults in .

. ’ Ao+t v —vie; <0, VieK, 16b
Sec. 5 reveal that the optim®;*, Vi € K of (11) returned byCVX sberit ity VE_ - '€ ) (160)
is always rank-one. Similar observations have also beerioneal (15b) — (15d)satisfied, Wi = 0, Vi € K, (16c)
in [9, 12] when SDR is applied to handle other robust beamiiogm . . . .
:je[signs] W 'S appil . Remark.In (13), one still needs to determine an appropriate pair of

(73,1, 7i,2) such that the true distribution is included in the uncer-
tainty set (12). In practice, the determination(ef ;, 7;2) can be
4. DRB UNDER IMPERFECT MEAN AND COVARIANCE done using a data-driven approach, which gives a way tordéter
. (73,1, 71,2) and the resulting confidence level that the uncertainty set
In the last section, we have developed an SDR approach toRl2 D 12y contains the true distribution; see [16,17]. More tietn this

problem (6) when the meay and covarianc&:; of Ah; are per-  gata_driven approach will be discussed in the full paper.
fectly known at the BS. In practice, however, bgthand 3; may

subject to some uncertainty. To accommodate this, we gérethe
previous CSI error model (5) by incorporating the uncettaom &; 5. SIMULATION RESULTS AND CONCLUSIONS

andX; as follows [16, 17]:
[ ] In this section, we demonstrate the efficacy of the proposbdst

Ah; ~ AF; € 2,3, Ti1,Ti2), Vi€ K. (12) designs using Monte-Carlo simulations. The simulatiotiregt are
_ N _ ~ ) _ as follows: The number of antennas at the BSVis= 5. There
Here,{; € C andX; < HY, are the estimated mean and covari- gre ' = 3 users and the noise at each user has unit variance, i.e.,

ance ofAh;; 7,1 > 0 andr; 2 > 1, wherei € I, are given con- 02 = ... = g% = 1. For simplicity, we set; = 0, &; = 0.0021,
stants; 7 (&:, 3, 7,1, 74,2) denotes the set of distributions &fh: = ¢, = ¢ 7,1 = 0.5and7» = 1.5 foralli € K. All the
such that results were averaged over 100 feasible channel realizatio
FAHg—1 F In the first example, we consider the DRB problem (6) and com-
il — & ; i) — &) < T, : ) .
{ (E[AR] _€ ) (]E_[AHh I-¢€ )7* Té,1 (132) pare our proposed robust design (cf. (11)) with the Berngigie
E[(Ah; — &)(Ahi — &)"] 2 Ti2 X (13b)  inequality design in [12]. The Bernstein-type design deeith a

different SINR outage-constrained beamforming problefrens the
channel error distribution is assumed to be complex Ganissa,

by replacingZ(&;, ;) with the singleton{CA/ (¢;,3;)} in (6b).
Fig. 1 plots the average transmit power against the SINRsltiale

~ for e = 0.1 and0.2. From the figure, we see that the Bernstein-
type design yields lower power consumptions than the DRBydes
This is expected because after replacingg;, 3;) with the single-
ton {CN(&;,3;)} in (6b), the Bernstein-type design actually deals

Roughly speaking, (13a) means tlatlies in an ellipsoid of size
7.1 centered at the estimage, and (13b) requires that the centered
second-moment matrik[(Ah; — &;)(Ah; — &)™ should have a
similar structure aX; [16].

With the above uncertainty model, we formulate the follogvin
distributionally robust beamforming problem with momemicar-
tainty (DRB-MU):

min Zfil l[ws |2 (14a) Wi.'[h a relaxed problem of (6). Hovyever, such a replacemelﬂlax-
w1,...,w g ECN - ation could also make the resulting Bernstein-type saiutiolate
st min Pan,~ar {SINR; > v} > 1 —¢;, Vi the distributionally robust constraint (6b); i.e., the atecase out-
AFE_@( £.5, o B B age probability associated with the Bernstein-type softittould be
‘ Ti,17Ti 2 larger than the threshold To verify this, Table 1 shows the worst-

(14b)  case outage probability of the two methods for a target 0.1.
Clearly, the Bernstein-type design cannot satisfy the taoaise out-
%ge probability requirement, while the proposed DRB desigm.
Moreover, the results in Fig. 1 and Table 1 reveal that thibligion
achieving the minimum in (6b) should not be a complex Gauassia

The DRB-MU problem appears to be more challenging than th
DRB problem (6). Nevertheless, the next theorem shows Heat t
chance constraint (14b) also admits an explicit conic retdation.

Theorem 2. The constrain{14b)is equivalent to In addition, from our extensive numerical tests, we founat the
optimal solution to (11) returned BVX is always rank-one, which
0> min ri +ti +vi —vie; (15a)  implies that solving the SDR (11) automatically gives usdpgmal
rirteQudim beamformer of (6) for the tested scenarios.
st { gz qi/2 } =0, 1;,>0, Q;*0, (15b) The second example considers thg DRB-MU probnlem (14). We
q;" /2 Tituvi compare the proposed DRB-MU design (cf. (16)) with DRB de-

Q: q./2 Wi — Wi/ sign (12). Nptice that theiresullt of DRB i§ obFained by sqijv(ﬂ.ll).
|:qH/2 7,{ = Zk# 0 / 52| (15¢)  with the estimated:; and%; without considering the uncertainties
! ! associated with the mean and covariance. Fig. 2 and Tablev2 sh

VETlIE (g +2Qi) | + el i)
+1r(Q; (T_ .5+ ﬂ'ﬂH) <t (15d) 1The worst-case SINR outage probability for Bernstein-tgtpsign is ob-

tained by fixing{ W };c in (11) at the Bernstein-type design solution and
B B searching for the minimuna such that problem (11) is feasible. The latter
forall i € KC, wherefi; £ h; + &, Vi e K. can be done by performing bisection an



Table 1: Achieved average SINR outage probability of DRB andTable 2: Achieved average SINR outage probability of DRB-MU

Bernstein with target = 0.10

. SINR thresholdy (dB)
Algorithm =g 17 7 13
DRE | 0.10] 0.10 | 0.10 | 0.10 | 0.10 | 0.10
Bernstein | 0.30 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31

respectively the average transmit power and the achievestwase
SINR outage probability of the two designs, when we increbse
SINR requirementy. Similar to Fig. 1 and Table 1, we see that

while DRB consumes less transmit power than DRB-MU, DRB can-

not fulfill the worst-case SINR-outage-probability reguirent. By
contrast, DRB-MU can always meet the outage probabilityireg
ment. In addition, we also found that the optimal solutioteated

from the SDR (16) is always rank-one. Hence, the result of DPRB

MU in Fig. 2 actually is already optimal for problem (14).

To conclude, we have considered two types of distributignal
robust transmit beamforming problems and developed tobectp-
proximate solutions for both of them by employing robustopta-
tion methodology and SDR technique. Curiously, our extensi-
merical results reveal that the proposed SDRs for the ceresictwo
robust designs are always tight. As a future work, it wouldrer-

esting to analyze why SDR performs so well in this context.
100 T T
9ok —6—DRB (£=0.1)
—+— Bernstein (¢ = 0.1)
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Figure 1: SINR threshold vs. the average transmit power under
perfect mean and covariance.
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Figure 2: SINR threshold vs. the average transmit power underM

imperfect mean and covariance.

6. APPENDIX

The proof of Theorem 1 follows from [15]. To start, we need the

following two lemmas:

Lemma 1 ( [15, Theorem 2.2].) Let f : C¥ — R be a continu-
ous function. Suppose th@{n) is either concave or (possibly non-

and DRB with target = 0.10

. SINR thresholdy (dB)
Algorithm 3 5 Z 3 T 13
DRB-MU | 0.10 | 0.10| 0.10 | 0.10 | 0.10| 0.10

DRB 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.15

concave) quadratic im. Then the following equivalence holds

sup  CVaRe(f(n)) <0
)

Fe9(p,= (17)
inf
Fe9(p,=
where0 < e < 1 and CVaRc(f(n)) is the Conditional Value-at-

Risk functional given by

CVaR.(f(n)) = inf {8+ "Er[(f(n) - #)"]}.

— )in{f(n)é()}zl—e,

(18)

Lemma 2 ([15, Lemma A.1]) Letf : CY — R be a measurable
function, and define the worst-case expectatignas

ewc = sup EF[(f(n))+]
FeD(p,=
Then,
Owe = inf Tr(QM)
M cHN+1 M >0
st. [ UM 0", 1" > f(n), v eC”,
S+ pptl

whereQ) = { Mﬁ“ ’f] .

Equipped with the above two lemmas, we are now ready to
present the proof. Specifically, by noticing that(h;, {W;}icxc)

is quadratic inh; [cf. (7)], we invoke Lemma 1 to get
(7) — sup CVaREi (Lz(h“ {Wl}lelc)) <0,Vie K.
Fie2(hi+£:,%;)
(19)
According to the definition o€VaR.(-) in (18), we have
sup CVaRe, (Li(hi, {Wi}iex))
F,e2(h;+&;,%;)

. 1
= sup inf {ﬂi + =Ep,[(Li(hi, {Wi }iex) — ﬂi)+]}
Fi€D(hi+€;,5,;) Pi€R €
1
= inf <G+ — sup Ep, [(Li(hi, {Wi }iex) — 8)F] 4
BiER € FicD(h;+€:,5;) S }

(20)
In the last equality of (20), we have interchanged the mazatimn
and minimization operations, which can be justified by alsastic
saddle point theorem due to Shapiro and Kleywegt [22] (sse al
[15]). It then follows from Lemma 2 that the supremum in (28) i
equal to
inf
;EHN+L M, -0

Tr(92; M;) (21a)

st [hi" M (R, 117 > Li(hi, {Wi}iex), ¥V hi € CV, (21b)
whereQ?; is defined in (8). Sincé,;(h;, {W,}.cx) is quadratic in
h;, itis not hard to see that (21b) holds if and only if
Wy — ’y;lWi 0

OT O',L-2 —Bl ’

Finally, by replacing (21b) with (22) and making using of Y Ehd
(20), we arrive at the desired the result in (8).

M; » Dhti (22)
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