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With this inaugural issue, the INFORMS Op-
timization Society is publishing a new newsletter:
“INFORMS OS Today.” It is a great pleasure to
welcome Shabbir Ahmed (sahmed@isye.gatech.edu)
as its Editor. Our plan is to start by publishing one
issue each Spring. At some point we may add a Fall
issue. Please let us know what you think about the
newsletter.

The current issue features articles by the 2010
OS prize winners: George Nemhauser (Khachiyan
Prize for Life-time Accomplishments in Optimiza-
tion), Zhi-Quan (Tom) Luo (Farkas Prize for Mid-
career Researchers), Anthony Man-Cho So (Prize for
Young Researchers), and Shiqian Ma (Student Pa-
per Prize). Each of these articles describes the prize-
winning work in a compact form.

Also, in this issue, we have announcements of key
activities for the OS: Calls for nominations for the
2011 OS prizes, a call for nominations of candidates
for OS officers, and the 2012 OS Conference (to be
held at the University of Miami, February 24–26,
2012). I want to emphasize that one of our most
important activities is our participation at the an-
nual INFORMS meetings, the next one being at the
Charlotte Convention Center, Charlotte, North Car-
olina, November 13–16, 2011. Our participation at
that meeting is centered on the OS sponsored clus-
ters. The clusters and cluster chairs for that meeting
mirror our list of Vice Chairs:
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• Steven Dirkse, Computational Optimization
and Software (sdirkse@gams.com)

• Oleg A. Prokopyev, Global Optimization
(prokopyev@engr.pitt.edu)

• Oktay Günlük, Integer Programming
(gunluk@us.ibm.com)

• Miguel Anjos, Linear Programming and Com-
plementarity (miguel-f.anjos@polymtl.ca)

• Mauricio Resende, Networks
(mgcr@research.att.com)

• Frank E. Curtis, Nonlinear Programming
(frank.e.curtis@gmail.com)

• Huseyin Topaloglu, Stochastic Programming
(ht88@cornell.edu)

Their hard work is the means by which we have a
strong presence within INFORMS — and we should
have a strong presence which reflects the OS mem-
bership of about 1000! Please contact any of the
Vice Chairs to get involved.

Additionally for the Charlotte meeting, jointly
with the INFORMS Computing Society, the OS
is co-sponsoring a mini-cluster on “Surrogate and
derivative-free optimization.” Please contact ei-
ther of the co-chairs for this cluster, Nick Sahini-
dis (sahinidis@cmu.edu) and Christine Shoemaker
(cas12@cornell.edu) to get involved.

Pietro Belotti is the new OS webmaster, and
he will be pleased to get your feedback on our
revamped website: www.informs.org/Community/

Optimization-Society.
Finally, I would like to take this opportunity to

thank our Most-Recent Past Chair Nick Sahinidis,
and our Secretary/Treasurer Marina Epelman for
making my job as Chair an enjoyable experience.

All of the OS officers and I look forward to seeing
you next at Charlotte in November — in particular,
at the OS Business Meeting which is always a great
opportunity to have a couple of glasses of wine and
catch up with members of our community.

Hooked on Optimization
George L. Nemhauser

Industrial and Systems Engineering
Georgia Institute of Technology, Atlanta GA 30332

(george.nemhauser@isye.gatech.edu)

This article is based on a presentation I gave at
a session sponsored by the Optimization Society at
the INFORMS 2010 annual meeting where I had
the great honor of being chosen as the first recip-
ient of the Khachiyan Prize for Life-time Accom-
plishments in Optimization. I would like to thank
the prize committee members Martin Grötschel,
Arkadi Nemirovski, Panos Pardalos and Tamás Ter-
laky and my friends and colleagues Bill Cook, Gérard
Cornuéjols and Bill Pulleyblank who nominated me.

I was first introduced to optimization in a course
in operations research taught by Jack Mitten when
I was an M.S. student in chemical engineering at
Northwestern University in 1958. Chemical pro-
cesses are a great source of optimization problems,
but at that time not much was being done except
for the use of linear programming for blending prob-
lems in the petro-chemical industry. When I learned
about dynamic programming in this course and saw
the schematic diagram of a multi-time period inven-
tory problem, I realized that it sort of looked like
a flow diagram for a multi-stage chemical process,
which I would now think of as a path in a graph.
The difference was that the serial structure would
not suffice for many chemical processes. We needed
more general graph structures that included feed-
back loops or directed cycles. So Jack Mitten, also
a chemical engineer by training, and I embarked
on how to extend dynamic programming type de-
composition to more general structures. I realized
that I needed to learn more about optimization than
fluid flow, so after completing my Master’s degree
I switched to the I.E. department with its fledgling
program in operations research for my PhD, and this
work on dynamic programming became my thesis
topic. I quickly learned about the trial and tribula-
tions of research and publication. As my work was
about to be completed, I submitted a paper on it and
was informed rather quickly that there was another
paper in process on the same topic written by the
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very distinguished chemical engineer/mathematician
Rutherford (Gus) Aris, a professor at the University
of Minnesota. Aris was an Englishman, and a true
scholar and gentleman. He was also a noted callig-
rapher and a professor of classics. After recovering
from the initial shock of this news, I carefully read
Aris’ paper on dynamic programming with feedback
loops, and discovered a fundamental flaw in his al-
gorithm. It took some time to convince him of this,
and we ultimately co-authored a paper [2], which
was essentially my algorithm. This was a good in-
troduction to the fact that the academic world was
not an ivory tower. It also motivated by first book,
Introduction to Dynamic Programming [19].

In 1961 I became an Assistant Professor in the
department of Operations Research and Industrial
Engineering at Johns Hopkins University. My first
student Bill Hardgrave and I were trying to under-
stand why the traveling salesman (TSP) problem
seemed so much harder to solve than the shortest
path problem (SPP). We thought we might have had
a breakthrough when we figured out how to reduce
the TSP to the longest path problem (LPP). Perhaps
this was an early example of a polynomial reduction.
But in our minds it was not, as is currently done, for
the purpose of proving NP-hardness, a concept that
would only appear more than a decade later. Our
idea was that the LPP was closer to the SPP, so
maybe we could solve the TSP by finding an efficient
algorithm for the LPP. Being engineers, we liked the
notion of physical models and especially the string
model of Minty for solving the SPP - pull from both

George L. Nemhauser

ends, and the first path to become tight is a short-
est path. For the longest path build the graph with
rubber bands instead of string - pull from both ends,
and the last rubber band to remain slack is an edge
of the longest path. Now you could proceed recur-
sively. We actually built these rubber band models
for graphs with up to about eight nodes, and our
conjecture seemed to hold for our examples. How-
ever we were never able to prove the conjecture as
we were unable to describe the physical model math-
ematically. Nevertheless, the work was published in
Operations Research [15], my first of many papers in
the journal of which I became the editor several years
later. We also submitted the paper to the 4th Inter-
national Symposium on Mathematical Programming
held in 1962, but it was rejected. So I didn’t get to
one of these meetings until the 8th one in 1973. But
I haven’t missed one since then, and I wonder if I
hold the record for consecutive attendance at these
conferences.

Being an engineer, I tended to learn about opti-
mization techniques and the underlying mathemat-
ics only as I needed to solve problems. My first
real involvement with integer programming (IP),
other than teaching a little about cutting planes and
branch-and-bound, came from a seminar presenta-
tion on school districting. This was around the time
when congressional districting at the state level was
being examined by the federal courts. Many states,
my current home state of Georgia was one of the
worst, had congressional districts that were way out
of balance with respect to the principle of “one man,
one vote.” The average congressional district should
have had a population of around 400,000 then, but
in Georgia they ranged from about 100,000 to nearly
800,000. The Supreme Court had just declared such
districting plans to be unconstitutional, and redis-
tricting was a hot topic. I had recently read a pa-
per on solving vehicle routing problems using a set
partitioning model, and it was easy to see that set
partitioning was the right model for districting.

The difficulty was to describe feasible districts
by population, compactness, natural boundaries
and possibly political requirements. These districts
would be constructed from much smaller population
units such as counties in rural areas and smaller geo-
graphical units in urban areas. The cost of a district
would be its population deviation from the mean
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given by the state’s population divided by the num-
ber of congressional districts; i.e. the population of
a perfect district. Given the potential districts, we
then have the set partitioning problem of choosing a
minimum cost set of districts such that each popu-
lation unit is in exactly one district. My student,
Rob Garfinkel worked on this districting problem
for his doctoral research. Rob had been a program-
mer before beginning his graduate studies, and he
made great use of his machine language program-
ming skills in implementing our implicit enumeration
algorithm [9]. Of course, our solutions were subopti-
mal since we generated all of our candidate districts
up front. Branch-and-price hadn’t entered my mind
then.

Soon after that work was completed, in 1969 I left
Hopkins for Cornell determined to learn more and
do more IP. I was convinced that IP modeling was
very robust for operations research applications but
the models were hard to solve. One of the difficul-
ties in getting students involved in integer program-
ming was the absence of an IP book that could serve
as a text for graduate students and also as a refer-
ence for researchers. Fortunately when I moved to
Cornell, Garfinkel took a position at the University
of Rochester only 90 miles from Ithaca, and we be-
gan collaborating on our book Integer Programming
which was published in 1972 [10].

Also, motivated by the set partitioning work, I
got my first NSF grant in IP, which was to study
theory and algorithms for set packing, partitioning
and covering. I worked with my student Les Trotter
on polyhedral structure and algorithms for the node
packing and independent set problem [22]. Our work
was influenced by Ray Fulkerson who joined the Cor-
nell faculty a couple of years after I did and taught
us, among other things, the beautiful theory con-
necting perfect graphs and the class of IPs known as
node packing. While Ray was not computationally
oriented, he had insight on what made integer pro-
grams hard and gave us the family of Steiner triple
set covering problems that are now part of the MI-
PLIB library of IP test problems and still remain
difficult to solve [8]. Ray also started the coopera-
tion between Cornell and Waterloo where Jack Ed-
monds and his students were doing exciting work
on matroids, matching and other combinatorial op-
timization problems. I first met Bill Cunningham,

Bill Pulleyblank and Vašek Chvátal when they were
graduate students at Waterloo.

I became interested in transportation and espe-
cially using optimization to solve equilibrium prob-
lems of traffic assignment. Together with my student
Deepak Merchant, we wrote the first papers on dy-
namic traffic assignment [18].

Marshall Fisher visited Cornell in 1974, and to-
gether with my student Gérard Cornuéjols, we
worked on a facility location problem that was moti-
vated by a problem of locating bank accounts so that
companies could maximize the time they could hold
money they owed and hence their cash flow. I think
this was some of the early work on the analysis of ap-
proximation algorithms that is now so popular, and
we were fortunate to receive the Lanchester prize for
a paper we published on it [5].

I began my long and very fruitful collaboration
with Laurence Wolsey in the fall of 1975 when I
was the research director of the Center for Oper-
ations Research and Econometrics (CORE) at the
University of Louvain. In generalizing the facility
location analysis, Laurence, Marshall and I figured
out that submodularity was the underlying princi-
ple [7]. Laurence and I wrote several papers during
this period, but nothing on computational integer
programming. I think that was typical of the 1970s.
We just didn’t have the software or the hardware to
experiment with computational ideas. At the time I
think it was fair to say that from a practical stand-
point branch-and-bound was it.

However, beginning in the late 1970s and early
1980s a new era of computational integer program-
ming based on integrating polyhedral combinatorics
with branch-and-bound was born. As Laurence
Wolsey and I saw, and participated in these excit-
ing developments, we thought that the field needed
a new integer programming book so that researchers
would have good access to the rapid changes that
were taking place. I think we first talked about this
project in the late 1970s but I was chairman of the
OR department at Cornell and didn’t have the time
until I had my sabbatical leave in 1983-84 at CORE.
We worked very hard on the book that academic
year not realizing that it would take us five more
years to complete it [23]. We were honored when
in 1989 it received the Lanchester prize. We tried
not to get too distracted by all of the unsolved prob-
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lems that arise in the process of putting results from
papers into a book. But we couldn’t resist study-
ing the basic question of finding for mixed-integer
problems the analog of Chvátal’s rounding for pure
integer programming. Solving that question led to
what we called mixed-integer rounding, which has
become a key tool for deriving cuts based on struc-
ture for mixed-integer programs [24].

After returning from CORE, I spent one more year
at Cornell and then moved to Georgia Tech. By
this time I really wanted to work on some real prob-
lems and to apply integer programming in practice.
Ellis Johnson came to Tech soon thereafter having
played a leadership role in the development of IBM’s
OSL code for mixed integer programming. Thanks
to Ellis, IBM provided support for us to teach MIP
short courses to people from industry using OSL.
This opened up tremendous research opportunities
with industry and led to long-term relations with
several airlines and other companies mainly with
supply chain optimization problems [1, 14, 16, 26].
These projects with industry generated many PhD
dissertations including those of Pam Vance, Dan
Adelman, Greg Glockner, Ladislav Lettowsky, Diego
Klabjan, Andrew Schaefer, Jay Rosenberger and Jeff
Day. Martin Savelsbergh and Cindy Barnhart joined
our faculty and participated actively in our collab-
orations with industry. Some of this work led us
to thinking about column generation in integer pro-
gramming and to branch-and-price [4]. During this
period, as Georgia Tech Faculty Representative for
Athletics, I got involved with Mike Trick in sports
scheduling. Our first work was scheduling basket-
ball for the Atlantic Coast Conference [21]. Later
on we formed a company called the Sports Schedul-
ing Group, and we now, together with my student
Kelly Easton, schedule major league baseball as well
as several other sports conferences

OSL had a much better MIP solver than earlier
commercial codes using some of the new technology
like lifted cover cuts. But the ability to experiment
with new ideas for cuts, branching, preprocessing
and primal heuristics was still missing. My student
Gabriel Sigismondi and I began the development of
a MIP research code that was a branch-and-bound
shell that would call an LP solver and would give the
user all of the LP information needed to write sub-
routines for cuts, branching, etc. Martin Savelsbergh

joined us from the Netherlands as a postdoc and be-
came the key person in the creation of our research
code called MINTO [20], which for many years was
the code widely used by researchers in integer pro-
gramming to evaluate the implementation of their
theoretical results. Many of the ideas from MINTO,
developed with Martin, were incorporated in the ear-
lier releases of CPLEX’s MIP code. In fact our stu-
dent, Zhonghau Gu, became the key person in the
development of the MIP code for subsequent releases
of CPLEX and GUROBI. Several of my Georgia
Tech students, including Alper Atamtürk, Ismael de
Farias, Zhonghau Gu, Andrew Miller, Jean-Philippe
Richard and Juan Pablo Vielma produced many new
results in integer programming [3, 6, 11, 25, 27].

More recently, I have been collaborating with my
colleague Shabbir Ahmed. Together with students,
Yongpei Guan, Jim Luedtke and Juan Pablo Vielma,
we have been making some progress on polyhedral
aspects of stochastic integer programming [12, 13,
17].

I have been extremely fortunate throughout my
academic career to have worked with an incredible
group of PhD students and postdocs. I owe them
a great debt, and they help keep me a young 73.
So I would like to end this note by recognizing all
of my graduated PhD students and postdoctoral
associates by listing all of their names.

PHD STUDENTS

1961-69 Johns Hopkins (11): Bill Hardgrave,
Hugh Bradley, Mike Thomas, Zev Ulmann, Gil
Howard, Hank Nuttle, Dennis Eklof, Robert
Garfinkel, Gus Widhelm, Joe Bowman, Sherwood
Frey.

1970-85 Cornell (15): Les Trotter, Jim Fer-
gusson, Deepak Merchant, Pierre Dejax, Mike
Ball, Glenn Weber, Gérard Cornuéjols, Wen-Lian
Hsu, Yoshi Ikura, Gerard Chang, Ronny Aboudi,
Victor Masch, Russ Rushmeier, Gabriel Sigismondi,
Sung-Soo Park.

1985-2010 Georgia Tech (29): Heesang Lee,
Anuj Mehrotra, Pam Vance, Erick Wikum, John
Zhu, Zhonghau Gu, Y. Wang, Ismael de Farias,
Dasong Cao, Dan Adelman, Greg Glockner, Alper
Atamtürk, Ladislav Lettowsky, Diego Klabjan,
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Dieter Vandenbussche, Ahmet Keha, Yongpei
Guan, Yetkin Ileri, Jay Rosenberger, Jean Philippe
Richard, Kelly Easton, Jeff Day, James Luedtke,
Faram Engineer, Renan Garcia, Michael Hewitt,
Gizem Keysan, Alejandro Toriello, Byungsoo Na.

POST DOCTORAL STUDENTS (6):
Ram Pandit, Natashia Boland, Petra Bauer, Emilie
Danna, Bram Verweij, Menal Güzelsoy.
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First Order Methods for
Large Scale Optimization:

Error Bounds and
Convergence Analysis

Zhi-Quan Luo
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455, USA

(luozq@umn.edu)

1. Preamble
Needless to say, I am deeply honored by the recog-
nition of the 2010 Farkas prize. Over the years, my
research has been focused on various algorithmic and
complexity issues in optimization that are strongly
motivated by engineering applications. I think the
2010 Farkas prize is, more than anything, a recog-
nition of this type of interdisciplinary optimization
work.

Of course, doing research is not so much about
winning a prize as it is about having fun, especially
if you have an opportunity to work with smart col-
leagues and students. In this regard, I have been
blessed. Collaborations with brilliant people like
Paul Tseng and Jos Sturm had been a real source
of inspiration. I am really fortunate to have worked
closely with my professors at MIT, John Tsitsik-
lis and Dimitri Bertsekas, and later with colleagues
like Jong-Shi Pang, Yinyu Ye and Shuzhong Zhang.
They have taught me many things. Their energy
and wisdom have shaped my research and enriched
my academic life. To all of them and to the prize
committee, I am deeply grateful.

If I have to pick one individual that had the most
impact on my research over the last 20 years, it
would be my close friend Paul Tseng, with whom
I had published 20 journal papers. That amounts
to one joint paper per year, for 20 years! This in
itself is a true testament of the depth and breadth

of our collaboration. It is to the fond memories of
Paul that I dedicate this article.

In 1989 while I was finishing up my Ph.D thesis
at MIT, Paul Tseng, then a postdoc with Bertsekas,
posed an open question to me as a challenge: estab-
lish the convergence of the matrix splitting algorithm
for convex QP with box constraints. We worked re-
ally hard for a few months and eventually settled
this question. The set of techniques we developed
for solving this problem turned out to be quite useful
for a host of other problems and algorithms. This
then led to a series of joint papers [1-7] published
in the early part of 1990’s in which we developed
a general framework for the convergence analysis of
first order methods for large scale optimization. This
framework is broad, and allows one to establish lin-
ear rate of convergence in the absence of strong con-
vexity. Most interestingly, some of this work has a
direct bearing on the L1-regularized sparse optimiza-
tion found in many contemporary applications such
as compressive sensing and imaging processing. In
the following, I will briefly outline this algorithmic
framework and the main analysis tools (i.e., error
bounds), and mention their connections to the com-
pressive sensing applications.

2. A General Framework
Let f : <n 7→ < be a continuously differentiable
function whose gradient is Lipschitz continuous on
some nonempty closed convex set X in <n. We are

Zhi-Quan Luo and Paul Tseng
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interested in finding a stationary point of f over X,
i.e., a point x ∈ <n satisfying

x = [x−∇f(x)]+X ,

where [·]+X denotes the orthogonal projection onto
X. We assume throughout that infx∈X f(x) > −∞
and that the set of stationary points, denoted by X̄,
is nonempty.

We consider a class of feasible descent methods
that update the iterates according to

xr+1 := [xr − αr∇f(xr) + er]+X , r = 0, 1, ... (1)

where er is a sufficiently small “error” vector satis-
fying

‖er‖ ≤ κ1‖xr+1 − xr‖, κ1 > 0,

and the step size αr can be chosen either as a suitable
constant, via the exact line search or by the Armijo
rule. This is a broad class that includes a gradi-
ent projection algorithm of Goldstein and Levitin
and Polyak, a certain matrix splitting algorithm for
convex QP, coordinate descent methods, the extra-
gradient method of Korpelevich, and the proximal
minimization algorithm of Martinet, among others.
The aforementioned methods have been studied ex-
tensively. Unfortunately, the existing analysis (prior
to 1990) typically requires some nondegeneracy as-
sumption on the problem (such as uniqueness of the
solution) which does not hold for many “real-world”
problems.

A new line of analysis was introduced by Tseng
and myself whose key lies in a certain error bound
which estimates the distance to the solution set X̄
from an x ∈ X near X̄: for every υ ≥ infx∈X f(x)
there exist scalars δ > 0 and τ > 0 such that

dist(x, X̄) ≤ τ‖x− [x−∇f(x)]+X‖, (2)

for all x ∈ X with f(x) ≤ υ and ‖x−[x−∇f(x)]+X‖ ≤
δ. In addition, we make a mild assumption on f and
X regarding the “proper” separation of the isocost
surfaces of f on the solution set X̄: there exists a
scalar ε > 0 such that

x, y ∈ X̄, f(x) 6= f(y) ⇒ ‖x− y‖ ≥ ε. (3)

This condition holds whenever f takes on only a fi-
nite number of values on X̄ or whenever the con-
nected components of X̄ are properly separated from

each other. In particular, it holds automatically
when f is convex.

By using the error bound (2) and the isocost sur-
face separation condition (3), it has been shown that
a sequence generated by iterations of the form (1)
converges at least linearly to a stationary point in X̄
(even if X̄ is not a singleton). This result implies,
as an immediate consequence, linear rate of conver-
gence for, respectively, the extragradient method,
the proximal minimization algorithm, and the co-
ordinate descent method. A nice feature of these
convergence results is that they do not require any
nondegeneracy assumption on the problem.

We summarize below the known sufficient condi-
tions for both (2) and (3) to hold.

(a) (Strongly convex case). f is strongly convex.
(b) (Quadratic case). f is quadratic. X is a poly-

hedral set.
(c) (Composite case). f(x) = 〈q, x〉 + g(Ex), ∀x,

where E is an m× n matrix with no zero column, q
is a vector in <n, and g is a strongly convex differen-
tiable function in <m with ∇g Lipschitz continuous
in <m. X is a polyhedral set.
(d) (Dual functional case).

f(x) = 〈q, x〉+ max
y∈Y
{〈Ex, y〉 − g(y)} ∀x,

where Y is a polyhedral set in <m, E is an m × n
matrix with no zero column, q is a vector in <n,
and g is a strongly convex differentiable function in
<m with ∇g Lipschitz continuous in <m. X is a
polyhedral set.

3. L1-regularized Minimization
In contemporary applications of large scale convex
optimization, we are interested in the L1-regularized
convex QP:

min
x∈<n

f(x) = λ‖x‖1 +
1

2
‖Ax− b‖2, (4)

where λ > 0 is a constant, A is an m×n matrix, and
b is a vector in <m. The optimization problem (4)
arises naturally in compressive sensing applications
where the goal is to obtain a sparse solution to a large
but under-determined linear system Ax = b. Notice
that if matrix A has full column rank, then f(x) is
strictly convex. However, in practical applications
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(e.g., compressive sensing), A is a fat matrix (i.e.,
m � n) and the objective function f(x) may not
be strictly convex, so there can be multiple optimal
solutions for (4).

The main difference between (4) and the problem
in Section 2 is the inclusion of a non-smooth term
‖x‖1 in the objective function. Can we extend the
rate of convergence analysis framework described in
Section 2 to this non-smooth setup? The answer is
positive. In particular, Paul Tseng in 2001 (before
the L1-minimization became a hot research topic)
showed a general result [8] for the coordinate descent
method as long as the non-smooth term is separable
across variables. Specialized to (4), Paul’s result im-
plies that each limit point generated by the coordi-
nate descent algorithm for solving (4) is a global op-
timal solution. Recently, we have further strength-
ened this result to show that the entire sequence of
iterates converge linearly to a global optimal solution
(4) without any nondegeneracy assumption.

More generally, Paul Tseng considered [9] a class
of proximal gradient method for minimizing over a
convex set X an objective function f(x) = f1(x) +
f2(x), where both f1 and f2 are convex, but f2 might
be non-smooth. He showed that as long as the local
error bound holds around the optimal solution set,
the global linear convergence can be expected even in
this non-smooth setup. Remarkably, Paul was able
to establish a local error bound for the Group Lasso
case where f(x) = λ

∑
J∈J ‖xJ‖2+ 1

2‖Ax−b‖
2. Here

J is a partition of {1, 2, ..., n} and xJ is a subvec-
tor of x with components taken from J ∈ J . It is
likely that this framework can be further extended
to other types of non-smooth convex optimization
problems/algorithms used for recovering sparse or
low-rank solutions.
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Probability Inequalities for
Sums of Random Matrices
and Their Applications in

Optimization
Anthony Man–Cho So

Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong,

Shatin, N. T., Hong Kong

(manchoso@se.cuhk.edu.hk)

In this article, I will highlight the main ideas in
my recent work Moment Inequalities for Sums of
Random Matrices and Their Applications in Opti-
mization (accepted for publication in Mathematical
Programming, 2009) and discuss some of the recent
developments.

The story begins with a groundbreaking work of
Nemirovski [4], which revealed a close relationship
between the theoretical properties of a host of opti-
mization problems and the behavior of a sum of cer-
tain random matrices. Indeed, Nemirovski showed
that the construction of so–called safe tractable
approximations of certain chance constrained lin-
ear matrix inequalities, as well as the analysis
of a semidefinite relaxation of certain non–convex
quadratic optimization problems, can be achieved by
answering the following question:

Question (Q) Let ξ1, . . . , ξh be independent mean
zero random variables, each of which is either (i)

Nick Sahinidis presenting the 2010
Young Researcher Prize to Anthony Man–Cho So

supported on [−1, 1], or (ii) normally distributed
with unit variance. Furthermore, let Q1, . . . , Qh be
arbitrary m× n matrices satisfying

∑h
i=1QiQ

T
i � I

and
∑h

i=1Q
T
i Qi � I. Under what conditions on

t > 0 will we have an exponential decay of the tail

probability Pr
(∥∥∥∑h

i=1 ξiQi

∥∥∥
∞
≥ t
)

? Here, ‖A‖∞
denotes the spectral norm of the m× n matrix A.

In a technical tour de force, Nemirovski showed
that whenever t ≥ Ω((m + n)1/6), the aforemen-
tioned tail probability will have an exponential de-
cay. Moreover, he conjectured that the same result
would hold for much smaller values of t, namely, for
t ≥ Ω(

√
ln(m+ n)). As argued in [4], the threshold

Ω(
√

ln(m+ n)) is in some sense the best one could
hope for. Moreover, if the above conjecture is true,
then it would immediately imply improved perfor-
mance guarantees for various optimization problems.
Therefore, there is great interest in determining the
validity of this conjecture.

As it turns out, the behavior of the matrix–valued
random variable Sh ≡

∑h
i=1 ξiQi has been exten-

sively studied in the functional analysis and prob-
ability theory literature. One of the tools that is
particularly useful for addressing Nemirovski’s con-
jecture is the so–called Khintchine–type inequali-
ties. Roughly speaking, such inequalities provide
upper bounds on the p–norm of the random vari-
able ‖Sh‖∞ in terms of suitable normalizations of the
matrices Q1, . . . , Qh. Once these bounds are avail-
able, it is easy to derive tail bounds for ‖Sh‖∞ using
Markov’s inequality. In my work, I showed that the
validity of Nemirovski’s conjecture is in fact a sim-
ple consequence of the so–called non–commutative
Khintchine’s inequality in functional analysis [3] (see
also [1]). Using this result, I was then able to obtain
the best known performance guarantees for a host of
optimization problems.

Of course, this is not the end of the story. In fact,
it is clear from recent developments that the behav-
ior of a sum of random matrices plays an important
role in the design and analysis of many optimization
algorithms. One representative example is the anal-
ysis of the nuclear norm minimization heuristic (see,
e.g., [6] and the references therein). Furthermore,
there has been some effort in developing easy–to–
use recipes for deriving tail bounds on the spectral
norm of a sum of random matrices [5, 7]. In a re-

mailto:manchoso@se.cuhk.edu.hk
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cent work [2], we applied such recipes to construct
safe tractable approximations of chance–constrained
linear matrix inequalities with dependent perturba-
tions. Our results generalize the existing ones in
several directions and further demonstrate the rel-
evance of probability inequalities for matrix–valued
random variables in the context of optimization.

In summary, recent advances in probability the-
ory have yielded many powerful tools for analyzing
matrix–valued random variables. These tools will be
invaluable as we tackle matrix–valued random vari-
ables that arise quite naturally in many optimization
problems.
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Fast Multiple Splitting
Algorithms for Convex

Optimization
Shiqian Ma

Department of IEOR, Columbia University
New York, NY 10027

(sm2756@columbia.edu)

Our paper “Fast Multiple Splitting Algorithms
for Convex Optimization” [3] considers alternating
direction type methods for minimizing the sum of
K(K ≥ 2) convex functions fi(x), i = 1, . . . ,K:

min
x∈Rn

F (x) ≡
K∑
i=1

fi(x). (1)

Many problems arising in machine learning, medical
imaging and signal processing etc., can be formu-
lated as minimization problems of the form of (1).
For example, the robust principal component anal-
ysis problem can be cast as minimizing the sum of
two convex functions (see [2]):

min
X∈Rm×n

‖X‖∗ + ρ‖M −X‖1, (2)

where ‖X‖∗ is the nuclear norm of X, which is
defined as the sum of the singular values of X,
‖Y ‖1 :=

∑
ij |Yij |, M ∈ Rm×n and ρ > 0 is a weight-

ing parameter. As another example, one version of
the compressed sensing MRI problem can be cast as
minimizing the sum of three convex functions (see
[5]):

min
x∈Rn

αTV (x) + β‖Wx‖1 + 1
2‖Ax− b‖

2, (3)

where TV (x) is the total variation function, W is
a wavelet transform, A ∈ Rm×n, b ∈ Rm and
α > 0, β > 0 are weighting parameters. Although
these problems can all be reformulated as conic pro-
gramming problems, (e.g., (2) can be reformulated
as a semidefinite programming problem and (3) can
be reformulated as a second-order cone programming
problem), polynomial-time methods such as interior-
point methods are not practical for these problems
because they are usually of huge size. However, these

http://arxiv.org/abs/0910.0651
http://arxiv.org/abs/0910.0651
http://arxiv.org/abs/1004.4389
http://arxiv.org/abs/1004.4389
mailto:sm2756@columbia.edu
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problems have a common property: although it is
not easy to minimize the sum of the fi’s, it is rela-
tively easy to solve problems of the form

min
x∈Rn

τfi(x) + 1
2‖x− z‖

2
2

for each of the functions fi(x) for any τ > 0 and
z ∈ Rn. Thus, alternating direction type methods
that split the objective function and minimize each
function fi alternatingly can be effective for these
problems.

The main contribution of [3] is two classes of alter-
nating direction type methods, which are called mul-
tiple splitting algorithms (MSA) in [3], with prov-
able iteration complexity bounds for obtaining an
ε-optimal solution. For the unconstrained problem

min
x

f(x), (4)

x is called an ε-optimal solution to (4) if f(x) ≤
f(x∗) + ε, where x∗ is an optimal solution to (4). It-
eration complexity results for gradient methods have
been well studied in the literature. It is known that
if one applies the classical gradient method with step
length τk

xk+1 := xk − τk∇f(xk) (5)

to solve (4), an ε-optimal solution is obtained in
O(1/ε) iterations under certain conditions. In [6],
Nesterov proposed techniques to accelerate (5). One
of his acceleration techniques implements the follow-
ing at each iteration:{

xk+1 := yk − τk∇f(yk)

yk+1 := xk + k−1
k+2(xk − xk−1). (6)

(Left to right) Miguel Anjos, Sven Leyffer,
Shiqian Ma and Nick Sahinidis

Nesterov proved that the iteration complexity of (6)
is O(1/

√
ε) for obtaining an ε-optimal solution [6, 7].

He also proved that O(1/
√
ε) is the best bound one

can get if one uses only first-order information.
Our MSA algorithms are based on the idea of split-

ting the objective function intoK parts and applying
a linearization technique to minimize each function
fi plus a proximal term, alternatingly. The basic
version of MSA iterates the following updates:{

xi(k+1) := pi(w
i
(k), . . . , w

i
(k)), ∀i = 1, . . . ,K

wi
(k+1) := 1

K

∑K
j=1 x

j
(k+1), ∀i = 1, . . . ,K,

(7)

with initial points w1
(0) = . . . = wK

(0) = x0, where

pi(v
1, . . . , vi−1, vi+1, . . . , vK)

:= arg minuQi(v
1, . . . , vi−1, u, vi+1, . . . , vK),

Qi(v
1, . . . , vi−1, u, vi+1, . . . , vK)

:= fi(u) +
∑K

j=1,j 6=i f̃j(u, v
j)

and

f̃i(u, v) := fi(v) + 〈∇fi(v), u− v〉+
1

2µ
‖u− v‖2.

Notice that Qi(v
1, . . . , vi−1, u, vi+1, . . . , vK) is an

approximation to F (u) that keeps the function
fi(u) unchanged and linearizes the other functions
fj(u), j 6= i while adding proximal terms.

The following theorem gives the iteration com-
plexity result for Algorithm MSA.

Theorem 1 Suppose x∗ is an optimal solution
to problem (1). Assume fi’s are smooth func-
tions and their gradients are Lipschitz continuous
with Lipschitz constants L(fi), i=1,. . . ,K. If µ ≤
1/maxi{L(fi)}, then the sequence {xi(k), w

i
(k)}

K
i=1

generated by MSA (7) satisfies:

min
i=1,...,K

F (xi(k))− F (x∗) ≤ (K − 1)‖x0 − x∗‖2

2µk
.

Thus (7) produces a sequence that converges in objec-
tive function value. Also, when µ ≥ β/maxi{L(fi)}
where 0 < β ≤ 1, to get an ε-optimal solution, the
number of iterations required is O(1/ε).

The proof of this theorem basically follows an ar-
gument used by Beck and Teboulle in [1] for prov-
ing the iteration complexity of the Iterative Shrink-
age/Thresholding Algorithm.



Volume 1 Number 1 March 2011 13

A fast version of MSA (FaMSA) is also presented
in [3]. Under the same assumptions as in Theorem
1, the iteration complexity bound of FaMSA is im-
proved to O(1/

√
ε) while the computational effort in

each iteration is almost the same as in MSA.
To the best of our knowledge, the iteration com-

plexity results for MSA and FaMSA are the first ones
of this type that have been given for alternating di-
rection methods involving three or more directions
(i.e., functions).

Our theorems require the functions to be smooth
to prove the complexity. However, if any of the func-
tions are not smooth as is the case in (2) and (3),
we can use the smoothing technique proposed by
Nesterov in [8] to smooth them. This smoothing
technique also guarantees that the gradients of the
smoothed functions are Lipschitz continuous.

The numerical results in [3] show that the mul-
tiple splitting algorithms are much faster than the
classical interior-point method for solving some ran-
domly created Fermat-Weber problems. Also, since
the multiple splitting algorithms in [3] are all Jacobi
type algorithms, their performance should be even
better if they can be implemented in a parallel com-
puting environment.

Gauss-Seidel type alternating linearization meth-
ods are studied in another paper [4].
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Nominations for Society
Prizes Sought

The Society awards four prizes, now annually, at
the INFORMS annual meeting. We seek nomina-
tions and applications for each of them, due by June
30, 2011. Details for each of the prizes, including
eligibility rules and past winners, can be found by
following the links from http://www.informs.org/

Community/Optimization-Society/Prizes.
Each of the four awards includes a cash amount of

US$ 1,000 and a citation certificate. The award win-
ners will be invited to give a presentation in a special
session sponsored by the Optimization Society dur-
ing the INFORMS annual meeting in Charlotte, NC
in November 2011 (the winners will be responsible
for their own travel expenses to the meeting).

The Khachiyan Prize is awarded for outstand-
ing life-time contributions to the field of optimiza-
tion by an individual or team. The topic of the
contribution must belong to the field of optimiza-
tion in its broadest sense. Recipients of the IN-
FORMS John von Neumann Theory Prize or the
MPS/SIAM Dantzig Prize in prior years are not eli-
gible for the Khachiyan Prize. The prize committee
for the Khachiyan Prize is as follows:

• George Nemhauser (Chair)
george.nemhauser@isye.gatech.edu

• Tamás Terlaky

• Yurii Nesterov

• Lex Schrijver

Nominations and applications for the Khachiyan
Prize should be made via EasyChair https://www.

easychair.org/conferences/?conf=ioskp2011.
Please direct any inquiries to the prize-committee
chair.
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The Farkas Prize is awarded for outstanding con-
tributions to the field of optimization by a researcher
or a team of researchers. The contribution may be a
published paper, a submitted and accepted paper, a
series of papers, a book, a monograph, or software.
The author(s) must have been awarded their termi-
nal degree within twenty five calendar years preced-
ing the year of the award. The prize committee for
the Farkas Prize is as follows:

• Gérard Cornuéjols (Chair)
gc0v@andrew.cmu.edu

• Alexander Shapiro

• David Shmoys

• Stephen Wright

Nominations and applications for the Farkas Prize
should be made via email to the prize-committee
chair. Please direct any inquiries to the prize-
committee chair.

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization that is submitted to and
accepted, or published in a refereed professional jour-
nal. The paper must be published in, or submitted
to and accepted by, a refereed professional journal
within the four calendar years preceding the year
of the award. All authors must have been awarded
their terminal degree within eight calendar years pre-
ceding the year of award. The prize committee for
the Prize for Young Researchers is as follows:

• Jim Renegar (Chair)
renegar@cornell.edu

• Dan Bienstock

• Endre Boros

• Tom McCormick

Nominations and applications for the Prize for
Young Researchers should be made via email to the
prize-committee chair. Please direct any inquiries to
the prize-committee chair.

The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received or pub-
lished in a refereed professional journal within three
calendar years preceding the year of the award. Ev-
ery nominee/applicant must be a student on the
first of January of the year of the award. Any co-
author(s) not nominated for the award should send a

letter indicating that the majority of the nominated
work was performed by the nominee(s). The prize
committee for the Student Paper Prize is as follows:

• Matthias Köppe (Chair)
mkoeppe@math.ucdavis.edu

• Katya Scheinberg

• Jean-Philippe Richard

Nominations and applications for the Student Pa-
per Prize should be made via email to the prize-
committee chair. Please direct any inquiries to the
prize-committee chair.

Nominations of Candidates
for Society Officers Sought

Nick Sahinidis will have completed his term as
Most-Recent Past-Chair of the Society at the con-
clusion of the 2011 annual INFORMS meeting. Jon
Lee is continuing as Chair through 2012. Marina
Epelman will have completed her (extended) term
as Secretary/Treasurer, also at the conclusion of the
INFORMS meeting. The Society is indebted to Nick
and Marina for their work.

We would also like to thank four Society Vice-
Chairs who will be completing their two-year terms
at the conclusion of the INFORMS meeting: Miguel
Anjos, Steven Dirkse, Oktay Günlük and Mauricio
Resende.

We are currently seeking nominations of
candidates for the following positions:

• Chair-Elect

• Secretary/Treasurer

• Vice-Chair for Computational Optimiza-
tion and Software

• Vice-Chair for Integer Programming

• Vice-Chair for Linear Programming and
Complementarity

• Vice-Chair for Networks

Self nominations for all of these positions are en-
couraged.

mailto:gc0v@andrew.cmu.edu
mailto:renegar@cornell.edu
mailto:mkoeppe@math.ucdavis.edu
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To ensure smooth transition of the chairmanship
of the Society, the Chair-Elect is elected and serves
a one-year term before assuming a two-year position
as Chair; thus this is a three-year commitment. As
stated in the Society Bylaws, “The Chair shall be
the chief administrative officer of the OS and shall
be responsible for the development and execution of
the Society’s program. He/she shall (a) call and or-
ganize meetings of the OS, (b) appoint ad hoc com-
mittees as required, (c) appoint chairs and members
of standing committees, (d) manage the affairs of the
OS between meetings, and (e) preside at OS Council
meetings and Society membership meetings.”

According to Society Bylaws, “The Secre-
tary/Treasurer shall conduct the correspondence of
the OS, keep the minutes and records of the Society,
maintain contact with INFORMS, receive reports of
activities from those Society Committees that may
be established, conduct the election of officers and
Members of Council for the OS, make arrangements
for the regular meetings of the Council and the mem-
bership meetings of the OS. As treasurer, he/she
shall also be responsible for disbursement of the So-
ciety funds as directed by the OS Council, prepare
and distribute reports of the financial condition of
the OS, help prepare the annual budget of the Soci-
ety for submission to INFORMS. It will be the re-
sponsibility of the outgoing Secretary/Treasurer to
make arrangements for the orderly transfer of all the
Society’s records to the person succeeding him/her.”
The Secretary/Treasurer shall serve a two-year term.

According to Society Bylaws, “The main respon-
sibility of the Vice Chairs will be to help INFORMS
Local Organizing committees identify cluster chairs
and/or session chairs for the annual meetings. In
general, the Vice Chairs shall serve as the point of
contact with their sub-disciplines.” Vice Chairs shall

serve two-year terms.
Please send your nominations or self-nominations

to Marina Epelman (mepelman@umich.edu), includ-
ing contact information for the nominee, by Sunday,
July 31, 2011. Online elections will begin in mid-
August, with new officers taking up their duties at
the conclusion of the 2011 annual INFORMS meet-
ing.

Announcing the Fourth
INFORMS Optimization

Society Conference

The School of Business Administration at the Uni-
versity of Miami is pleased to host the Fourth IN-
FORMS Optimization Society conference to take
place on the Coral Gables campus of the Univer-
sity of Miami, February 24–26, 2012. The theme
of the conference is “Optimization and Analytics:
New Frontiers in Theory and Practice.” The Con-
ference Co-Chairs are Anuj Mehrotra and Michael
A. Trick. The Organizing Committee includes Ed-
ward Baker, Hari Natarajan and Tallys Yunes. Fur-
ther details will gradually appear on the conference
web site at http://www.bus.miami.edu/events/

ios2012/index.html.
Previous editions of the conference were at San

Antonio (2006), Atlanta (2008) and Gainesville
(2010). Some of you may know/remember that the
School of Business Administration at the University
of Miami hosted the wonderful Mixed-Integer Pro-
gramming meeting, MIP 2006. Anyone who was at
that meeting knows that it is a delightful venue –
especially in February.

mailto:mepelman@umich.edu
http://www.bus.miami.edu/events/ios2012/index.html
http://www.bus.miami.edu/events/ios2012/index.html
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