
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 1

Online Nonlinear AUC Maximization for
Imbalanced Datasets

Junjie Hu, Haiqin Yang Member, IEEE, Michael R. Lyu Fellow, IEEE, Irwin King Senior Member, IEEE,
and Anthony Man-Cho So Member, IEEE

Abstract—Classifying binary imbalanced streaming data is a
significant task in both machine learning and data mining. Pre-
viously, online AUC (area under the ROC curve) maximization
has been proposed to seek a linear classifier. However, it is not
well suited for handling nonlinearity and heterogeneity of the
data. In this work, we propose the kernelized online imbalanced
learning (KOIL) algorithm, which produces a nonlinear classifier
for the data by maximizing the AUC score while minimizing a
functional regularizer. We address four major challenges that
arise from our approach. First, to control the number of support
vectors without sacrificing the model performance, we introduce
two buffers with fixed budgets to capture the global information
on the decision boundary by storing the corresponding learned
support vectors. Second, to restrict the fluctuation of the learned
decision function and achieve smooth updating, we confine the
influence on a new support vector to its k-nearest opposite
support vectors. Third, to avoid information loss, we propose an
effective compensation scheme after the replacement is conducted
when either buffer is full. With such a compensation scheme,
the performance of the learned model is comparable to the
one learned with infinite budgets. Fourth, to determine good
kernels for data similarity representation, we exploit the multiple
kernel learning (MKL) framework to automatically learn a set of
kernels. Extensive experiments on both synthetic and real-world
benchmark datasets demonstrate the efficacy of our proposed
approach.

Index Terms—Imbalanced data, AUC maximization, Kernel,
Budget

I. INTRODUCTION

IMBALANCED streaming data are prevalent in various
real-world applications, such as network intrusion detec-

tion [41], purchasing or clicking analysis for customer relation-
ship [12], [16], etc. These data exhibit the following prominent
characteristics:

A preliminary version of this paper has appeared in the Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI-15) [21]. Manuscript
was received on Dec. 09, 2014; revised Jun. 25, 2015; accepted Sept. 12,
2016. Date of publication xx xx, 201x; date of current version xx x, 201x.
The work described in this paper was supported by the National Natural
Science Foundation of China (Project No. 61332010), the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project
No. CUHK 14203314 and CUHK 415113), and 2015 Microsoft Research
Asia Collaborative Research Program (Project No. FY16-RES-THEME-005).

J. Hu is a graduate student in the Language Technologies Institute at
Carnegie Mellon University.

H. Yang is the corresponding author and is with the Department of Comput-
ing, Hang Seng Management College, Hong Kong. Email: hqyang@ieee.org.

I. King and M. R. Lyu are with Shenzhen Key Laboratory of Rich
Media Big Data Analytics and Applications, Shenzhen Research Institute, The
Chinese University of Hong Kong (CUHK), and the Department of Computer
Science and Engineering, CUHK, Hong Kong.

A. M.-C. So is with the Department of Systems Engineering and Engineer-
ing Management, CUHK, Hong Kong.

1) Huge volume: The volume of the data increases tremen-
dously, from Petabyte to Exabyte, or even Zettabyte.

2) High velocity: They are streaming data, generated in sec-
onds or microseconds, from various online applications.
The data may change dynamically.

3) Extreme imbalance: The imbalanced ratio can be 100 : 1,
or even 10, 000 : 1 for a standard binary classification task,
where the important class is very rare due to the nature of
human attention.

4) Nonlinearity and heterogeneity: Only nonlinear classifier-
s can produce a more accurate decision boundary; see
Fig. 1(a) for an example. The heterogeneity poses difficulty
in defining data similarity.

Learning binary classification models from imbalanced data
has become an important research topic in both machine
learning and data mining [3], [30], [45], [49]. In the literature,
researchers aim at maximizing the area under the ROC curve
(AUC) instead of accuracy because the AUC score is effective
in measuring the performance of classifiers for imbalanced da-
ta [1], [2], [17], [19], [23]. To deal with imbalanced streaming
data, researchers have proposed the online AUC maximization
approach [15], [55]. However, the resulting algorithms only
produce a linear classifier and are not well suited for handling
the nonlinearity and heterogeneity of the data.

In this work, we focus on seeking an online nonlinear
classifier with kernels—a less explored but important research
topic in the literature. There are three major obstacles to this
approach. First, the learned kernel-based estimator becomes
more complex as the number of samples increases [27],
[52]. Without a suitable stream oblivious strategy, the num-
ber of learned support vectors may grow to infinity, which
is obviously undesirable for large-scale applications. In the
literature, various refinement techniques have been proposed.
They include projection-based methods [9], [13], [32], fixed-
budget strategies [4], [10], and sparse kernel learning via
weighted sampling [53]. However, extending the above meth-
ods to tackle imbalanced data seems to be a non-trivial task.
Second, fluctuation due to outliers is unavoidable in online
learning [6], [25], [35]. Thus, additional effort is required to
achieve smooth updating. Third, the kernel representation is
effective in capturing nonlinearity and heterogeneity of the
data [27], [21]. However, it is not clear how to effectively
determine a good kernel representation.

To overcome the above obstacles, we propose the Kernelized
Online Imbalanced Learning (KOIL) algorithm with fixed
budgets to achieve online nonlinear AUC maximization. We
highlight our contributions as follows:

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 2

(a) (b) (c)

Fig. 1. Illustration of the KOIL algorithm with k-nearest neighbor confinement and the extended updating policy on a synthetic data in 2-D space. Figure 1(a)
shows the decision function in black solid curve, the new instance in big •, the positive samples in small ×’s, the negative samples in small •’s, the positive
support vectors in big +’s, and the negative support vectors in big ◦’s. It is shown that the decision function learned by our proposed KOIL algorithm with
the extended FIFO updating policy can classify the data well. Figure 1(b) zooms into the local region of a new instance zt and shows how its influence
is being controlled. Here, it can only affect its k-nearest opposite support vectors (big +’s), where k = 5. Obviously, restricting the influence of the new
instance to a local region is safe since it will not affect those positive support vectors that are far away from it. Figure 1(c) shows the removed support vector
xr in the dotted arrow, the compensated support vector xc in the solid arrow, and the angle θ between them. By the two assumptions k(x,x) ≤ X2 and

k(xr,xc) ≥ ξ22 , we have ‖φ(xc)‖H cos θ ≥ ξ22
X

, where φ(xc) = k(xc, ·).

1) To better control the computational cost, we fix the budget
(buffer size) of the buffer for each data class in the KOIL
algorithm to store the learned support vectors.

2) We propose a smooth update rule by confining the
influence on a new instance to its k-nearest opposite
support vectors; see Fig. 1(b) for an example. Our KOIL
algorithm can thus limit the effect of outliers.

3) We design an effective scheme to compensate for the
loss when a support vector is removed. The idea is to
transfer the weight of the removed support vector to its
closest support vector in the buffer; see Fig. 1(c) for
an illustration. As a result, the learned model typically
approaches the one learned with infinite budgets.

4) We exploit the online multiple kernel learning (MKL)
framework to automatically determine a good kernel
representation. Specifically, we try to learn multiple ker-
nel classifiers and the corresponding linear combination
coefficients from a pool of predefined kernels in an online
mode. Different from existing online MKL algorithm-
s [22], our KOIL algorithm focuses on the pairwise loss
function and discounts the weights of multiple kernel
classifiers when there are errors. Empirical results show
that online MKL is effective in determining the kernel
representation.

II. RELATED WORK

We review some prior work in closely related areas: ma-
chine learning from imbalanced data, online learning, and
multiple kernel learning.

Learning from imbalanced data is an important task in
machine learning and data mining [3], [30], [45]. Some algo-
rithms have been developed to train classifiers by maximizing
the AUC metric, such as Wilcoxon-Mann-Whitney statistic
optimization [48] and RankOpt [19]. Some investigations
extend SVM to optimize the AUC metric [2]. A general
framework for optimizing multivariate nonlinear performance
measures, such as AUC and F1, is proposed in [23]. Cost-
sensitive multilayer Perceptron is also proposed to improve

the discrimination ability of MLPs [3]. One major weakness
of these methods is that they train the model in the batch-
mode, which is inefficient when new training samples appear
sequentially.

Online learning algorithms are important as they can adap-
tively update the models based on new training samples.
The oldest and most well-known online learning algorithm
is the Perceptron [34]. Many variants have been proposed in
the literature [5], [14]. Some are inspired by the maximum
margin principle [8], [29], [54]. To learn from imbalanced data,
algorithms for online AUC maximization are proposed in [11],
[15], [55]. Several works have established generalization error
bounds for online learning algorithms with pairwise loss
functions [24], [44]. However, these algorithms only focus
on linear classifiers, which are not sufficient to capture the
heterogeneity and nonlinearity embedded in the data [50],
[51]. In the literature, various kernel-based online learning
algorithms have been proposed. They include online learning
algorithms in a reproducing kernel Hilbert space (RKHS) [10],
[27], [32], [39], online Gaussian Process [9], [18], [26], [38],
and kernelized recursive least-square algorithms [13], [42], etc.
A key challenge in online learning with kernels is that the
computational complexity scales with the number of training
samples. To tackle this challenge, various strategies have
been proposed, including projection-based methods [9], [13],
[26], [32], fixed-budget strategies [4], [10], and sparse kernel
learning via weighted sampling [53]. However, these strategies
aim at directly maximizing the accuracy and cannot handle
the task of imbalanced learning properly. Some other methods
adopt the strategy of projecting or deleting support vectors to
maintain the buffer size [9], [32], [42]. However, such strategy
could lead to unbounded support vectors or information loss.

The multiple kernel learning (MKL) framework is a well-
known and effective tool for kernel learning. It aims to com-
bine multiple kernels by optimizing the performance of kernel-
based learning methods (e.g., support vector machine) [33],
[40]. To attain good model performance, MKL with different

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 3

norm regularizers have been proposed [28], [47], [51]. Re-
cently, online MKL (OMKL) has been proposed to simultane-
ously learn multiple kernel classifiers and the corresponding
coefficients from a pool of predefined kernels in an online
mode [20], [22]. Similar ideas have been applied to solve
problems in image search and regression [36], [46]. However,
existing algorithms do not consider the task of imbalanced
learning.

In summary, all the aforementioned algorithms cannot han-
dle well the nonlinearity and heterogeneity in imbalanced
streaming data. This motivates us to seek for a nonlinear clas-
sifier for imbalanced data classification in the online training
mode.

III. KOIL FOR AUC MAXIMIZATION

A. Notations and Problem Definition

Throughout the paper, bold small letter, e.g., x, denotes a
vector. Letter in calligraphic font, e.g., X , indicates a set. We
use Rd to denote a d-dimensional Euclidean space and H to
denote a Hilbert space. The inner product of x and y on H is
denoted by 〈x,y〉H.

We are interested in the imbalanced binary classification
problem, where our goal is to learn a nonlinear decision
function f : Rd → R from a sequence of feature-labeled pair
instances {zt = (xt, yt) ∈ Z, t ∈ [T]}, where Z = X × Y ,
xt ∈ X ⊆ Rd, yt ∈ Y = {−1,+1}, and [T] = {1, . . . , T}.
Without loss of generality, we assume that the positive class is
the minority class while the negative class is the majority class.
We denote by N ỹ

t,k(z) the set of feature-labeled pair instances
that are the k-nearest neighbors of z and have the label of ỹ at
the t-th trial. Here, the neighborhood is defined by the distance
or the similarity between two instances; i.e., the smaller the
distance between or the more similar the instances, the closer
the neighbors. We define the index sets I+t and I−t to record
the indices of positive and negative support vectors at the t-
th trial, respectively. Moreover, for simplicity, we define two
buffers K+

t and K−t to store the learned information, namely
the weight and support vector, from the two classes at the t-th
trial, respectively:

K+
t .A={α+

i,t |α
+
i,t 6=0,i∈I+t }, K+

t .B={zi | yi=+1,i∈I+t },

K−
t .A={α−

i,t |α
−
i,t 6=0,i∈I−t }, K−

t .B={zi | yi=−1,i∈I−t }.

Here, αi,t denotes the weight of the support vector that first
occurred at the i-th trial and updated at the t-th trial. We fix the
budgets (the buffer sizes) to be the same; i.e., |I+t | = |I−t | =
N for all t.

At the t-th trial, our proposed KOIL algorithm computes a
decision function ft of the form

ft(x) =
∑
i∈I+t

α+
i,tk(xi,x) +

∑
j∈I−t

α−j,tk(xj ,x), (1)

where k : X × X → R is a predefined kernel [27]. The
corresponding weights and support vectors are stored in K+

t

and K−t , respectively. Then, given a new instance x, we
can predict its class by sgn(ft(x)), where ft encodes the
nonlinearity and heterogeneity of the data and is generally
an element of a RKHS H; i.e., ft(x) = 〈ft(·), k(x, ·)〉H for

Algorithm 1 Kernelized Online Imbalanced Learning (KOIL)
with Fixed Budgets

1: Input:
• penalty parameter C and learning rate η
• maximum positive budget N+ and negative budget
N−

• number of nearest neighbors k
2: Initialize K+.A = K−.A = ∅, K+.B = K−.B = ∅,
Np = Nn = 0

3: for t = 1 to T do
4: receive a training sample zt = (xt, yt)
5: if yt == +1 then
6: Np = Np + 1
7: [K−,K+, α] = UpdateKernel(zt,K−,K+, C, η, k)
8: K+ = UpdateBuffer(α, zt,K+, k,N+, Np)
9: else

10: Nn = Nn + 1
11: [K+,K−, α] = UpdateKernel(zt,K+,K−, C, η, k)
12: K− = UpdateBuffer(α, zt,K−, k,N−, Nn)
13: end if
14: end for

all x ∈ X , where k(x, ·) ∈ H [37]. In the following, we will
motivate and describe our strategy for updating ft.

B. Learning with Kernels for AUC Maximization

Given the positive dataset D+ = {zi|yi = +1, i ∈ I+} and
the negative dataset D− = {zj |yj = −1, j ∈ I−}, the AUC
metric for a kernel representation function f is calculated by

AUC(f) =

∑
i∈I+

∑
j∈I− I[f(xi)− f(xj) > 0]

|I+||I−|

= 1−
∑
i∈I+

∑
j∈I− I[f(xi)− f(xj) ≤ 0]

|I+||I−|
,

where I[π] is the indicator function; i.e., I[π] = 1 when π
is true and I[π] = 0 otherwise. It is clear that maximizing
AUC(f) is equivalent to minimizing

∑
i∈I+

∑
j∈I− I[f(xi)−

f(xj) ≤ 0]. Since the direct maximization of the AUC score
is an NP-hard problem [7], the indicator function is usually
replaced by a convex surrogate, which may yield sub-optimal
performance. A widely used surrogate is the pairwise hinge
loss function [15], [55]:

`h(f, z, z′) =
|y − y′|

2

[
1− 1

2
(y − y′)(f(x)− f(x′))

]
+

,

(2)
where [v]+ = max{0, v}. This gives rise to the problem of
regularized minimization as follows:

L(f) =
1

2
‖f‖2H + C

∑
i∈I+

∑
j∈I−

`h(f, zi, zj). (3)

Here, 1
2‖f‖

2
H is a regularization term that controls the func-

tional complexity and C > 0 is a penalty parameter associated
with the training errors.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 4

C. Online AUC Maximization by KOIL

Following the derivation in [21], we update the kernel
decision function by minimizing the following localized in-
stantaneous regularized risk of AUC associated with the arrival
of a new instance zt:

L̂t(f) := L̂(f, zt) =
1

2
‖f‖2H + C

∑
zi∈N−yt

t,k (zt)

`h(f, zt, zi),

(4)
where k is a predefined constant. Two remarks are in order:
• The risk defined in Eq. (4) measures the pairwise losses

between zt and its k-nearest opposite support vectors in the
buffer. This can resolve the scalability issue and is different
from NORMA [27], whose risk only measures the predictive
error of the new instance.

• The advantage of our approach is twofold. First, two buffers
with relatively large budgets can keep track of the global in-
formation on the decision boundary. Second, by considering
the k-nearest opposite support vectors of the new instance,
we can utilize the local information around the new instance
and avoid the fluctuation of the decision function.
Algorithm 1 shows the KOIL framework, which consists

of two key components: UpdateKernel (Algorithm 2) and
UpdateBuffer (Algorithm 3).

Algorithm 2 UpdateKernel
1: Input:

• newly received sample with label zt
• K−yt and Kyt for support vectors with the opposite

label to zt and the same label as zt, respectively
• penalty parameter C, learning rate η, and number of

the nearest neighbors k
2: Output: updated K−yt , Kyt and weight αt,t for zt
3: Initialize: Vt = ∅, compute ft−1 by Eq. (1)
4: for i ∈ I−ytt do
5: if 1 > yt(ft−1(xt)− ft−1(xi)) then
6: Vt = Vt ∪ {i}
7: end if
8: end for
9: if |Vt| > k then

10: Sim(i) = k(xt,xi), ∀ i ∈ Vt
11: [Sim′, idx] = Sort(Sim, ‘descend’)
12: idxk = idx(1 : k)
13: Vt = Vt(idxk)
14: end if
15: update αi,t by Eq. (8)
16: return K−yt ,Kyt , αt,t

1) UpdateKernel: We apply the gradient descent method to
update the decision function at each trial; i.e.,

ft := ft−1 − η∂f L̂t(ft−1), (5)

where ∂f is shorthand for ∂/∂f (the gradient with respect to
f) and η ∈ (0, 1) is the learning rate, which can be a constant
or decreases with the number of trials, as long as it guarantees
descent; i.e., L̂t(ft) ≤ L̂t(ft−1). We initialize f0 = 0. To

compute ∂f L̂t(f), we first calculate ∂f `h(f, zt, zi) by

∂f `h(·) =

{
0, `h(f, zt, zi) = 0,

−ϕ(zt, zi), `h(f, zt, zi) > 0,
(6)

where ϕ(zt, zi) = yt(k(xt, ·) − k(xi, ·)). Using Eq. (4) and
Eq. (6), we then obtain

∂f L̂t(ft−1)

=ft−1 − C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0]ϕ(zt, zi). (7)

Now, define Vt to be the set of indices for which the indicator
function in Eq. (7) evaluates to 1 (the valid set) and V t to be
its complement; i.e.

Vt := {i ∈ I−ytt | zi ∈ N−ytt,k (zt) ∧ `h(ft−1, zt, zi) > 0},
V t := I−ytt \ Vt.

It then follows from Eq. (5) and Eq. (7) that

ft = (1− η)ft−1 + ηCyt|Vt|k(xt, ·)− ηCyt
∑
i∈Vt

k(xi, ·).

In particular, since Iytt = Iytt−1 ∪ {t} and I−ytt = I−ytt−1 =
Vt ∪ V t, we see that if ft−1 is of the form in Eq. (1), then
so is ft as long as we make the following correspondence
between the kernel weights at the (t− 1)-st trial and the t-th
trial:

αi,t =


ηCyt|Vt|, i = t,
(1− η)αi,t−1 − ηCyt, i ∈ Vt,
(1− η)αi,t−1, i ∈ Iytt−1 ∪ V t.

(8)

It is instructive to take a closer look at the update rule in
Eq. (8). It divides the data into three classes. The first involves
the new instance zt. In this case, at most k of the opposite
support vectors are used in the pairwise loss calculation. This
prevents the fluctuation of the decision function. The second
involves the k-nearest opposite support vectors of the new
instance zt; i.e., the support vectors in N−ytt,k (zt). In this case,
their corresponding weights change by a magnitude of |ηCyt|,
which favors a more balanced updating. The third covers the
case where the new instance does not incur errors or the labels
of the previously learned support vectors are the same as
that of the new instance. The corresponding weights of those
previously learned support vectors are then reduced by a factor
of 1− η, which is the same as NORMA [27].

2) UpdateBuffer: Since the buffers have a fixed budget,
they have to be updated when they are full. Traditional
stream oblivious policies such as First-In-First-Out (FIFO) and
Reservoir Sampling (RS) [43] have been adopted in online
linear AUC maximization [55] and shown to be effective
in that setting. However, these policies will discard support
vectors, which could lead to a degradation in the performance
of kernel-based online learning algorithms [21].

To avoid information loss, we need to design a more
sophisticated compensation scheme. Towards that end, let
zr = (xr, yr) be the removed support vector. We find the
support vector zc = (xc, yc) with yc = yr in Kyrt that is
most similar to zr and update its corresponding weight to
compensate for the loss of information due to the removal

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 5

Algorithm 3 UpdateBuffer–RS++
1: Input:

• received sample zt and its weight αt
• buffer K to be updated
• buffer size N
• number of instances received until trial t, Nt

2: Output: updated buffer K
3: if |K.B| < N then
4: K.A = K.A ∪ {αt}, K.B = K.B ∪ {zt}
5: else
6: sample Z from a Bernoulli distribution with Pr(Z =

1) = N/Nt
7: if Z = 1 then
8: uniformly select an instance zr
9: update K.A: K.A = K.A \ {αr,t} ∪ {αt,t}

10: update K.B: K.B = K.B \ {zr} ∪ {zt}
11: else
12: zr = zt, αr,t = αt,t
13: end if
14: find zc = arg max

zi∈K.B
{k(xr,xi)}

15: set αc,t = αc,t + αr,t and update αc,t in K.A
16: end if
17: return K

of zr. Specifically, let ∆αc,t be the updated weight of the
compensated support vector zc. By keeping track of the change
in the value of the decision function, we would like to find
∆αc,t such that

ft(x) ≈ ft(x)− αr,tk(xr,x) + ∆αc,t · k(xc,x).

This suggests that we should set ∆αc,t = αr,t
k(xr,x)
k(xc,x)

≈ αr,t.
Consequently, we propose the following update rule for the
compensated version of ft, which we denote by f++

t :

f++
t := (1− η)f++

t−1 − η∂f L̂t(f
++
t−1)

+ αr,t (k(xc, ·)− k(xr, ·)) . (9)

Here, f++
t−1 is the compensated decision function from the

previous trial. When neither buffer is full, we have f++
t = ft

and the update is done by Eq. (5). Ideally, if k(xc,x) equals
k(xr,x), then f++

t incorporates all the learned support vectors
and is equivalent to the one learned with infinite budgets.

Algorithm 3 shows the procedure of the extended Reservoir
Sampling (RS++). Some elaborations are in order:
1) In lines 3-4, if the buffer is not full (i.e., |K.B| < N), then

the new instance becomes a support vector and is directly
added into the buffer K.

2) In lines 6-10, if the buffer is full, then reservoir sampling
is performed. Specifically, with probability N

Nt
, we update

the buffer by randomly replacing one support vector zr in
K.B with zt.

3) In line 12, if replacement is not conducted, then the
removed support vector zr is set to be the new instance
zt.

4) In lines 14-15, we extend the classic RS strategy by finding
the support vector zc that is most similar to the removed
support vector zr, updating its weight, and putting its

weight back to the buffer K.A.
In a similar manner, we can define the extended FIFO

strategy, namely FIFO++. For FIFO++, we modify lines 6-
13 in Algorithm 3 so that the first support vector in the buffer
is removed and the new instance is added to the end of the
buffer as a new support vector.

IV. REGRET ANALYSIS

In this section, we derive a regret bound for the KOIL
algorithm with update rule in Eq. (5) under the non-smooth
pairwise hinge loss in Eq. (2). Recall that the regret at time T
is defined as the difference between the objective value up to
the T -th trial and the smallest objective value from hindsight;
i.e.,

RT =

T∑
t=1

(
L̂t(ft)− L̂t(f∗)

)
, (10)

where f∗ is the optimal decision function obtained in hindsight
by minimizing Eq. (3) and {ft}Tt=1 are obtained by Eq. (5).

In the following, unless otherwise specified, we assume that
zi ∈ N−ytt,k (zt); i.e., zi is one of the k-nearest opposite support
vectors of zt. We first establish some auxiliary results that will
be useful for our derivation of the regret bound.

Lemma 1. Suppose that for all x ∈ Rd, k(x,x) ≤ X2, where
X > 0. Let 0 < ξ1 ≤ X be such that k(xt,xi) ≥ ξ21 for all
zi = (xi, yi) ∈ N−ytt,k (zt). With f0 = 0 and the update rule
in Eq. (5), we have

‖ft‖H ≤ Ckcp

for t ∈ [T], where

cp :=
√

2X2 − 2ξ21 . (11)

Lemma 2. Suppose that the assumptions of Lemma 1 hold.
With f0 = 0 and the update rule in Eq. (5), the pairwise hinge
loss function `h : H×Z×Z → R+ defined in Eq. (2) satisfies

`h(ft−1, zt, zi) ≤ U := 1 + Ckc2p

for t ∈ [T], where cp is defined in Eq. (11).

The proofs of the above lemmas can be found in Appen-
dices A and B. Now, we are ready to present the advertised
regret bound.

Theorem 1. Suppose that the assumptions of Lemma 1 hold.
With f0 = 0 and the update rule in Eq. (5), where η ∈ (0, 1)
at each trial is chosen to guarantee descent, we have

RT ≤
‖f∗‖2H

2η
+ ηCk

(
(U − 1) +

1

2
(k + 1)Cc2p

)
T, (12)

where cp is defined in Eq. (11).

The proof of Theorem 1 is given in Appendix C. Before we
proceed, let us make several remarks.
• The regret bound RT can be further bounded by O(

√
T)

if we set η to O(1/
√
T). This bound is the same as that

for standard online learning algorithms, but it is different
from the mistake bounds derived in [4], [10], [32], which
aim at maximizing classification accuracy.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 6

• The expression in Eq. (12) seems to suggest that the
smallest regret bound is attained at k = 1. However, when
k = 1, the learned decision function cannot utilize the
localized information in the buffers and will yield sub-
optimal performance. Our empirical evaluation shows that
the best choice of k is around 10% of the budget; see
detailed results in Section VII. We conjecture that a more
accurate surrogate of the AUC metric can provide a better
indication on the regret-minimizing value of k. We leave
this as a future direction.

• By exploiting the convexity of the localized instantaneous
regularized risk of AUC defined in Eq. (4) and confining
the range of |αt| to [0, γη], we can derive the corre-
sponding regret bound for the update rule in (9); cf. [21].
However, the regret bound we obtained via this approach
is proportional to T . We leave the derivation of a tighter
bound as a future work.

V. EXTENSION TO A SMOOTH PAIRWISE HINGE LOSS

In this section, we extend the results developed earlier to
the case of a smooth pairwise hinge loss function. Specifically,
consider the square of the pairwise hinge loss function; i.e.,

`sh(f, z, z
′) =

(
|y − y′|

2

[
1− 1

2
(y − y′)(f(x)− f(x′))

]
+

)2

.

(13)
We substitute Eq. (13) into Eq. (4) and compute the decision
function by minimizing the following smooth localized instan-
taneous regularized risk of AUC associated with zt:

L̃t(f) := L̃t(f) =
1

2
‖f‖2H + C

∑
zi∈N−yt

t,k (zt)

`sh(f, zt, zi).

(14)
As before, we initialize f̃0 = 0 and apply the standard

gradient descent method to update the decision function at
each trial; i.e.,

f̃t := f̃t−1 − η∂f L̃t(f̃t−1), (15)

where η ∈ (0, 1) is the learning rate and

∂L̃t(f̃t−1) = f̃t−1 − 2C
∑

zi∈N−yt
t,k (zt)

[
I[`h(f̃t−1, zt, zi) > 0]

× `h(f̃t−1, zt, zi) · ϕ(zt, zi)
]
.

In addition, we define the valid set Vt and its complement V t
at the t-th trial as follows:

Vt := {i ∈ I−ytt | zi ∈ N−ytt,k (zt) ∧ `h(f̃t−1, zt, zi) > 0},
V t := I−ytt \ Vt.

Then, the corresponding update rule for the kernel weights at
the t-th trial is given by

αi,t=


2ηCyt

∑
i∈Vt

`h(f̃t−1, zt, zi), i = t,
(1− η)αi,t−1
−2ηCyt`h(f̃t−1, zt, zi), i ∈ Vt,

(1− η)αi,t−1, i ∈ Iytt−1 ∪ V t.

Lastly, we have the following update rule for the compensated

version f̃++
t of f̃t:

f̃++
t := (1− η)f̃++

t−1 − η∂f L̃t(f̃
++
t−1)

+ αr,t (k(xc, ·)− k(xr, ·)) ,

where f̃++
t−1 is the compensated decision function from the

previous trial. When neither buffer is full, we have f̃++
t = f̃t

and the update is done by Eq. (15).
By defining the regret at time T as

R̃T =

T∑
t=1

(
L̃t(f̃t)− L̃t(f̃∗)

)
, (16)

where f̃∗ is the optimal decision function obtained in hindsight
by minimizing Eq. (3) with `h replaced by `sh defined in
Eq. (13), and {f̃t}Tt=1 are obtained by the update rule in
Eq. (15), we have the following regret bound:

Theorem 2. Suppose that the assumptions of Lemma 1 hold.
Suppose further that 1

T

∑T
t=1 L̃t(f̃∗) ≤ L∗ for some L∗ > 0.

With f̃0 = 0 and the update rule in Eq. (15), where η ∈ (0, 1)
at each trial is chosen to guarantee descent, we have

R̃T ≤
1

1− (1 + ζ)η

(
1

2η
‖f̃∗‖2H + (1 + ζ)ηL∗T

)
,

where ζ = 2Ck2c2p and cp is defined in Eq. (11).

The proof of Theorem 2 is provided in Appendix D. The
result shows that in general, our KOIL algorithm can attain an
O(
√
T) regret bound under the smooth pairwise loss function

in Eq. (13). Again, we leave the derivation of a tighter regret
bound as future work.

VI. KOIL WITH MULTIPLE KERNEL LEARNING

In this section, we exploit the MKL framework to obtain
an accurate data representation for good performance. Given
a set of kernel functions K = {kl : X ×X → R, l ∈ [m]}, we
aim to learn a linear combination of these functions to obtain
the decision function

Ft(x) =

m∑
l=1

qtl · sgn(fl,t(x)),

where qt = [qt1, . . . , q
t
m] is the normalized (i.e.,

∑m
l=1 q

t
l = 1)

weight for multiple kernel classifiers learned up to the t-th
trial and fl,t is an element of the RKHS Hkl endowed with
the inner product kl. The l-th kernel classifier at the t-th trial
is defined to have the same form as in Eq. (1):

fl,t(x) =
∑
i∈I+t

α+
l,i,tkl(xi,x) +

∑
j∈I−t

α−l,j,tkl(xj ,x).

As before, we define two buffers K+
l,t and K−l,t to store the

corresponding information (i.e., weights and support vectors)
for the l-th kernel classifier at the t-th trial.

Algorithm 4 shows the KOIL algorithm with multiple
kernels.
• In line 6, we select the classifier based on the Bernoulli

distribution that is proportional to the weight of the
classifier. Since the weight is divided by the maximum

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 7

weight of all classifiers, at least one classifier will be
selected at each trial.

• In lines 7-15, we update the predictor of the sampled
classifier. To avoid excessive update fluctuation, we define
the loss function Ľt as in Eq. (4) and Eq. (14), but
without the regularization term. This necessitates a change
in the update rule for αi,t in the function UpdateKernel.
Specifically, in UpdateKernel2, we update αi,t by

αi,t =


ηCyt|Vt|, i = t,
αi,t−1 − ηCyt, i ∈ Vt,
αi,t−1, i ∈ Iytt−1 ∪ V t.

if the pairwise hinge loss function in Eq. (2) is used, and
by

αi,t=


2ηCyt

∑
i∈Vt

`h(f̃t−1, zt, zi), i = t,

αi,t−1 − 2ηCyt`h(f̃t−1, zt, zi), i ∈ Vt,
αi,t−1, i ∈ Iytt−1 ∪ V t.

if the smooth pairwise hinge loss function in Eq. (13) is
used.

• In line 16, the weight of the sampled kernel is updated
by the exponential weighted average algorithm, where the
weight is discounted by a large factor when the loss is
large.

It should be noted that in order to avoid fluctuation, we do not
add a smoothing term to update the probability of selecting
classifiers as in [20], [22], [36], [46], [52].

Similar to Eq. (10) and Eq. (16), we can define the corre-
sponding regret for {fl,t} and obtain an expected regret bound
for Algorithm 4.

Theorem 3. Suppose that the loss function is non-negative,
maxTt=1 Ľt(fl,t−1) ≤ L, and ‖∂f Ľt(fl,t−1)‖Hkl

≤ G for
some L,G > 0. With fl,0 = 0 and suitable choices of
η ∈ (0, 1), λ > 0, we have

E

[
T∑
t=1

m∑
l=1

qtl Ľt(fl,t)

]

≤ min
l∈[m]

min
f∈Hkl

(
T∑
t=1

Ľt(f) +
‖f‖2Hkl

2λ

)
+
T

2
(ηL2 + λG2),

where qtl = wtl/[
∑m
l=1 w

t
l].

Note that by assuming the boundedness of the optimal
kernel predictor and setting η, λ = O(1/

√
T), we can obtain

a regret bound of O(
√
T) by following the proof in [52].

Alternatively, we can utilize the AM-GM inequality to remove
the term lnm/η in [52]. Due to space limitation, we omit the
proof here.

VII. EXPERIMENTS

In this section, we conduct extensive experiments on both
synthetic and benchmark datasets to evaluate the performance
of our proposed KOIL algorithm.1

1Demo codes written in both C++ and Matlab can be downloaded at https:
//github.com/JunjieHu/koil.

Algorithm 4 KOIL with MKL
1: Input:

• penalty parameter C and learning rates η, λ
• maximum positive and negative budgets N+ and
N−, respectively

• number of nearest neighbors k
2: Initialize w1 = 1, K+

l .A = K−l .A = ∅, K+
l .B =

K−l .B = ∅, Np,l = Nn,l = 0, for l ∈ [m]
3: for t = 1 to T do
4: receive a training sample zt = (xt, yt)
5: for l = 1 to m do
6: if BernSample(wt

l/[maxj w
t
j]) == 1 then

7: if yt == +1 then
8: Np,l=Np,l+1

9: [K−
l ,K

+
l ,αl] =UpdateKernel2(zt,K−

l ,K
+
l ,C,η,k)

10: K+
l =UpdateBuffer(αl,zt,K+

l ,k,N
+,Np,l)

11: else
12: Nn,l=Nn,l+1

13: [K+
l ,K

−
l ,αl]=UpdateKernel2(zt,K+

l ,K
−
l ,C,η,k)

14: K−
l =UpdateBuffer(αl,zt,K−

l ,k,N
−,Nn,l)

15: end if
16: wt+1

l = wtl exp(−λĽt(fl,t))
17: end if
18: end for
19: qt+1 = wt+1/|wt+1|
20: end for

A. Compared Algorithms

We compare our proposed KOIL algorithm with state-
of-the-art online learning algorithms. Since our focus is on
online imbalanced learning, for fairness’ sake, we do not
consider batch-trained imbalanced learning algorithms in our
comparison. Rather, we consider online linear algorithms and
kernel-based online learning algorithms with a finite or infinite
buffer size.
• “Perceptron”: the classical perceptron algorithm [34]
• “OAMseq”: an online linear AUC maximization algorith-

m [55]
• “OPAUC”: One-pass AUC maximization [15]
• “NORMA”: online learning with kernels [27]
• “RBP”: Randomized budget perceptron [4]
• “Forgetron”: a kernel-based perceptron on a fixed bud-

get [10]
• “Projectron/Projectron++”: a bounded kernel-based per-

ceptron [32]
• “KOILRS++/KOILFIFO++: our proposed algorithm with the

pairwise hinge loss function in Eq. (2) and fixed budgets
updated by RS++ and FIFO++, respectively
• “KOIL2

RS++/KOIL2
FIFO++”: our proposed algorithm with the

smooth pairwise hinge loss function in Eq. (13) and fixed
budgets updated by RS++ and FIFO++, respectively

B. Experimental Setup

To ensure a fair comparison, we adopt the same setup for
all algorithms. For KOIL, we set the learning rate η = 0.01
and apply a 5-fold cross validation to find the penalty cost

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 8

(a) diabetes (b) svmguide2 (c) german (d) segment

Fig. 2. Average AUC performance on four datasets obtained by different updating policies of the KOIL algorithm.

C ∈ 2[−10:10]. For kernel-based methods, we use the Gaussian
kernel and tune its parameter σ ∈ 2[−10:10] by a 5-fold cross
validation. For NORMA, we apply a 5-fold cross validation to
select λ and ν ∈ 2[−10:10]. For Projectron, we apply a similar
5-fold cross validation to select the parameter of projection
difference η ∈ 2[−10:10].

TABLE I
SUMMARY OF ALL DATASETS (C∗ AND γ∗ ARE THE CORRESPONDING
OPTIMAL HYPERPARAMETERS TUNED BY 5-FOLD CROSS VALIDATION)

Dataset T d T−/T+ C∗ γ∗

Syn1 1,000 2 4 24 27

Syn2 1,100 2 10 2−9 25

Syn3 5,100 2 50 2−10 24

Syn4 10,100 2 100 2−6 25

sonar 208 60 1.144 24 1
australian 690 14 1.248 22 1
heart 270 13 1.250 27 2−8

ionosphere 351 34 1.786 25 2
diabetes 768 8 1.866 25 2
glass 214 9 2.057 25 25

german 1,000 24 2.333 27 2−4

svmguide2 391 20 2.342 28 2−5

segment 2,310 19 6.000 23 23

satimage 4,435 36 9.687 26 2
vowel 528 10 10.000 24 23

letter 15,000 16 26.881 25 25

poker 25,010 10 47.752 25 2−4

shuttle 43,500 9 328.546 27 210

C. Experiments on Synthetic Datasets

To illustrate the KOIL algorithm and show the power of
the kernel method, we generate a synthetic dataset in 2D
space; see the example in Fig 1(a). The positive samples are
generated from the 2-dimensional Gaussian distribution with
mean (1

2 ,
1
2) and standard deviation 0.1. The negative samples

are generated from a mixture of four Gaussians with the same
standard deviation as the positive samples and means at (1

6 ,
1
2),

(1
2 ,

1
6), (1

2 ,
5
6), (5

6 ,
1
2), respectively.

Following the above setup, we generate different synthetic
datasets with different imbalanced ratios to explore the per-
formance of KOIL in different scenarios. The datasets consist
of
• Syn1: a set of data with imbalanced ratio 1:4 consisting

of 200 positive samples and 800 negative samples;

• Syn2: a set of data with imbalanced ratio 1:10 consisting
of 100 positive samples and 1,000 negative samples;
• Syn3: a set of data with imbalanced ratio 1:50 consisting

of 100 positive samples and 5,000 negative samples;
• Syn4: a set of data with imbalanced ratio 1:100 consisting

of 100 positive samples and 10,000 negative samples.
Obviously, these four datasets are linearly non-separable in the
original space. Kernel-based online learning algorithms signifi-
cantly outperform the online linear algorithms. For example, in
the Syn1 dataset, Perceptron and the OAMseq with buffer size
100 for each class only attain AUC scores of 0.495±0.031 and
0.467±0.027, respectively. These are even poorer than random
guesses. For NORMA with an infinite buffer size, it achieves
an AUC score of 0.940 ± 0.013. Our proposed KOILRS++
and KOILFIFO++ with a buffer size of only 50 for each class
and k = 5 can improve the AUC scores to 0.961 ± 0.016
and 0.960 ± 0.014, respectively. Our KOIL algorithm with
the smooth pairwise loss function can attain comparable or
even better performance than that with the non-smooth loss
function.

D. Experiments on Benchmark Real-world Datasets
14 well-known benchmark datasets, whose imbalanced ra-

tios range from 1.144 to 328.546, are obtained from the UCI
and LIBSVM websites for evaluation. Table I summarizes the
detailed statistics of the datasets.

For each dataset, we conduct 5-fold cross validation on
all the algorithms, where four folds of the data are used for
training while the rest for testing. The 5-fold cross validation
is independently repeated four times. We set the buffer size
to 100 for each class for all related algorithms, including
OAMseq, RBP, and Forgetron. We then average the AUC
performance of 20 runs. The results are reported in Table III.
From the table, we have the following observations:
• Our KOIL algorithm with the RS++ and FIFO++ updating

policies performs better than online linear AUC maxi-
mization algorithms in most datasets. By examining the
results of OAMseq on australian, heart, diabetes, german,
and shuttle, as well as the results of OPAUC on australian
and german, we speculate that a linear classifier is enough
to achieve good performance on these datasets while a
nonlinear classifier can be adversely affected by outliers.

• Under the pairwise hinge loss function, the KOIL algo-
rithm significantly outperforms all competing kernel-based
algorithms in nearly all datasets. The results demonstrate
the effectiveness of our proposed approach.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 9

TABLE II
AVERAGE AUC PERFORMANCE (MEAN±STD) ON THE SYNTHETICS DATASETS. •/◦ (-) INDICATES THAT BOTH/ONE OF KOILRS++ AND KOILFIFO++

ARE/IS SIGNIFICANTLY BETTER (WORSE) THAN THE CORRESPONDING METHOD (PAIRWISE t-TESTS AT 95% SIGNIFICANCE LEVEL)

Data KOILRS++ KOILFIFO++ KOIL2
RS++ KOIL2

FIFO++ Perceptron OAMseq OPAUC NORMA RBP Forgetron Projectron Projectron++
Syn1.961±.016 .960±.014 .967±.011 .968±.011 .495±.031• .501±.021• .503±.032• .940±.013• .948±.021• .878±.147• .954±.019 .953±.017
Syn2.959±.022 .958±.018 .961±.017 .962±.018 .484±.037• .502±.032• .508±.032• .937±.041• .887±.062• .954±.023 .941±.032• .944±.023•
Syn3.939±.029 .941±.025 .943±.022 .942±.023 .495±.025• .499±.022• .492±.020• .769±.087• .872±.081• .807±.130• .901±.064• .922±.039•
Syn4.965±.014 .966±.013 .968±.013 .966±.015 .510±.023• .495±.026• .499±.022• .834±.205• .892±.069• .844±.097• .962±.015 .948±.024•

win/tie/loss 0/4/0 0/4/0 4/0/0 4/0/0 4/0/0 4/0/0 4/0/0 3/1/0 2/2/0 3/1/0

TABLE III
AVERAGE AUC PERFORMANCE (MEAN±STD) ON THE BENCHMARK DATASETS. •/◦ (-) INDICATES THAT BOTH/ONE OF KOILRS++ AND KOILFIFO++

ARE/IS SIGNIFICANTLY BETTER (WORSE) THAN THE CORRESPONDING METHOD (PAIRWISE t-TESTS AT 95% SIGNIFICANCE LEVEL)

Data KOILRS++ KOILFIFO++ KOIL2
RS++ KOIL2

FIFO++ Perceptron OAMseq OPAUC NORMA RBP Forgetron Projectron Projectron++
sonar .955±.028 .955±.028 .957±.031 .957±.031 .803±.083• .843±.056• .844±.077• .925±.044• .913±.032• .896±.054• .896±.049• .896±.049•
australian .923±.023 .922±.026 .919±.024 .920±.026 .869±.035• .925±.024 .923±.025 .919±.023 .911±.017• .912±.026• .923±.024 .923±.024
heart .908±.040 .910±.040 .911±.038 .908±.037 .876±.066• .912±.040 .901±.043◦ .890±.051• .865±.043• .900±.053◦ .902±.038 .905±.042
ionosphere .985±.015 .985±.015 .959±.026•.952±.031• .851±.056• .905±.041• .888±.046• .961±.016• .960±.030• .945±.031• .964±.025• .963±.027•
diabetes .826±.036 .830±.030 .817±.037◦.825±.028 .726±.059• .827±.033 .805±.035• .792±.032• .828±.034 .820±.027◦ .832±.033 .833±.033
glass .887±.053 .884±.054 .885±.048 .885±.048 .810±.065• .827±.064• .800±.074• .811±.077• .811±.071• .813±.075• .811±.070• .781±.076•
german .769±.032 .778±.031 .774±.030 .769±.037◦ .748±.033• .777±.027 .787±.026 - .766±.032◦ .699±.038• .712±.054• .769±.028◦ .770±.024
svmguide2 .897±.040 .885±.043 .891±.042 .882±.040◦ .860±.037• .886±.045◦ .859±.050• .865±.046• .890±.038 .864±.045• .886±.044◦ .886±.045◦
segment .983±.008 .985±.012 .970±.012•.959±.015• .875±.020• .919±.020• .882±.019• .910±.042• .969±.017• .943±.038• .979±.013• .978±.016•
satimage .924±.012 .923±.015 .922±.012 .922±.013 .700±.015• .755±.018• .724±.016• .914±.025• .899±.018• .892±.032• .910±.015• .904±.011•
vowel 1.000±.0001.000±.001.998±.007•.993±.014• .848±.070• .905±.024• .885±.034• .996±.005• .968±.017• .987±.027• .982±.013• .994±.019•
letter .933±.021 .942±.017 .926±.022•.932±.017◦ .767±.029• .827±.021• .823±.018• .910±.027• .928±.011◦ .815±.102• .926±.016• .926±.015•
poker .681±.031 .693±.032 .654±.023•.676±.031• .514±.030• .503±.024• .509±.031• .577±.040• .501±.031• .572±.029• .675±.027• .675±.027•
shuttle .950±.040 .956±.021 .946±.039 .953±.020 .520±.134• .999±.000 - .754±.043• .725±.053• .844±.041• .839±.060• .873±.063• .795±.063•

win/tie/loss 6/8/0 7/7/0 14/0/0 9/4/1 12/1/1 13/1/0 12/2/0 14/0/0 11/3/0 10/4/0

• We observe that the KOIL algorithm with non-smooth loss
beats the one with smooth loss in 5 datasets while being
comparable in the remaining 9 datasets.

• In most of the datasets, kernel-based algorithms show
better AUC performance than the linear algorithms. This
again demonstrates the power of kernel methods in clas-
sifying real-world datasets.

• We observe that the performance of OAMseq on satimage
is not as good as that in [55] and [21]. This can be
attributed to the different partition of the training and test
data.

E. Evaluation of Updating Policies

We compare the compensation schemes RS++ and FIFO++
with the original updating policies RS and FIFO and show the
average AUC performance of 20 runs on four typical datasets
in Fig. 2. Here, KOILinf denotes KOIL learned with infinite
budgets and is used as a reference. From Fig. 2, we have the
following observations:
• KOILRS++ and KOILFIFO++ have nearly the same perfor-

mance as KOILinf. This confirms that the extended policies
indeed compensate for the lost information when a support
vector is replaced.

• The KOIL algorithm with extended updating policies sig-
nificant outperforms the one with original stream oblivious
policy when either buffer is full. Without compensation,
the performance fluctuates and decays when support vec-
tors are removed. With compensation, the performance is
rather stable.

F. Sensitivity Analysis

In this subsection, we study the sensitivity of the KOIL al-

gorithm to the input parameters. First, we test the performance
of the KOIL algorithm as the buffer size varies. From Fig. 3,
we observe that the performance follows similar trend in [21],
[55]; i.e., improving gradually with the increase of the buffer
size and becoming stable when the size is relatively large.

Next, we test the performance of the KOIL algorithm as the
number of localized support vectors k varies. From Fig. 4, we
have the following observations:

• When k = 1, the smallest possible value of k, the perfor-
mance of the KOIL algorithm is usually poor because it
only considers the pairwise loss incurred by the nearest
opposite support vector of the new instance and cannot
fully utilize the localized information.
• The KOIL algorithm usually attains the best performance

when k is approximately 10% of the buffer size. As k
further increases, the performance starts to deteriorate. Our
results consistently demonstrate that the effect of outliers
can be alleviated by utilizing localized information of the
new instance.
• For some datasets, such as svmguide2 and german, the

performance of the KOIL algorithm is not too sensitive to
k. The reason could be that the learned support vectors
in these datasets are well-separated when the buffers are
full. As a result, new instances have little influence on the
updating of the decision function.

In sum, a key step in maintaining the model performance
is the compensation scheme; see the results in Fig. 2. The
setting of localized AUC is also crucial to good performance
as it can mitigate the effect of noise; see results in Fig. 4.
Fig. 3 suggests that the budget just needs to be sufficiently
large, say several hundred.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 10

(a) (b) (c) (d)

Fig. 3. Average AUC of the KOIL algorithm with different buffer sizes.

(a) (b) (c) (d)

Fig. 4. Average AUC of the KOIL algorithm with different k. Here k = [1, 10:10:100] and the budget is 100 for each buffer.

G. Evaluation of the KOIL Algorithm with MKL

We evaluate the performance of the KOIL algorithm with
MKL using the setting in [22]. Specifically, we use 16 kernel
functions in our experiment, including 3 polynomial kernels
(i.e., k(xi,xj) = (xTi xj)

p with degree parameters p = 1, 2,
and 3) and 13 Gaussian kernels (i.e., k(xi,xj) = exp(−‖xi−
xj‖2/2σ2) with kernel width parameter σ ∈ 2[−6:1:6]). For
simplicity, the learning rates η and λ are both set to 0.01.
A 5-fold cross validation is applied to find the best penalty
cost C from 2[−10:1:10]. Table IV summarizes the results and
reveals the following:
• The KOIL algorithm with MKL attains better or compa-

rable performance than the one with tuned optimal kernel.
Indeed, under the smooth loss function, the former has a
better performance in at least 6 out of the 14 datasets.
On the other hand, under the non-smooth loss function,
both versions of the KOIL algorithm have comparable
performance on most datasets. We conjecture that this may
be due to the non-smoothness of the loss function.

• For some datasets, such as sonar and ionosphere, the KOIL
algorithm with MKL cannot beat the one with the tuned
optimal kernel. We conjecture that this may be due to the
limitation of the training data in these datasets. Training
with multi-epoches [52] could be a promising approach to
improving the model performance.

VIII. CONCLUSION

We focused on the imbalanced streaming binary classifi-
cation problem and proposed a kernel-based online learning
algorithm to seek a nonlinear classifier. Our algorithm is
based on three crucial ideas. First, we adopt two fixed-
budget buffers to control the number of support vectors and
maintain the global information on the decision boundary.
Second, we update the weight of a new arriving support
vector by confining its influence on only its k-nearest opposite

TABLE IV
AVERAGE AUC PERFORMANCE (MEAN±STD) ON THE BENCHMARK

DATASETS. • (-) INDICATES THAT THE PERFORMANCE BY KOIL WITH
MKL IS SIGNIFICANTLY BETTER THAN (COMPARABLE TO) THAT BY KOIL

WITH THE TUNED OPTIMAL KERNEL (PAIRWISE t-TESTS AT 95%
SIGNIFICANCE LEVEL)

Data KOILMKL
RS++ KOILMKL

FIFO++ KOILMKL 2
RS++ KOILMKL 2

FIFO++
sonar 0.893±0.053 0.899±0.047 0.946±0.040 - 0.949±0.031 -
australian 0.922±0.027 - 0.919±0.028 - 0.918±0.026 - 0.911±0.024
heart 0.906±0.044 - 0.907±0.042 - 0.906±0.040 - 0.904±0.038 -
ionosphere 0.953±0.062 0.957±0.073 0.972±0.039 - 0.972±0.042•
diabetes 0.826±0.035 - 0.831±0.032 - 0.827±0.036•0.822±0.033 -
glass 0.890±0.056 - 0.891±0.051 - 0.890±0.053 - 0.893±0.052 -
german 0.771±0.042 - 0.769±0.033 - 0.774±0.033 - 0.768±0.039 -
svmguide2 0.906±0.040•0.896±0.049•0.905±0.041•0.903±0.043•
segment 0.993±0.004•0.994±0.004•0.991±0.005•0.990±0.009•
satimage 0.937±0.015•0.939±0.015•0.938±0.012•0.937±0.014•
vowel 0.999±0.002 0.999±0.002 - 0.999±0.002 - 0.998±0.003 -
letter 0.954±0.013•0.959±0.014•0.962±0.011•0.968±0.008•
poker 0.690±0.035•0.707±0.027•0.709±0.023•0.705±0.020•
shuttle 0.948±0.028 - 0.926±0.032 0.888±0.029 0.886±0.032
win/tie/loss 5/6/3 5/3/4 6/7/1 6/6/2

support vectors. Third, we transfer the weight of the removed
support vector to its most similar one when either buffer is
full, so as to avoid information loss. We also exploited the
MKL framework to determine the kernel our KOIL algorithm.
Lastly, we conducted extensive experiments to demonstrate the
efficacy and superiority of our proposed approach.

Several challenging but promising directions can be con-
sidered in the future. First, the current KOIL algorithm only
explores a localized surrogate of the AUC metric. Investigating
more accurate surrogate functions for the AUC metric is
significant in both theory and practice. Second, the current
regret bound only applies to the case where there is no
compensation. A natural direction is to derive a regret bound
for the case where the compensation scheme is used. Third, it
would be interesting to investigate and evaluate more efficient
update rules for the KOIL algorithm with MKL.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 11

APPENDIX A
PROOF OF LEMMA 1

Proof. First, the assumptions k(x,x) ≤ X2 for all x ∈ Rd
and k(xt,xi) ≥ ξ21 > 0 yield

‖ϕ(zt, zi)‖H =
√
k(xt,xt)− 2k(xt,xi) + k(xi,xi) ≤ cp,

(17)
where cp is defined in Eq. (11). Now, using Eq. (5), Eq. (7),
and the triangle inequality, we compute

‖ft‖H
≤(1− η)‖ft−1‖H

+ ηC
∑
zi

I[`h(ft−1, zt, zi) > 0] · ‖ϕ(zt, zi)‖H

≤(1− η)‖ft−1‖H + ηCkcp,

where the last inequality is due to Eq. (17) and the fact that
the number of elements in N−ytt,k (zt) is at most k.

By expanding ‖ft‖H iteratively and using f0 = 0, we have

‖ft‖H ≤ (1− η)t‖f0‖H +
1− (1− η)t

η
ηCkcp ≤ Ckcp,

where the second inequality is due to the fact that when η ∈
(0, 1), we have 1− (1− η)t ≤ 1 for t ∈ [T]. This completes
the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof. Based on the pairwise hinge loss defined in Eq. (2),
we have

`h(ft−1, zt, zi) ≤ 1 + |ft−1(xt)− ft−1(xi)|
= 1 + |〈ft−1, k(xt, ·)− k(xi, ·)〉H|
≤ 1 + ‖ft−1‖H · ‖k(xt, ·)− k(xi, ·)‖H
≤ 1 + Ckc2p (:= U),

where the first inequality is due to the triangle inequality and
1
2 |yt − yi| ≤ 1; the second inequality is due to the Cauchy-
Schwarz inequality; the third inequality is due to Lemma 1
and Eq. (17).

APPENDIX C
PROOF OF THEOREM 1

Proof. Since the learning rate η ∈ (0, 1) at each trial is chosen
to guarantee descent and L̂t is convex, we have

RT =

T∑
t=1

(
L̂t(ft)− L̂t(f∗)

)
≤

T∑
t=1

(
L̂t(ft−1)− L̂t(f∗)

)
≤

T∑
t=1

〈∂L̂t(ft−1), ft−1 − f∗〉H. (18)

Now, observe that

‖ft − f∗‖2H − ‖ft−1 − f∗‖2H
=‖ft−1 − η∂f L̂t(ft−1)− f∗‖2H − ‖ft−1 − f∗‖2H
=η2‖∂f L̂t(ft−1)‖2H − 2η〈∂f L̂t(ft−1), ft−1 − f∗〉H.

By summing the above identity over t ∈ [T], we have

‖fT − f∗‖2H − ‖f0 − f∗‖2H

=− 2η

T∑
t=1

〈∂f L̂t(ft−1), ft−1 − f∗〉H

+ η2
T∑
t=1

‖∂f L̂t(ft−1)‖2H. (19)

Upon combining Eq. (18), Eq. (19) and using the fact that
f0 = 0, ‖fT − f∗‖2H ≥ 0, we obtain

RT ≤
‖f∗‖2H

2η
+
η

2

T∑
t=1

‖∂f L̂t(ft−1)‖2H.

We now proceed to bound ‖∂f L̂t(ft−1)‖2H. Observe that

‖∂f L̂t(ft−1)‖2H

=

∥∥∥∥∥∥∥ft−1 − C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H
=‖ft−1‖2H

+

∥∥∥∥∥∥∥C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H

− 2C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0]〈ft−1, ϕ(zt, zi)〉H.

From Lemma 1, we know that the first term above is bounded
by

‖ft−1‖2H ≤ C2k2c2p. (20)

Now, by Eq. (17) and the fact that the number of elements in
N−ytt,k (zt) is at most k, we can bound the second term by∥∥∥∥∥∥∥C

∑
zi∈N−yt

t,k (zt)

I[`h(ft−1, zt, zi) > 0] · ϕ(zt, zi)

∥∥∥∥∥∥∥
2

H

≤C2
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0] · ‖ϕ(zt, zi)‖2H

≤C2kc2p. (21)

Lastly, since ft−1 is an element of a RKHS and
`h(ft−1, zt, zi) ≤ U by Lemma 2, we have

〈ft−1, ϕ(zt, zi)〉H =
1

2
(yt − yi) (ft−1(xt)− ft−1(xi))

≥ 1− U.

It follows that the third term can be bounded by

− 2C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0]〈ft−1, ϕ(zt, zi)〉H

≤2C
∑

zi∈N−yt
t,k (zt)

I[`h(ft−1, zt, zi) > 0](U − 1)

≤2Ck(U − 1), (22)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 12

where the second inequality is again due to the fact that the
number of elements in N−ytt,k (zt) is at most k.

By combining Eq. (20), Eq. (21), and Eq. (22), we obtain

‖∂f L̂t(ft−1)‖2H ≤ C2k(k + 1)c2p + 2Ck(U − 1).

The bound on RT in Eq. (12) now follows by summing
∂f L̂t(ft−1) over t ∈ [T]. This completes the proof.

APPENDIX D
PROOF OF THEOREM 2

Proof. The proof is similar to that of Theorem 1. The main
difference is to exploit the smoothness of the loss function.

First, since the learning rate η ∈ (0, 1) at each trial is chosen
to guarantee descent and L̃t is convex, we have

L̃t(f̃t)− L̃t(f̃∗) ≤ L̃t(f̃t−1)− L̃t(f̃∗)
≤ 〈∂f L̃t(f̃t−1), f̃t−1 − f̃∗〉. (23)

We also have

‖f̃t − f̃∗‖2H − ‖f̃t−1 − f̃∗‖2H
=η2‖∂f L̃t(f̃t−1)‖2H − 2η〈∂f L̃t(f̃t−1), f̃t−1 − f̃∗〉H. (24)

Now, we compute

∂2L̃t
∂f2

= I + 2C
∑

zi,zj∈N−yt
t,k (zt)

Izi
Izj
ϕ(zt, zi)ϕ(zt, zj)

>,

(25)

where we denote I[`h(f̃t−1, zt, zi) > 0] by Izi
for simplicity.

It follows that for any f̃ , g̃,

‖∂f L̃t(f̃)− ∂f L̃t(g̃)‖H ≤ (1 + ζ)‖f̃ − g̃‖H, (26)

where ζ = 2Ck2c2p is obtained by the summation in Eq. (25)
and the bound

〈ϕ(zt, zi), ϕ(zt, zj)〉H ≤ ‖ϕ(zt, zi)‖H · ‖ϕ(zt, zj)‖H ≤ c2p.

In particular, suppose that f̃∗t minimizes L̃t. Then, by the
convexity and smoothness of L̃t, we have ∂f L̃t(f̃∗t) = 0. This,
together with Eq. (26) and [31, Theorem 2.1.5], implies that

‖∂f L̃t(f̃t−1)‖2H = ‖∂f L̃t(f̃t−1)− ∂f L̃t(f̃∗t)‖2H
≤ 2 (1 + ζ)

(
L̃t(f̃t−1)− L̃t(f̃∗t)

)
≤ 2 (1 + ζ) L̃t(f̃t−1), (27)

where the last inequality is due to L̃t(f̃∗t) ≥ 0.

By combining Eq. (23), Eq. (24), and Eq. (27), we obtain

(1− (1 + ζ)η)L̃t(f̃t−1)− L̃t(f̃∗)

≤‖f̃t−1 − f̃
∗‖2H − ‖f̃t − f̃∗‖2H

2η
.

Upon summing the above inequality over t ∈ [T] and rear-

ranging, we obtain
T∑
t=1

(1− (1 + ζ)η)L̃t(f̃t−1)−
T∑
t=1

L̃t(f̃∗)

≤ 1

2η

(
‖f̃0 − f̃∗‖2H − ‖f̃T − f̃∗‖2H

)
≤ 1

2η
‖f̃∗‖2H.

Here, we use the fact that f̃0 = 0 and ‖f̃T − f̃∗‖2H ≥ 0. It
follows that

T∑
t=1

(
L̃t(f̃t)− L̃t(f̃∗)

)
≤ 1

1− (1 + ζ)η

(
1

2η
‖f̃∗‖2H + (1 + ζ)η

T∑
t=1

L̃t(f̃∗)

)

≤ 1

1− (1 + ζ)η

(
1

2η
‖f̃∗‖2H + (1 + ζ)ηL∗T

)
,

as desired.

REFERENCES

[1] A. P. Bradley. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159,
1997.

[2] U. Brefeld and T. Scheffer. AUC maximizing support vector learning. In
Proceedings of the ICML 2005 workshop on ROC Analysis in Machine
Learning, 2005.

[3] C. L. Castro and A. de Pádua Braga. Novel cost-sensitive approach
to improve the multilayer perceptron performance on imbalanced data.
IEEE Trans. Neural Netw. Learning Syst., 24(6):888–899, 2013.

[4] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best
hyperplane with a simple budget perceptron. Machine Learning, 69(2-
3):143–167, 2007.

[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron
algorithm. SIAM J. Comput., 34(3):640–668, 2005.

[6] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, NY, USA, 2006.

[7] C. Cortes and M. Mohri. AUC optimization vs. error rate minimization.
In NIPS. MIT Press, 2003.

[8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer.
Online passive-aggressive algorithms. Journal of Machine Learning
Research, 7:551–585, 2006.

[9] L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural
Computation, 14(3):641–668, 2002.

[10] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-
based perceptron on a budget. SIAM Journal on Computing, 37(5):1342–
1372, 2008.

[11] Y. Ding, P. Zhao, S. C. H. Hoi, and Y. Ong. An adaptive gradient method
for online AUC maximization. In AAAI, pages 2568–2574, 2015.

[12] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo!
music dataset and KDD-Cup ’11. In Proceedings of KDD Cup 2011
competition, San Diego, CA, USA, 2011, pages 8–18, 2012.

[13] Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares
algorithm. IEEE Transactions on Signal Processing, 52(8):2275–2285,
2004.

[14] Y. Freund and R. E. Schapire. Large margin classification using the
perceptron algorithm. Machine Learning, 37(3):277–296, 1999.

[15] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass AUC optimization.
In ICML, pages 906–914, 2013.

[16] I. Guyon, V. Lemaire, M. Boullé, G. Dror, and D. Vogel. Design and
analysis of the KDD Cup 2009: Fast scoring on a large orange customer
database. SIGKDD Explorations, 11(2):68–76, 2009.

[17] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 143(1):29–36,
1982.

[18] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big
data. In UAI, 2013.

[19] A. Herschtal and B. Raskutti. Optimising area under the ROC curve
using gradient descent. In ICML, 2004.

[20] S. C. H. Hoi, R. Jin, P. Zhao, and T. Yang. Online multiple kernel
classification. Machine Learning, 90(2):289–316, 2013.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 13

[21] J. Hu, H. Yang, I. King, M. R. Lyu, and A. M.-C. So. Kernelized online
imbalanced learning with fixed budgets. In AAAI, Austin Texas, USA,
Jan. 25-30 2015.

[22] R. Jin, S. C. H. Hoi, and T. Yang. Online multiple kernel learning:
Algorithms and mistake bounds. In ALT, pages 390–404, 2010.

[23] T. Joachims. A support vector method for multivariate performance
measures. In ICML, pages 377–384, 2005.

[24] P. Kar, B. K. Sriperumbudur, P. Jain, and H. Karnick. On the
generalization ability of online learning algorithms for pairwise loss
functions. In ICML, pages 441–449, 2013.

[25] N. Karampatziakis and J. Langford. Online importance weight aware
updates. In UAI, pages 392–399, 2011.

[26] S. S. Keerthi and W. Chu. A matching pursuit approach to sparse
Gaussian process regression. In NIPS, pages 643–650, 2005.

[27] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with
kernels. IEEE Transactions on Signal Processing, 52(8):2165–2176,
2004.

[28] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. lp-norm multiple
kernel learning. Journal of Machine Learning Research, 12:953–997,
2011.

[29] Y. Li and P. M. Long. The relaxed online maximum margin algorithm.
Machine Learning, 46(1-3):361–387, 2002.

[30] M. Lin, K. Tang, and X. Yao. Dynamic sampling approach to training
neural networks for multiclass imbalance classification. IEEE Trans.
Neural Netw. Learning Syst., 24(4):647–660, 2013.

[31] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Academic Publishers, 2003.

[32] F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-based online
learning. Journal of Machine Learning Research, 10:2643–2666, 2009.

[33] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMK-
L. Journal of Machine Learning Research, 9:1179–1225, 2008.

[34] F. Rosenblatt. The Perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386–
408, 1958.

[35] S. Ross, P. Mineiro, and J. Langford. Normalized online learning. CoRR,
abs/1305.6646, 2013.

[36] D. Sahoo, S. C. H. Hoi, and B. Li. Online multiple kernel regression.
In KDD, pages 293–302, 2014.

[37] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[38] M. W. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward
selection to speed up sparse Gaussian process regression. In AISTATS,
2003.

[39] S. Smale and Y. Yao. Online learning algorithms. Foundations of
Computational Mathematics, 6(2):145–170, April 2006.

[40] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale
multiple kernel learning. Journal of Machine Learning Research,
7:1531–1565, 2006.

[41] S. J. Stolfo, W. Lee, P. K. Chan, W. Fan, and E. Eskin. Data mining-
based intrusion detectors: An overview of the Columbia IDS project.
SIGMOD Record, 30(4):5–14, 2001.

[42] S. V. Vaerenbergh, M. Lázaro-Gredilla, and I. Santamarı́a. Kernel
recursive least-squares tracker for time-varying regression. IEEE Trans.
Neural Netw. Learning Syst., 23(8):1313–1326, 2012.

[43] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, Mar. 1985.

[44] Y. Wang, R. Khardon, D. Pechyony, and R. Jones. Generalization bounds
for online learning algorithms with pairwise loss functions. In COLT,
pages 13.1–13.22, 2012.

[45] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. F. M. Ng, B. Liu, P. S. Yu, Z. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowl. Inf.
Syst., 14(1):1–37, 2008.

[46] H. Xia, S. C. H. Hoi, R. Jin, and P. Zhao. Online multiple kernel
similarity learning for visual search. IEEE Trans. Pattern Anal. Mach.
Intell., 36(3):536–549, 2014.

[47] Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and efficient
multiple kernel learning by group lasso. In ICML, pages 1175–1182,
Haifa, Israel, 2010.

[48] L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz. Optimizing
classifier performance via an approximation to the Wilcoxon-Mann-
Whitney statistic. In ICML, pages 848–855, 2003.

[49] H. Yang and I. King. Ensemble learning for imbalanced e-commerce
transaction anomaly classification. In ICONIP, pages 866–874,
Bangkok, Thailand, 2009.

[50] H. Yang, I. King, and M. R. Lyu. Sparse Learning Under Regularization
Framework. LAP Lambert Academic Publishing, April 2011.

[51] H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu. Efficient sparse
generalized multiple kernel learning. IEEE Transactions on Neural
Networks, 22(3):433–446, March 2011.

[52] T. Yang, M. Mahdavi, R. Jin, J. Yi, and S. C. H. Hoi. Online kernel
selection: Algorithms and evaluations. In AAAI, 2012.

[53] L. Zhang, J. Yi, R. Jin, M. Lin, and X. He. Online kernel learning with
a near optimal sparsity bound. In ICML, pages 621–629, 2013.

[54] P. Zhao, S. C. H. Hoi, and R. Jin. Double updating online learning.
Journal of Machine Learning Research, 12:1587–1615, 2011.

[55] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online AUC maximization.
In ICML, pages 233–240, 2011.

Junjie Hu Junjie Hu received his B.Eng. degree in
Computer Science and Technology at South China
University of Technology, and M.Phil. in the Depart-
ment of Computer Science and Engineering at The
Chinese University of Hong Kong.

He is a graduate research assistant in Language
Technologies Institute, School of Computer Science
at Carnegie Mellon University. His research interests
include machine learning, natural language process-
ing and human robot interaction. He was awarded
the National Scholarship from the Ministry of Ed-

ucation of China twice from 2010 to 2012, 2013 IBM Outstanding Student
Scholarship, and 2013 Outstanding Undergraduate Student Award from China
Computer Federation. He served as a student assistant in 2012 ICMLC, 2013
ICWAPR and 2013 ACM RecSys.

Haiqin Yang (M’11) received the B. Sc. degree in
Computer Science from Nanjing University, and the
M. Phil. and Ph. D. degrees in Department of Com-
puter Science and Engineering from The Chinese
University of Hong Kong, Hong Kong.

He is an Assistant Professor in the Department
of Computing, Hang Seng Management College,
Hong Kong. His research interests include machine
learning, data mining, and big data analytics. He
has published two books and over 40 technical
publications in journals/conferences in his areas of

expertise. Dr. Yang has initiated and co-organized five international workshops
on the topics of scalable machine learning and scalable data analytics. He
currently serves on the editorial board of Neurocomputing and also serves
as a program committee member and a reviewer of over twenty top-tier
conferences/journals.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. , NO. , 201X 14

Michael R. Lyu (F’04) received the B. S. degree
in electrical engineering from the National Taiwan
University, Taipei, Taiwan, the M. S. degree in com-
puter engineering from the University of California,
Santa Barbara, and the Ph.D. degree in computer
engineering from the University of California, Los
Angeles.

He is a Professor in the Computer Science and
Engineering Department, The Chinese University of
Hong Kong, Hong Kong. He has worked at the
Jet Propulsion Laboratory, Pasadena, CA, Bellcore,

Piscataway, NJ, and the Bell Laboratory, Murray Hill, NJ, and taught at the
University of Iowa, Iowa City. He has participated in more than 30 industrial
projects. He has published close to 400 papers in the following areas. His
current research interests include software engineering, distributed systems,
multimedia technologies, machine learning, social computing, and mobile
networks.

Prof. Lyu initiated the International Symposium on Software Reliability
Engineering (ISSRE), and was a Program Chair for ISSRE in 1996, the
Program Co-Chair for the Tenth International World Web Conference, the
Symposium on Reliable Distributed Systems in 2005, the International Con-
ference on e-Business Engineering in 2007, and the International Conference
on Services Computing in 2010. He was the General Chair for ISSRE in 2001,
the Pacific Rim International Symposium on Dependable Computing in 2005,
and the International Conference on Dependable Systems and Networks in
2011. He also received the Best Paper Awards in ISSRE in 1998 and 2003,
and the SigSoft Distinguished Paper Award in International Conference on
Software Engineering in 2010. He is a Fellow of the American Association
for the Advancement of Science. He has been named by the IEEE Reliability
Society as the Reliability Engineer of the Year in 2011, for his contributions
to software reliability engineering and software fault tolerance.

Irwin King (SM08) received the B. Sc. degree in
Engineering and Applied Science from the Califor-
nia Institute of Technology (Caltech), Pasadena, and
M. Sc. and Ph. D. degrees in Computer Science from
the University of Southern California (USC), Los
Angeles.

Prof. King is Associate Dean (Education), Fac-
ulty of Engineering and Professor, Department of
Computer Science and Engineering at The Chinese
University of Hong Kong, Hong Kong. He had
worked at AT&T Labs Research and also taught a

number of courses at UC Berkeley as a Visiting Professor.
Prof. King’s research interests include machine learning, social computing,

Big Data, web intelligence, data mining, and multimedia information pro-
cessing. In these research areas, he has well over 200 technical publications
in top international journals and conferences. In addition, he has contributed
over 30 book chapters and edited volumes. Moreover, Prof. King has over
30 research and applied grants and industry projects. Some notable projects
include the VeriGuide system and the Knowledge and Education Exchange
Platform (KEEP).

Prof. King is is an Associate Editor of the ACM Transactions on Knowledge
Discovery from Data (ACM TKDD) and Journal of Neural Networks. Cur-
rently, he is serving as Vice-President and Governing Board Member of both
the International Neural Network Society (INNS) and the Asian Pacific Neural
Network Assembly (APNNA). He serves as General Co-Chair of WSDM2011,
RecSys2013, and ACML2015.

Anthony Man-Cho So (M’12) received his BSE de-
gree in Computer Science from Princeton University
with minors in Applied and Computational Mathe-
matics, Engineering and Management Systems, and
German Language and Culture. He then received
his MSc degree in Computer Science and his PhD
degree in Computer Science with a PhD minor in
Mathematics from Stanford University. Dr. So joined
The Chinese University of Hong Kong (CUHK) in
2007. He currently serves as Assistant Dean of the
Faculty of Engineering and is an Associate Professor

in the Department of Systems Engineering and Engineering Management.
He also holds a courtesy appointment as Associate Professor in the CUHK-
BGI Innovation Institute of Trans-omics. His recent research focuses on
the interplay between optimization theory and various areas of algorithm
design, such as computational geometry, machine learning, signal processing,
bioinformatics, and algorithmic game theory.

Dr. So currently serves on the editorial boards of IEEE TRANSACTIONS ON
SIGNAL PROCESSING, Journal of Global Optimization, Optimization Methods
and Software, and SIAM Journal on Optimization. He has also served on
the editorial board of Mathematics of Operations Research. He received the
2015 IEEE Signal Processing Society Signal Processing Magazine Best Paper
Award, the 2014 IEEE Communications Society Asia-Pacific Outstanding
Paper Award, the 2010 Institute for Operations Research and the Management
Sciences (INFORMS) Optimization Society Optimization Prize for Young
Researchers, and the 2010 CUHK Young Researcher Award. He also received
the 2008 Exemplary Teaching Award and the 2011, 2013, 2015 Dean’s
Exemplary Teaching Award from the Faculty of Engineering at CUHK, and
the 2013 Vice-Chancellor’s Exemplary Teaching Award from CUHK.

