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Abstract—In this work, we develop a new first-order method
called linear programming-assisted subgradient descent (LPA-
SD) for solving the single-group multicast beamforming (S-
GMB) problem. As the SGMB problem is NP-hard, most
existing methods focus on finding a good sub-optimal solution.
Our objective is to maximize the minimum signal-to-noise
ratio (SNR) subject to a given transmit power. We then
propose a first-order descent algorithm on the unit sphere
to solve the SGMB problem efficiently. We prove that our
algorithm converges to a critical point. Our numerical results
further demonstrate our algorithm outperforms the state-of-
the-art method for the SGMB problem with a much faster
computational speed and a better SNR, especially when the
number of users or antennas is large.

I. INTRODUCTION

In this paper, we consider the single-group multicast
beamforming (SGMB) problem, where all users receive the
same information stream from the transmitter (Tx), and the
maximum common date rate is determined by the minimum
received signal-to-noise ratio (SNR). Hence, the objective
is to maximize the minimum received SNR subject to
the limited transmit power (max-min-fair multicast beam-
forming). Another equivalent form, from an optimization
point of view, is to minimize the transmit power subject to
appropriate quality-of-service (QoS) guarantees formulated
in terms of the minimum SNR for each user (QoS multicast
beamforming) [1].

In general, the SGMB problem is a non-convex quadrat-
ically constrained quadratic programming (QCQP) problem
and is known to be NP-hard [1]. A prevailing method to
tackle this problem is to approximate it using the semidef-
inite relaxation (SDR) technique [2]. The authors in [1]
used a Gaussian randomization process to obtain a good
sub-optimal solution. However, the SDR-based algorithms
yield solutions whose performance do not scale well with the
number of users and are not computational efficient as they
require lifting the problem to a higher-dimensional space.
To improve the performance of the SDR method, Wu et
al. [3] developed a rank-2 transmit beamformed Alamouti
space-time code scheme. However, their method still needs
to solve an SDP problem, and the high computation cost
prevents its applications in solving large scale problems.

Tran et al. [4] proposed a more efficient method to tackle
the SGMB problem using successive linear approximation

(SLA). The SLA algorithm iteratively solves a series of
convex problems obtained by linearly approximating each
non-convex constraint. Numerical results in [4] demon-
strates that SLA methods enjoy better performance than
the SDR methods. However, the SLA still has a relative
large CPU time and thus is not suitable for solving high-
dimensional problems that arises in, e.g., future-generation
wireless broadband systems [5], [6], [7]. Recently, Konar
and Sidiropoulos have proposed in [8], [9] several first-order
algorithms to solve the SLA sub-problem, which yields a
speed up in CPU time.

To further reduce the computation cost, an adaptive algo-
rithm focusing on the max-min fair formulation was recently
developed by Gopalakrishnan and Sidiropoulos [10], where
each update takes a step in the direction of a weighted
linear combination of the SNR-gradient vectors of all the
users. They further proposed a method by combining their
algorithm and the SLA method to achieve lower CPU time
than and similar SNR values as SLA.

In this paper, we design a new subgradient method,
termed the linear programming-assisted subgradient descent
(LPA-SD), based on formulating the SGMB problem as a
non-smooth minimization problem over a smooth manifold;
cf. [9], [11]. Our method is motivated by the first order
method for an unconstrained minimax problem in [12].
Our algorithm can also be seen as an improvement on the
algorithm of [10], in that the weighted SNR-gradient is set to
guarantee an increment of the minimum SNR at each step
and each step size is chosen by an Armijo-type rule. An
advantage of our algorithm is that it achieves a slightly better
SNR than the SLA using much less CPU time. Unlike the
traditional subgradient method, we define a relative active set
in each iteration and use a linear program (LP) to choose
a suitable convex combination of the SNR-gradients of the
functions defined by the relative active set as the descent
direction. Combined with an Armjio-type step size rule, we
can ensure that the function value decreases in each iteration.
Moreover, we demonstrate that our algorithm converges to
a critical point. Our extensive numerical results show that
the proposed method outperforms the SLA method with a
large improvement in CPU time and some improvement in
the SNR values.



II. PROBLEM FORMULATION

We consider a single-group multicast cell consisting of a
Tx with N antennas and K single-antenna receivers (Rx’s).
The Tx transmits the common information-bearing signal
x ∈ C to all K Rx’s using a unit-norm beamforming vector
w ∈ CN . The corresponding received signal at the kth Rx
is

yk = wHhkx+ zk, ∀k = 1, . . . ,K,

where hk ∈ CN is the channel between the Tx and the kth
Rx; zk ∈ C is a complex circularly symmetric Gaussian
noise with mean zero and variance σ2

k, assumed to be
independent of x and hk. The received SNR at the kth Rx
is then given by |hHk w|2/σ2

k. The objective of the Tx is to
design the beamforming vector w so that the minimum SNR
among the users is maximized; i.e.,

max
w∈CN

min
k∈{1,...,K}

wHRkw s.t. ‖w‖2 = 1, (P)

where Rk = hkh
H
k /σ

2
k [1], [10], [8], [9]. To facilitate our

algorithmic development and theoretical analysis, we convert
the above maximin problem into an equivalent minimax
problem with real variables as follows:

min
x∈R2N

max
k∈{1,...,K}

fk(x) s.t. ‖x‖2 = 1, (P)

where x =

[
y
z

]
∈ R2N with w = y + iz; fk(x) = xTAkx

with Ak = −
[

R1
k −R2

k

(R2
k)T R1

k

]
and Rk = R1

k + iR2
k;

i =
√
−1 is the imaginary unit. Upon defining F (x) =

maxk∈{1,...,K} fk(x), the KKT necessary condition of Prob-
lem (P) can be expressed as [13, Theorem 3.5]

0 ∈ ∂F (x∗) + νx∗, ‖x∗‖2 = 1, ν ∈ R. (1)

We call any point x∗ ∈ R2N that satisfies the KKT
condition (1) for some ν ∈ R a critical point of Problem (P).
Since Problem (P) is NP-hard in general [1], we shall focus
on finding one of its critical points.

III. LP-ASSISTED SUBGRADIENT DESCENT (LPA-SD)

Note that Problem (P) can be regarded as a manifold
optimization problem, as it involves minimizing the non-
smooth function F : R2N → R over the smooth manifold
S =

{
x ∈ R2N : ‖x‖2 = 1

}
. This motivates us to utilize

manifold optimization techniques [11] to design an algorith-
m for finding an (approximate) critical point of Problem (P).
Towards that end, let us first give an alternative characteriza-
tion of the critical points of Problem (P). Given x ∈ R2N , let
I = I(x) = {k ∈ {1, . . . ,K} : fk(x) = F (x)} be the index
set of active functions and gradfk(x) = (I− xxT )∇fk(x)
be the projection of ∇fk(x) onto the tangent space of S at
x. Furthermore, let ∆I = {x ∈ R|I| : eTx = 1, x ≥ 0} be
an |I|-dimensional simplex, where |I| is the cardinality of I
and e is the all-one vector. We have the following theorem:

Theorem 1. A point x∗ ∈ R2N is a critical point of
Problem (P) if and only if there exists a λ ∈ ∆I such that∑
k∈I λk gradfk(x∗) = 0, where I = I(x∗).

Proof. Since ∂F (x) = co
⋃
k∈I(x){∇fk(x)} (co de-

notes the convex hull) for any x, we have g =∑
k∈I λk∇fk(x∗) ∈ ∂F (x∗) for any λ ∈ ∆I . It follows

that 0 = g + νx∗ if and only if (I − x∗(x∗)T )g = 0, or
equivalently,

∑
k∈I λk gradfk(x∗) = 0.

Note that when K = 1 (i.e., F (x) = f1(x)), Theorem 1
reduces to the definition of critical points for smooth func-
tions on S in [11].

Now, for any x 6= 0, let R(x) = x/‖x‖2 be the retraction
of x back to S. The Jacobian of R is given by JR(x) =
I/‖x‖2−xxT /‖x‖32. When ‖x‖2 = 1, the Chain Rule yields

∇(fk ◦R)(x) = JR(x)T∇fk(R(x))

= ∇fk(x)− xT∇fk(x)x

= gradfk(x). (2)

For simplicity, let gk(x) = gradfk(x) for k = 1, . . . ,K.
Note that any d ∈ ∂F (x) that satisfies gk(x)Td > 0 for
k ∈ I(x) gives a descent direction −d with respect to F at
x. This motivates us to formulate the following LP to find
the “best” descent direction at x:

max t

s.t gk(x)T
(∑

k∈I(x) λkgk(x)
)
≥ t,

k ∈ I(x), λ ∈ ∆I(x).

Upon defining the |I| × |I| matrix B by Bpq =
gip(x)T giq (x) for ip, iq ∈ I , we can write the above LP
more compactly as

max t s.t Bλ ≥ te, λ ∈ ∆I(x). (LP)

Since ∇fk(x) = 2Akx and ∇2fk(x) = Ak, for any
x ∈ S, we have ∇2fk(x) � LI and ‖∇fk(x)‖2 ≤ 2L
for k = 1, . . . ,K, where L ≥ λmax(Ak) and λmax(Ak) is
the largest singular value of Ak. We then have the following
result:

Proposition 1. Let t∗ be the optimal value of (LP). Then,
we have t∗ ≥ 0 and

t∗

2L
≤ |∂FI(x)| ≤

√
t∗,

where |∂FI(x)| = minλ∈∆I(x)

∥∥∥∑k∈I(x) λkgk(x)
∥∥∥

2
.

Proof. The dual of (LP) is given by

min v s.t BTu ≤ ve, eTu = 1, u ≥ 0. (DLP)

Let (t∗, λ∗) and (v∗,u∗) be optimal solutions to (LP)
and (DLP), respectively. Then, by strong duality and bound-
edness of (DLP) (which is obvious since u belongs to a
simplex), we have t∗ = v∗. Moreover, the dual feasibility
of u∗ implies that (u∗)TBTu∗ ≤ v∗(u∗)Te = v∗. Since
BT = B � 0, we obtain (u∗)TBTu∗ ≥ 0 and hence
t∗ = v∗ ≥ 0.



Next, by the optimality of t∗, we know that t∗ ≤
gT
(∑

k∈I(x) λ
∗
kgk(x)

)
, where g is any convex combi-

nation of {gk(x) : k ∈ I(x)}. Hence, we have t∗ ≤
‖g‖2 ·

∥∥∥∑k∈I(x) λ
∗
kgk(x)

∥∥∥
2
≤ 2L‖g‖2 for all g. This

establishes the first inequality. Furthermore, since t∗ = v∗ ≥
(u∗)TBTu∗ =

∥∥∥∑k∈I(x) u
∗
kgk(x)

∥∥∥2

2
, we have the second

inequality.

In practice, to improve numerical stability, we use the δ-
active set Iδ = Iδ(x) = {k ∈ {1, . . . ,K} : |F (x)−fk(x)| ≤
δ} for some δ > 0 and decrease δ adaptively to accelerate
our algorithm. We call the point x a (δ, ε)-critical point of
Problem (P) if |∂FIδ | ≤ ε for the δ-active set Iδ . Given
(δ̄, ε̄), our proposed algorithm for finding an (δ̄,

√
ε̄)-critical

point of Problem (P) is shown in Algorithm 1. In the sth
iteration, we first choose a δs-active set and solve (LP) to
find a descent direction. We consider three cases:

1) If δs ≤ δ̄ and the optimal value of (LP) satisfies that
t∗ ≤ ε̄, then we are already at a (δ̄,

√
ε̄)-critical point

and thus terminate our algorithm.
2) If t∗ > ε̄, then −ds = −

∑
k∈Iδs (xs) λ

∗
kgk(xs)

obtained from (LP) is a descent direction. We then
apply an Armijo-type rule to perform a line search.
Specifically, we find the smallest integer l ≥ 0 such
that

F (xs − γθlds) ≤ F (xs)− τγθlt∗, (3)

where 0 < γ ≤ 1, 0 < θ < 1, and 0 < τ ≤ 0.5.
3) Otherwise, we have δs > δ̄ and t∗ ≤ ε̄. In this case,

the δs-active set may be too loose and we reduce the
value of δs by half and re-solve (LP) to see which
case we are in. Note that since δ̄ > 0, this step will
be repeated for at most dlog(δs−1/δ̄)e times, which is
finite.

In our implementation, we start with some relatively large δs
to achieve a large decrease in the first few iterations and then
reduce δs if Case 3 occurs. The following theorem shows
that our algorithm converges to some (δ̄,

√
ε̄) critical point

of Problem (P).

Theorem 2. Let {xs} be the sequence generated by Algo-
rithm 1 and {βs} be the step sizes chosen by the Armijo-type
rule. Then, given parameters 0 < τ ≤ 0.5, δ̄ > 0 and ε̄ > 0,
Algorithm 1 returns a (δ̄,

√
ε̄)-critical point of Problem (P)

in O(1/min{τθε̄2/8L3, τθε̄δ̄/16L2}) iterations.

Proof. From Proposition 1, we know that if t∗ ≤ ε̄, then
|∂FIδs | ≤

√
t∗ ≤

√
ε̄. Note that every iteration before

termination must have the property that t∗ ≥ ε̄ or δs ≥ δ̄.
Now, let us analyze the decrease in each iteration.

Let λ∗ = argminλ

∥∥∥∑k∈Iδs
λkgk(xs)

∥∥∥
2

and define ds =∑
k∈Iδs

λ∗kgk(xs). Then, for the true active set Is in iteration
s, we have Is ⊂ Iδs and

|∂FIs | ≥ |∂FIδs | ≥
t∗

2L
≥ ε̄

2L
. (4)

Algorithm 1 LPA-SD: First-order method for Problem (P)
Input: parameters δ̄, ε̄, τ , γ, θ, initial value of δs and

maximum iteration number M .
1: initialize x0.
2: for s = 0, 1, ... do
3: compute F = maxk fk(xs)
4: compute Iδs = {i : |F − fk(xs)| ≤ δs}
5: while δs ≥ δ̄ do
6: solve (LP) with active set Iδs to get the direction

ds and optimal value t∗

7: if t∗ ≤ ε̄ and δs ≤ δ̄ then
8: return
9: else if t∗ ≤ ε̄ then

10: set J = Iδs , δs = δs/2, Iδs = {i ∈ J :
|F − fk(xs)| ≤ δs}

11: else
12: break
13: end if
14: end while
15: choose step size βs > 0 via (3) and update

xs+1 =
xs − βsds

‖xs − βsds‖2
16: end for

For any ξ ∈ [0, 1], note that
∥∥(1− ξ)xs+1 + ξxs

∥∥2

2
=

ξ2(xs)Txs+(1−ξ)2(xs+1)Txs+1 +2ξ(1−ξ)(xs+1)Txs ≥
ξ2 + (1− ξ)2 ≥ 1/2. This follows since ds is orthogonal to
xs and hence the angle between xs+1 and xs is less than
90 degrees. Using (2), for any α > 0, we have

fk(xs+1) = (fk ◦R)(xs − αds)
= (fk ◦R)(xs) +∇(fk ◦R)(xs)T (−αds)

+
1

2
(−αds)T∇2(fk ◦R)(x̃s+1)(−αds)

≤ fk(xs)− αgradfk(xs)Tds + L ‖αds‖2

≤ fk(xs)− αgradfk(xs)Tds + 4α2L3,

where xs+1 = R(xs − αds) and x̃s+1 = xs +
ξ(xs+1 − xs) for some ξ ∈ [0, 1]. The first e-
quality uses Taylor expansion in Lagrangian form; the
first inequality is because

∥∥∇2(fk ◦R)(x̃s+1)
∥∥

2
=∥∥JTR (x̃s+1)∇2fk(x̃s+1)JR(x̃s+1)

∥∥
2

and ∇2fk(x̃s+1) ≤ LI
and
√

2I � I/
∥∥x̃s+1

∥∥
2
� JR(x̃s+1) � 0 as JR(x̃s+1) =

I/
∥∥x̃s+1

∥∥
2
− x̃s+1(x̃s+1)T /

∥∥x̃s+1
∥∥3

2
); the second inequal-

ity is because ‖ds‖2 ≤ 2L. Hence, for any step size
α ∈ (0, t∗/8L3], we have

fk(xs+1) ≤ fk(xs)− αgradfk(xs)Tds + 4α2L3

≤ fk(xs)− 1

2
αt∗

for k ∈ Is and

fk(xs+1) = fk(xs)− αgradfk(xs)Tds + 4α2L3

≤ fk(xs) + 4αL2 + αt∗



for k 6∈ Is. Now, define ηs = F (xs) − maxk/∈Is fk(xs) >
δs ≥ δ̄. For all α ≤ ηs/2(4L2 + t∗), we have

max
k/∈Is

fk(xs+1) ≤ F (xs)− ηs
2
.

Define α0 = min{t∗/8L3, ηk/2(4L2 + t∗)}. Then, we have
α0 ≥ min{t∗/8L3, δ̄/16L2} because t∗ ≤ 4L2. Hence, we
have

F (xs)− F (xs+1) ≥ min

{
αt∗

2
,
ηs
2

}
≥ min

{
αε̄

2
,
δ̄

2

}
for all α ≤ α0. Moreover, the Armijo step size in (3) is
bounded below by βs ≥ θα0 because 0 < τ ≤ 0.5. It
follows that

F (xs)− F (xs+1) ≥ τβst
∗

≥ τθε̄min

{
t∗

8L3
,

δ̄

16L2

}
≥ min

{
τθε̄2

8L3
,
τθε̄δ̄

16L2

}
and the proof is completed.

IV. SIMULATION RESULTS

We compare our first-order method (LPA-SD) with the
standard SLA algorithm (SLA-MOSEK) with codes provid-
ed by the authors in [4] and two SLA algorithms (SLA-MP
and SLA-LADMM) with codes provided by the authors in
[9]. Each subproblem of the standard SLA was a convex
quadratic programming problem and solved by the MOSEK
solver [14] using the modeling language YALMIP [15] as
in [4]. The two SLA algorithms in [9] use a Mirror-Prox
algorithm and a linearized ADMM to solve the subproblems
in each iteration of the SLA algorithm, respectively. Each
LP problem in our algorithm is solved by linprog in
MATLAB optimization toolbox with default accuracy. The
channel vectors of all users are generated with standard
complex normal distribution CN (0, I) and the noise variance
σk is set to be 1 for all users. All experiments were run on a
Windows desktop with 8 Intel i7 cores (3.40GHz) and 16GB
of RAM.

We use a same random initialization for all the four
algorithms. We set the maximum iteration number to be
150 in our numerical comparisons to achieve a tradeoff
between accuracy and time complexity. The initial δ is set
to be 1, δ̄ is set to be 10−5 and ε̄ = 10−3. We also
terminate our algorithm if F (xk+1) − F (xk) ≤ 10−5. The
parameters in the Armijo rule is set as τ = 0, γ = 1
and θ = 0.5. ( We find τ = 0 is sufficient to guarantee
a good piratical performance of our algorithm, although our
theoretical analysis requires τ > 0 being a small positive
number.) We also set the maximum iteration number to be 20
for each of the three SLA algorithms as in [4] and [9]. And
the inner iteration number of SLA-MP and SLA-LADMM
is set as 1000 and 600 for a tradeoff between accuracy and
time complexity. For SLA-MP, we set εb = 1e − 6 and the
step-size α = 2/L. For SLA-LADMM, we set the penalty
parameter ρ to be 1. Note that we try our best to improve the

tradeoff between accuracy and time complexity for the SLA
algorithms in [4] and [9]. We present our numerical results
in Figures 1 and 2, which are averaged over 200 channel
realizations. The comparison of average minimum SNR and
CPU time for fixed number of Tx antennas N = 25 and
increased number of users from 100 to 500 is shown in
Figures 1, while the comparison for fixed number of users
K = 50 and increased number of antennas N from 100 to
500 is shown in Figure 2. Before discussing the numerical
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Fig. 1. Evolution of minimum SNR and CPU time versus users number
K from 100 to 500 for antennas number N = 25.

results, let us illustrate how to efficiently implement the

Armijo rule in iteration s. Note that x =

[
y
z

]
,w =

y + iz and fk(x) = −
∥∥∥hHk w

σk

∥∥∥2

2
. For ease of notation,

let d =

[
s
t

]
and u = s + it. Then fk( ws−γθlus

‖ws−γθlus‖2
) =

−
∥∥∥ hHk (ws−γθlus)
σk‖ws−γθlus‖2

∥∥∥2

2
= −

∥∥∥hHk ws−γθlhHk us

σk‖ws−γθlus‖2

∥∥∥2

2
. Hence in

iteration s, the complexity of our algorithm is O(KN+lsK)
plus the time cost by the LP solver: the estimations of
hHk ws and hHk us for k = 1, . . . ,K cost O(KN); each
evaluation of fk( xs−γθlus

‖ws−γθlus‖2
) only need an estimation of∥∥ws − γθlus

∥∥
2

with complexity O(N) and several scalar
operations with complexity O(ls) where we denote ls the
times of line search with the Armijo rule at iteration s, and
thus the total cost is O(lsK + KN). From the figures we
can observe that our first-order method has slightly better
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Fig. 2. Evolution of minimum SNR and CPU time versus antennas number
N from 100 to 500 for user number K = 50.

average minimum SNR performance than the three SLA
based algorithms and takes much less CPU time. The similar
SNR performance may be because all these algorithms are
theoretically guaranteed to converge to a critical point and
the initial points are the same. The low time complexity
of our algorithm may be because of the lower number of
operations of our algorithm as analyzed below. Note that i)
the SLA-MOSEK solves a convex quadratic programming
problem for at most 20 iterations, ii) SLA-MP (SLA-
LADMM, respectively) has 20 outer iterations and 1000
(600, respectively) inner iterations, and each inner iteration
takes O(KN) operations. As anlayzed in last paragraph, out
algorithm takes O(lsK+KN) operations plus solving a LP
problem in each iteration (up to 150). The figures further
reveal that the speed of our method is almost independent
of the number of antennas as the bulk of the cost of our
method is solving the LP, whose dimension is determined by
the cardinality of the relative active set. Particularly when
the number of the antennas is N = 25, the dimension of
x is 50 and we also found that the cardinality of relative
active functions never exceeded 50 in our simulation. In the
setting of fixed users K = 50, the cardinality of relative
active functions cannot exceed the number of users, i.e.,
50. Our further investigation also verified that most of the
time complexity (more than 80% of total CPU time) is in
solving the LP problem. Hence the low dimension of the LP
problem and the low iteration number are the main reasons

that makes our algorithms efficient. The evolution of figures
also indicates that the outperformace of our algorithm may
be even more significant for higher dimensional problem
settings.

V. CONCLUSION

In the paper, we propose a new first-order algorithm
called LPA-SD for the max-min-fair formulation for the
SGMB problem. We further demonstrate convergence of our
algorithm to a critical point. Numerical results show that
our algorithm has slightly better minimum SNR values and
much less CPU time than the state of the art algorithms in the
literature for solving the SGMB problem. As future research,
we would like to extend our algorithm to problems with
more general objective and constraint, e.g., more complex
objective and any closed convex set constraint whose projec-
tion is easy to compute (e.g., massive MIMO multicasting).
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