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Abstract— Consider the following problem: A multi-antenna
base station (BS) sends multiple symbol streams to multiple
single-antenna users via precoding. However, unlike conventional
multiuser precoding, the transmitted signals are subjected to
binary, unit-modulus, or even discrete unit-modulus constraints.
Such constraints arise in the one-bit and constant-envelope (CE)
massive MIMO scenarios, wherein high-resolution digital-to-
analog converters (DACs) are replaced by one-bit DACs and
phase shifters, respectively, for cutting down hardware cost and
energy consumption. Multiuser precoding under one-bit and CE
restrictions poses significant design difficulty. In this paper we
establish a framework for designing multiuser precoding under
the one-bit, continuous CE and discrete CE scenarios—all within
one theme. We first formulate a precoding design that focuses on
minimization of the symbol-error probabilities (SEPs), assuming
quadrature amplitude modulation (QAM) symbol constellations.
We then devise an algorithm for our SEP-based design. The
algorithm combines i) a novel penalty method for handling
binary, unit-modulus and discrete unit-modulus constraints; and
ii) a first-order non-convex optimization recipe custom-built for
the design. Specifically, the latter is an inexact majorization-
minimization method via accelerated projected gradient, which,
as shown by simulations, runs very fast and can handle a large
number of decision variables. Simulation results indicate that
the proposed design offers significantly better bit-error rate
performance than the existing designs.

Index Terms— massive MIMO, multiuser precoding, one-bit,
constant envelope, penalty method

I. INTRODUCTION

Lately, there has been great enthusiasm for researching
coarsely quantized and constant-envelope (CE) techniques for
massive multiple-input multiple-output (MIMO) systems. It
has been widely recognized that massive MIMO provides
many benefits such as enhanced spectral efficiency and mas-
sive connectivity, but it is also known that the number of
analog-to-digital converters (ADCs)/digital-to-analog convert-
ers (DACs) and radio-frequency (RF) front ends needs to scale
by the same number as the very large number of antennas
in massive MIMO—which introduces significant issues with
hardware cost and energy consumption. The study of coarsely
quantized and CE techniques is motivated by the need to
overcome such issues.

One direction to deal with the ADC/DAC-cost issues is to
simply replace the currently-used high-resolution ADCs/DACs
by low-resolution ones, particularly, the very cheap one-bit
ADCs/DACs. For massive MIMO uplink, it has been demon-
strated that MIMO detection with one-bit ADCs can actually
achieve promising performance [1]-[3]. For massive MIMO
downlink, MIMO precoding with one-bit DACs, or simply

one-bit precoding, is a relatively new problem. There is an
additional reason for considering one-bit precoding. RF power
amplifiers (PAs) are known to waste a significant portion
of energy when they are operated under high power back-
off mode for providing linear amplification of high peak-
to-average power ratio (PAPR) signals. A popular way to
mitigate this issue is to employ pre-distortion [4], but pre-
distortion also raises hardware requirement on a per-antenna
scale. On the other hand, if we transmit CE signals, then
PAs can be operated under low back-off and can have high
power efficiency. It happens that one-bit precoding restricts the
transmitted signal of each antenna to be of CE, specifically,
in a 4-ary phase shift keying (PSK) form. Thus, one-bit
precoding provides an opportunity to substantially cut down
energy consumption and also hardware complexity associated
with PAs.

One-bit precoding is not the only CE signaling strategy
for encouraging use of inexpensive and energy-efficient PAs.
Another strategy is to replace the high-resolution DACs with
constant-amplitude analog phase shifters. This is known as CE
precoding in the literature.! In CE precoding, the transmitted
signal of each antenna is restricted to take an M -ary PSK form.
Or, if the phase resolution is high enough, we may assume the
signal to take a continuous constant modulus form. From the
precoding design viewpoint, one-bit precoding can be regarded
as a special case of CE precoding where M = 4.

A very difficult problem that arises, at least at first sight,
is how we should design one-bit and CE precoding. The
problem amounts to finding a M -ary PSK or constant-modulus
transmit signal vector—which is generally hard to manipulate
algebraically—such that receivers will receive their symbol
streams with minimal distortions. Many concepts we know in
conventional precoding, which, loosely speaking, consider the
transmit signal vector lying in the free space, do not apply
when the binary, M-ary PSK or unit-modulus restrictions
set in. Despite such difficulty, one-bit and CE precoding
designs have triggered much interest most recently. The results
in the current literature, due to the emerging nature of the
problem, are somewhat scattered and not well unified; e.g.,
they may specialize in a particular scenario (e.g., only one-
bit or CE) and/or a specific symbol constellation (e.g., only
PSK). Here we attempt to taxonomize the various design
methods. But before we proceed, we should mention that one-
bit and CE precoding for the single-user multiple-input single-

!One-bit precoding is also a constant envelope scheme per se, but following
the convention in the literature we will use “CE precoding” to refer to the
phase shifter-based CE approach only.



output (MISO) scenario has been well-studied [5]-[7], and the
multiuser MISO scenario will be our focus.

1. Quantized Linear Precoding: The idea is to apply quanti-
zation, such as one-bit quantization in one-bit precoding, to
a “free-space” linear precoder output, such as zero-forcing.
Such quantized linear precoding is natural and simple to
implement, but its performance is not as competitive as
that of the approaches to be described next. Some studies
analyze the performance of quantized linear precoding [8],
[9], which is useful in understanding the performance gap
before and after quantization; some considers improved
designs via symbol perturbations [10].

2. Distortion Minimization: This approach designs the trans-
mit signal vector directly, rather than quantizing a free-
space precoder output. This requires us to solve an opti-
mization problem, but better symbol-error probability per-
formance has been observed compared to quantized linear
precoding. The rationale is to minimize distortions that
appear in the received signals, relative to the ground-truth
symbols. Criteria used in the literature include minimum
mean square error (MMSE) [11] and multiuser interference
minimization in the least squares sense [12]; see [13]-[16]
and [17]-[20] for more. In one-bit precoding, the MMSE-
based algorithm in [11], called SQUID, is particularly
popular.

3. Constellation-Dependent Designs: ~ The previously de-
scribed distortion-minimization methods use second-order
metrics to measure distortion, which do not consider sym-
bol constellations. It has been recently known that, even
for free-space precoding, distortion or interference can be
beneficially aligned to improve symbol-error probability
(SEP) performance when symbol constellation structures
are taken into design consideration [21], [22]. Such notion
is known as constructive interference or symbol-level pre-
coding. Some recent works begin to exploit specific symbol
constellations in one-bit and CE precoding [23]-[25]. A
few most recent works take a more systematic approach by
working on SEP directly [7], [26]-[28]. Like the previous
distortion-minimization approach, constellation-dependent
designs require optimization. It has been illustrated that
constellation-dependent designs can provide further im-
proved SEP performance compared to the previous two
approaches.

The above taxonomy is based on design formulations. The
next challenge is with the optimization of the subsequent
design problem, which, as mentioned, is hard owing to the
discrete and/or non-convex equality constraints with one-bit
and CE precoding. To make the matter even more complex, the
current algorithmic developments are intimately linked with
factors such as the design formulation chosen, the scenario
(e.g., one-bit, or CE?), and the symbol constellation used.
Simply speaking, some works use convex relaxation, and some
combinatorial optimization.

A. This Work and Contributions

In this paper, we propose a framework for one-bit and CE
precoding under the multiuser MISO downlink scenario. We

consider a minimax SEP design formulation, with an emphasis
on developing efficient optimization methods to tackle the
formulation. Our framework is constellation-dependent and
is built for the QAM constellation. Our framework can be
directly applied to the M-ary PSK constellation by applying
the optimization methods in this paper to the M-ary PSK
formulation we studied in [28], although this direction will
not be described owing to page limitation. As will be shown
by simulation results, the proposed framework outperforms
the existing designs in terms of SEP performance. The key
contributions of this paper are summarized as follows.

1. Few works deal with one-bit and CE precoding in one
theme, and this work makes one such endeavor. In par-
ticular, our framework can handle discrete CE restrictions,
which are difficult and we currently see only a few works
that challenge this setting [20], [25].

2. Few works tackle SEP directly in their designs. A no-
table work on this direction is the work in [7], which
appears concurrently with the conference version of this
paper [26]. The work [7] focuses more on analyses of one-
bit precoding; it also proposed one-bit algorithms based on
search heuristics. Our work, in comparison, is more toward
building an optimization framework for the problem.

3. As a core technical contribution, we establish an optimiza-
tion method that allows us to transform the design problem,
which has discrete and/or non-convex equality constraints,
into an optimization problem with convex constraints. This
method, called the negative square penalty (NSP) method,
plays a key role in enabling us to put one-bit, discrete
CE, and continuous CE precoding designs in one theme.
We also custom-build a first-order non-convex optimization
algorithm for the transformed problem; it runs very fast
and can handle a large number of decision variables,
as our simulation results suggest. The proposed algo-
rithm is a non-conventional combination of majorization-
minimization and accelerated projected gradient, as we will
explain.

4. As a more in-depth technical aspect, our framework also
designs the QAM inter-point spacings of the users’ sym-
bol streams. The inter-point spacings are a key factor in
enhancing SEP performance. Some existing works pre-fix
the inter-point spacings [12], [17], [18], [20], some uses
analyses to predict [7], and some assume identical inter-
point spacing for all users [13]-[15]. Our framework jointly
optimizes the precoder and the inter-point spacings, and the
treatment is more general than the previous.

The organization of this paper is as follows. Section II
describes the signal model of one-bit and CE precoding.
Section III formulates the minimax SEP design problem.
Section IV develops the NSP method for transforming the
design problem, and Section V completes the picture by
custom-deriving an algorithm for the NSP-transformed design
problem. Simulation results are shown in Section VI, and we
draw the conclusion in Section VII.



B. Notations and Some Basic Notions

Our notations are standard; e.g.,  as a vector, X as a
matrix, X as a set, the superscripts “I” and “H” as the
transpose and Hermitian transpose, respectively (resp.), R and
C as the set of all real and complex numbers, resp., etc. In
addition, | - ||, denotes the £, norm, || - || simply denotes the
Euclidean norm, (x,y) = R(xy) denotes the inner product,
conv X denotes the convex hull of X', and

Iy(x) =a in ||z —yl?
x(x) rgglelgll yll

denotes the projection of = onto X.

Some notations and notions concerning optimization are as
follows. Let X C R™ or X C C", and let f : X — R. The
gradient of f at « is denoted by V f (x) or simply by V f ().
If X C R"”, the definition of the gradient follows the standard
definition. If X C C™, we define the gradient as

Ve f(x) = Vi) f(®) + V@) f(T). (1)
Consider an optimization problem

min f(x), 2)

xeX

where f is differentiable, and X is non-empty and closed.
Problem (2) can be rewritten as

min f(x) + Ix(x),

where Iy is the indicator function of X, i.e., Ix(x) = 0 for
x € X and Iy(x) = oo for & ¢ X. A first-order necessary
condition for & to be an optimal solution to the above problem,
and also Problem (2), is

0eVf(x)+0Ix(z), 3)

where OIy () is the limiting subdifferential of Iy at x; see
[29] for the definition. Note that (3) was established for X C
R™, but one can easily show that the same notion applies to
X C C" if we adopt the gradient definition in (1). A point
x € X is said to be stationary if it satisfies (3). By the same
vein, a point £ € X is said to be e-stationary if

dist(0, Vf(z) + 0lx(x)) <,

where dist(z, X) = infyex |z — y||.

We will also need the notion of Lipschitz continuity. We say
f to be Lipschitz continuous on X if there exists a constant
Ly > 0 such that

[f(x) = f(y)| < Lafle -yl

and the corresponding constant L; is called a Lipschitz con-
stant of f on X. A differentiable f is said to have Lipschitz
continuous gradient on X if there exists a constant Ly > 0
such that

IVf(x) = VI(y)l < Lellz —yl|,

and the corresponding constant Lo is called a Lipschitz con-
stant of Vf on X'. Also, f is simply said to have Lipschitz
continuous gradient if f has Lipschitz continuous gradient
on the space on which f is defined, i.e., either R™ or C".
The Lipschitz continuity and Lipschitz continuous gradient

Vr,yedX,

Vr,yedX,

conditions are automatically satisfied if f is smooth and X
is compact, which is the case of our problem to be shown
later. Let us be precise here.

Fact 1 Suppose that X is compact. If f is continuously
differentiable, then f is Lipschitz continuous on X. If f is twice
continuously differentiable, then f has Lipschitz continuous
gradient on X.

II. BACKGROUND

Consider the multiuser downlink scenario depicted in Fig. 1.
A base station (BS) equipped with a massive number of
antennas is tasked with transmitting symbol streams to a
multitude of single-antenna users. The BS deploys either one-
bit DACs or phase shifters for low-cost and power-efficient
implementations. Assuming frequency-flat channels and the
transmission time duration not exceeding the channel coher-
ence time, we can model the signals at the complex baseband
level as

yi,t:h?€t+ni,ta i:17"'aK,t:13"'7Ta 4

where y; ; € C is the signal received by user ¢ at symbol time
t; & € CV is the multi-antenna signal transmitted by the BS at
symbol time ¢; h; € CV is the channel from the BS to user i;
7+ 1s noise which is assumed to be circular complex Gaussian
with mean zero and variance 072]; T is the transmission block
length; N is the number of transmit antennas; K is the number
of users. We express the transmitted signals as

£t =\ %uta U € L{N, (5)

where P is the total transmission power; u; is the normalized
transmitted signal; I/ will be specified. If the BS deploys one-
bit DACs, we may choose

U = Upir = {UR +qu‘URaUI € {ﬂ:%} } (6)

Specifically, in the one-bit case, the real and imaginary parts
of the transmitted signals are generated by one-bit DACs, and
(6) characterizes that. If the BS deploys phase shifters, or CE
transmission, we may choose

U=Uce = {uecC]|u=1}. (7

The above characterization assumes that the phase shifters can
generate a continuum of phase values over the whole phase
range; or, the phase shifters have fine phase resolutions which
make (7) an accurate approximation. If this is not the case,
we can consider a discrete CE (DCE) model

U =Upce 2 {u=eFm5) | m=0,1,...,M—1}, (8

for some even positive integer M > 4. Eq. (8) assumes that
the phase shifters admit uniform phase values.

We focus on the precoding problem. Assume knowledge
of the channels h;’s at the BS. The problem is to design
U1, ..., uwr such that each user will see its designated symbol
stream on {y;:}. To be specific, let {s;;}7_; denote the
symbol stream for user i. We wish to have

hl& ~ sy, Vit 9)
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Fig. 1: The scenario.

Note that (9) is only an illustration of the design aim, and
it is not exactly what we will do; this will be considered
later. We assume that the symbols are drawn from the QAM
constellation, viz.,

+(2B - 1)}},

for some positive integer B (4B? is the QAM size). It should
be emphasized that this is a nonlinear precoding problem
wherein &; is not necessarily a linear combination of the
symbols s, ;’s, or an outcome of linear precoding.

sit €S2 {sp+isr|sn sre{£l,43,...,

III. MINIMUM SEP PROBLEM FORMULATION

Following the problem specified in the last section, we
aim to formulate a precoding design that would minimize the
impact of having unsuccessfully delivered symbol streams.
To this end, we choose the symbol-error probability (SEP)
as our performance metric and establish a precoding design
formulation. The details are as follows.

A. SEP Characterization

To work on SEP, it is first necessary to specify the symbol
detection rule at the user side. We assume that the users expect
to receive

Yit = dsz(Sz‘,t) +j- diI%(si,t) + Mits

where df and d! describe the half inter-point spacings of the
real and imaginary parts of the received QAM symbols at
user ¢; see Fig 2. These inter-point spacings are determined
by the BS, and the users are informed of their values during
the training phase. The users then detect the symbols via

$i0 = dec(R(yse) /dfY) + - dec(S(yie) /di),

where dec denotes the decision function for the set
{£1,43,...,£(2B — 1)}. Define

SEPf; = Pr(R(3i¢) # R(sie) | sit),
SEP;, = Pr(S(i,4) # S(si) | 8i,t),

i.e., the error probabilities of real and imaginary parts of the
symbol, conditioned on s; ;. We will simply call (11) the SEPs
although they are actually conditional. It should be noted that

maX{SEPﬁt,SEPlt} <Pr(§;, it)
<2 max{SEPft,SEPIt}

(10)
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Fig. 2: Illustration of d? and d! for 16-QAM.

i.e., the symbol-error probabilities can be effectively controlled
by controlling the error probabilities of the real and imaginary
parts of the symbol. It can be shown from (4), (5) and (10)

that
R (&
Q <fb”) +Q (\f ”) . [R(si0)] < 2B -1,

SEPft =43 Q (@) , R(si) =2B — 1,
Q <“§”R) , R(sie) = —2B +1,
(12)
where Q(z) = [ —=e % /2dz
b, =t — (ﬁm(hTut) d %(s”)> :
(13)

cf, = df + (fthut d%(s”))

Also, the above result holds for SEPit if we replace “R” and
“R” by “I” and “J”, resp. We shall skip the proof of (12)—(13)
as it is almost a routine exercise on error probability analyses
in digital communications [30].

B. A Minimum SEP Formulation

Our design is to provide uniformly good SEP performance
over all users, specifically,

: R I
Uerl{{l}\'nXT, | pax max{SEP;",,SEP; ,}, (14)
d>0 t=1,..., T
whereU:[ul,...,uT], B =14, . . dE8 7, df =
[di,....d 1T, d=](d®T, (@)T T, U is given by (6)



for one-bit precoding, by (7) for CE precoding, and by (8) for
DCE precoding. As can be seen in (14), we intend to achieve
the aforementioned aim by minimizing the worst SEP among
all the users and at all symbol times. We should emphasize that
Problem (14) not only designs the precoder, it also optimizes
the QAM inter-point spacings for best performance.

Problem (14) has a drawback. The functions SEPY, SEPZ-I,t
in (12) do not admit simple expressions; they deperid on the
@ function which has no closed form. Instead of handling
Problem (14) directly, we choose to work on a closely related
problem. Consider the following fact which is easily shown
from (12).

Fact 2 It holds that
ﬁaﬁ ﬁaﬁ
Q(’t <SEPF, <29 | —2 |,

o o
2ai[t 7 2az-lt

Q|—— ) <SEP,, <2Q —— |,
o ’ o

aft = min{bft, cft}, az{t = min{b{,t, cl{t}.

15)

where

Here, bft and Cft are defined in (13); b{,t and cl{t are defined
by the same way as (13), with “R” and “R” replaced by “I1”
and “¥”, resp.

Fact 2 suggests that we can suppress the SEPs by maximizing
al’, and af ;; in fact, one may see that ) /oy and af, /o,
appear like SNR terms in (15). In view of this, we turn to

min max  max{—a’,, —al,}
UeuN*T, i=1,. K, , ’
d>0 t=1,...,T
= min max_ max{—bl%,, —c/y, b, —cl,}. (16)
UeUN*T | i=1,...K, ’ ’ R
a0 | t=1..T

Now, the objective function is piece-wise linear and is much
simpler than that of Problem (14). Also, by applying (15) in
Fact 2 to Problem (14), and using the monotonicity of (), one
can see that Problem (16) is both upper-bound and lower-
bound approximations of Problem (14). We also show the
following result.

Proposition 1 There exists an optimal solution (U*,d*) to
Problem (16) such that d* < p, where p; = pi+N =

\/P/NthHlfOFZ: 1,...,N,

The proof of Proposition 1 is relegated to Appendix A.
There is still an issue, though a lesser one. The objective
function in (16) is non-smooth. There are various ways to
tackle non-smooth optimization problems, and we resort to
smooth approximation which has the advantage of allowing us
to access powerful tools in smooth optimization. Specifically,
we apply the log-sum-exponential (LSE) approximation. Let
lse(x) = olog(> 1, e*?) where ¢ > 0, x € R”™. It is
known that lse(x) approximates max{zi,...,z,} with an
accuracy that improves as o decreases, and the approximation
is tight as o — 0 [31]. By applying the LSE approximation to
Problem (16), we arrive at our final formulation as follows.

Given a smoothing parameter ¢ > 0, solve

T K
f(U,d) £ olog (ZZfi,t(Wﬂ)) )

t=1 i=1

min
UeuNxT
,
0<d<p

where p is defined in Proposition 1;

I R I
b CiLt <

b'{‘:t it it
firlupd) =" +e7 7 e F fe w18

and recall that b, and ¢Y, are defined in (13), and b/, and
C{,t are similarly defined for “I”.

We also have the following remark.

Remark 1 Problem (17) can also be interpreted as a design
that attempts to minimize the average SEP. Let SEP =
T Zthl Zfil(SEPft + SEPZ{t) be the average SEP. By
applying the inequality Q(z) < 0.5e~V2/™ to (12),> we see
that

T K
— 1
EP < —— ;
S = 4KT;;fl,t(utad)a
for 0 = (y/m/2)0,. This implies that Problem (17) tends to
suppress the average SEP if we choose o = (\/7/2)0,,.

IV. A NEGATIVE SQUARE PENALTY METHOD

Our next problem is to build an algorithm for the precoding
design we formulated in the last section, specifically, Prob-
lem (17). Finding a working algorithm for (17) is not trivial.
Problem (17) has a convex smooth objective function, but it
has a non-convex constraint set; the set / is a manifold for
the CE case and is discrete for the one-bit and DCE cases.
Dealing with such constraints is known to be difficult. In
this section we will first develop a method that will allow us
to transform the precoding problem to a convex constrained
problem with a non-convex smooth objective function. Then,
in the next section, we will custom-build a fast algorithm for
the transformed problem.

The method to be proposed considers optimization problems
that take the form

f(u)7

where f : C* — R is the objective function; U is either
the one-bit set in (6), the CE set in (7), or the DCE set in
(8). As mentioned, the constraint set 4™ is hard to deal with.
The proposed method hinges on the use of a negative square
penalty (NSP), specifically,

min F)(u) 2 f(w) - Aul%,
ucyn

min

1
ucUn (19)

(20)

where U/ = convi/ is the convex hull of U; A > 0 is a
penalty parameter. The idea is simple: From the illustration
in Fig. 3, one can see that the set of all extreme points of I/

2It is known that Q(z) < 0.5~V 2/m for ¢ > 0 [32]. For the case

of & < 0, we prove it as follows. Let f(z) = 0.5e~V2/™ — Q(z). By
examining the derivative of f, one can verify that f(z) is decreasing on
z < 0. Since f(0) = 0, we have f(z) > 0 for x < 0. This implies

0.5e~V2/mz > Q(z) for x < 0.



(a) One-bit set

Fig. 3: Illustration of &/ and U/. Red: U/, shaded area: /.

(b) CE set (¢c) DCE set; M =8

is U itself. The penalty term —\||lu||? is used to push each
u; to an extreme point of {/. It is worthwhile to note that
Problem (20) has a convex constraint set, though we should
also point out that F) is generally non-convex even if f is
convex. We will see in the next section that we can custom-
build very efficient first-order methods to handle Problem (20)
if f is smooth.

It is natural to question whether the NSP problem (20) can
be an exact reformulation of the original problem (19). This
is answered in the following theorem.

Theorem 1 Suppose that f is Lipschitz continuous on U™ (see
Section I-B for the definition of Lipschitz continuity). Then
there exists a constant X\ > 0 such that for any \ > )\, any
(globally) optimal solution to Problem (20) is also a (globally)
optimal solution to Problem (19); the converse is also true.
Specifically, we have X\ = /2L for the one-bit case, X = L
for the CE case, and \ = L/sin(r/M) for the DCE case,
where L is a Lipschitz constant of f on U™.

The proof of Theorem 1 is shown in Appendix C. Theorem 1
reveals that for a sufficiently large A > 0, the optimal solution
sets of Problems (19) and (20) are equivalent. Note that this
equivalence does not require fine tuning of A, and a sufficiently
large X suffices. One may further question whether a similar
relationship can be shown for locally optimal solutions. Our
answer is as follows.

Theorem 2 Suppose that f has Lipschitz continuous gradient
on U™ (see Section I-B for the definition of Lipschitz contin-
uous gradient). Then there exists a constant \ such that for
any \ > M\, any locally optimal solution to Problem (20) must
be a feasible solution to Problem (19). Specifically, we have
\ = L/2 where L is a Lipschitz constant of V f on U".

The proof of Theorem 2 is shown in Appendix D. Theorem 2
provides the implication that for smooth f and for a suffi-
ciently large ), any stationary point of the NSP problem (20)
that does not lie in &/™ would either be a saddle point or a
local maximum. Intuitively one may argue that for algorithms
such as descent-based methods, converging to such points is
not too likely.

We will apply the NSP method to the precoding problem
in the next section. Here we discuss a few more fundamental
aspects with NSP, and readers who are more interested in the
precoding application may jump to the next section.

Remark 2 Upon a closer look at Theorem 1, readers may find
that the bound X in the DCE case does not look consistent with
that in the CE case. In particular, intuitively one may expect
that the result A = L/sin(7/M) in the DCE case should
converge to the result X = L in the CE case as M — oo, and
yet this is not the situation. Readers who have examined the
proof would realize that when M is large, it takes a stronger
penalty to push the solution from the face of /™ to an extreme
point. On the other hand, we can prove the following result.

Corollary 1 Consider the DCE case under the same settings
as in Theorem 1. Let u be an optimal solution to Problem (20),
let @ = Tlyyn (1) be the DCE-rounded point of G, and let f* =
mingeyn f(w). For X > L/cos(w/M), with L a Lipschitz
constant of  on U™, we have

f* < f(a) < f* + Ly/nsin(r/M).

In particular, if M — oo, we have f(a) — f* and
cos(m/M) — 1.

Corollary 1 suggests that the DCE-rounded point of an optimal
solution to the NSP problem is a good approximate solution
to the original problem when M is large. Corollary 1 is
a consequence of Theorem 1 and the proof is shown in
Appendix E.

Remark 3 The local optimality result in Theorem 2 is based
on the premise that f must at least be continuously differ-
entiable. One may wonder if the same result holds for non-
smooth f. Unfortunately, a counter-example can be found.

Fact 3 Consider Problem (20) with n = 1, f(u) = |u| and
U ={u e C| |ul =1}. It holds that for any finite X > 0,
u = 0 is a locally optimal solution to Problem (20), but u = 0
is infeasible to Problem (19).

The proof of Fact 3 is shown in Appendix F.

Remark 4 We should mention related methods. In nonlinear
programming, the exact penalty methods are well known [33].
Taking the DCE case as an example, one may apply the exact
penalty method to reformulate Problem (19) as

2n

. —iEA\M
uecr f(u)—i—)\izzl‘l—(uze w )M
Note that u; € U is equivalent to (u;e '3 )M = 1, and the aim
of the above penalty is to enforce (u;e ™77 )™ = 1. The upshot
of the exact penalty problem (21) is that it is unconstrained,
but the downside is that the penalty function involves higher-
order polynomials. In comparison, the NSP problem (20) is
constrained, but its penalty is quadratic regardless of M.
Moreover, we should recognize the penalty method in [34].
This method is somehow similar to our NSP method, although
it considered binary optimization problems only and did not
consider the CE and DCE cases here. Expert readers would
find that the underlying ideas, the specific penalties and the
subsequent optimality analyses (Theorems 1-2 for NSP) of
the two works are different, and that the NSP method seems
more straightforward.



V. GRADIENT EXTRAPOLATED
MAJORIZATION-MINIMIZATION

We now come to the final part of our development, namely,
custom-building an algorithm for the NSP-transformed formu-
lation of the precoding problem (17).

A. The Main Idea

By applying the NSP method in Section IV, we equivalently
reformulate the precoding problem (17) as

min

T
F(U,d) £ f(U.d) — ) 2 22
v aep U@ U =23 el 22)

where D = {d | 0 < d < p}, and X\ > 0 is assumed to be
sufficiently large.> For ease of exposition of the idea, let us
notationally simplify Problem (22) by rewriting it as

min Fy(2) = f(2) = A|zwr]?, 23)

where ¢ = (x1,...,&r,@741), ®; = u; fori = 1,...,T,
xry1 = d, X = UV x - xUN x D, and x.7 =
(z1,...,z7). We tackle Problem (23) by the majorization-
minimization (MM) method. The MM method, in its general
form, is given by

wk+1

:argmiEGA(aﬂmk), k=0,1,2,..., (24)
EAS
where G (-|Z) denotes a majorant of F at &, i.e., it satisfies
Gi(z|z) > F)\(x) for all z,& € X and G\ (Z|x) = Fi(Z)
for all € € X [35]. It is easy to derive a majorant for our
problem. Since ||z|? > ||z||? + 2(x,x — Z) for any x, Z, we
have

Fx(z) < f(®) = 2\ (@11, 1.0 — Tror) — A Z1r [

= Ga(z|2);

it is also obvious that G (Z|Z) = F)\(&). Note that the majo-
rant (25) is smooth and convex, and VG (Z|Z) = V,F»(Z).

To perform MM, we also need to compute the optimal
solutions in (24). The problems in (24) are convex smooth
optimization problems, and we choose the Nesterov or FISTA-
type accelerated projected gradient (APG) method to solve
them. The APG method, as well as its predecessor, projected
gradient (PG), are suitable for problems in which the projec-
tion operation IIy is easy to compute. Also, APG is known
to converge much faster than PG if the problem is convex.
The core concepts and technical details of the PG and APG
methods have been extensively covered in the literature [36];
here we consider application and shall be concise. The APG
method for solving mingexy G (z|€) is

. ) 1

+1 7
x =1y (z - —
5

where 1/3; > 0 represents the step size; 2 is an extrapolated
point and is given by

(25)

VEG,\(zi|a‘:))7 i=0,1,2,...

2l =a' +a(xt — ), (26)

3 As a technical note, the precoding problem (17) does not take exactly the
same form as the problem considered for NSP, i.e., Problem (19). Specifically,
(17) has an extra decision variable d. However, it can be easily shown that
the same NSP concepts and optimality results (Theorems 1-2) apply.

with
&1 —1 ‘ 1+ ,/1+4
o=, G=—T"75""70
&i 2
and with £_; = 0,~! = 2°. Note that {a; };>0 is called the
extrapolation sequence, and that if we replace (26) by o; =0
for all 4, the method reduces to the PG method. Also, the

step size 1/; is chosen such that 2" satisfies the so-called
descent property

Galz™|E) < GA(2'|2) + (VoG (2i|2), 2T — 27)

27)

+%Ilaﬂ'+1 -2 (28)
We employ the backtracking line search method [36] to
compute such a f3;.

The above MM method is not exactly what we do. The MM
method in (24) requires solving an optimization problem in an
exact fashion at every iteration, and that is computationally
expensive. We consider an inexact MM where every MM
iteration is a one-step APG update; specifically,

1
$k+1 :HX (Zk— BVa:G/\<zk|wk)> 9 k:071’27""
k
(29)

where z* and $;, are obtained by the same way as in (26)—
(28); for the sake of clarity we have

2P = xb £ ap(ah — xF ), (30)

where {ay}r>0 is the same sequence as in (27), and [y is
chosen such that

Ga(z" T xh) < Ga(2F|x") + (VoG (2F|2F), 2" —

+ %”mk+1 o zk||2.

zk>
3D

We name the method in (29) gradient extrapolated MM
(GEMM). Our empirical studies suggest that GEMM is much
faster than MM (implemented via APG) in terms of conver-
gence speed, and GEMM appears to give satisfactory SEP
performance most of the time. This will be illustrated in the
numerical simulation section in Section VI.

B. Convergence Guarantee of GEMM

Our interest lies in the application of GEMM to precoding,
and we will elaborate on the implementation details in the
next subsection. On the other hand, we can say about its
convergence in the theoretical sense. Consider a more general
context where we deal with an optimization problem of the
form

min F(x),
in which F' is differentiable, and X is convex, non-empty
and closed. We apply the GEMM method to this problem by
replacing G, in (29)-(31) by some majorant G of F, and
we question whether {x*};>¢ would possess any stationarity
guarantees. We should point out that GEMM does not exhibit
the monotonic non-increasing property F(x") > F(x!) >
F(x?) > ---, owing to extrapolation. Many first-order con-
vergence analysis results assume some form of sufficient



decrease of the objective function, and they are not applicable
to GEMM. In fact, convergence analyses for non-convex
first-order methods involving accelerated proximal gradient
or APG are challenging, with open questions remaining; see
the discussion in [37]. Here, we take ideas from [38], which
deals with block coordinate descent and not MM, to handle
technical issues arising from extrapolation. The following
theorem describes the result.

Theorem 3 Consider the context described above. Suppose

that

1. F* £ infyey F(x) is finite;

2. F' has Lipschitz continuous gradient with constant Lp
(see Section I-B for the definition of Lipschitz continuous
gradient);

3. G satisfies i) G(x|x) > F(x) for any x, %, ii) G(z|x) =
F(&) for any &, that iii) G(-|x) is differentiable and has
VzG(Z|Z) = VzF(&) for every & € X, and that iv)
G(-|®) has Lipschitz continuous gradient with constant Lg
for every x € X.

Also, suppose that oy and By, in GEMM in (29)—(31) satisfy

calag <pr <calag, Vk

for some constants & = y/c1(1 —p)/ce with 0 < p < 1,

0<ci<landl <cy < oo. Then, GEMM is guaranteed to
find an e-stationary point in O(1/¢2) iterations. Specifically,
it holds that

OSO{kS@,

, / C
. . k Ky <
k/:{IyI}'I’lkle dist(0, VF (" ) + 0lx (2" )) < 75

where C' = C1+/8(F(z9) — F*)/(c1Lap), Ch = max{a(1+
CQ)LG, Lr + Cng}.

The proof of Theorem 3 is shown in Appendix G. A key
difference of our convergence analysis is that we prove con-
vergence rate, rather than asymptotic convergence as in the
previous work [38].

C. Implementation Details

Let us complete our work by filling in the implementation
details. Following the GEMM method introduced in Sec-
tion V-A, we obtain the GEMM algorithm for one-bit/CE/DCE
precoding in Algorithm 1. There are two key operations
that require further explanation. The first is the projection
operations. To facilitate our description, let [x]2 define the
element-wise thresholding operator; i.e., y = [z]2 <= y; =
min{b;, max{z,a;}} for all i. The projection IIp is simply

Ip(d) = [d]g.
The projection Il ;v 7 is merely the element-wise projection

onto U, and thus it suffices to consider II;;. It is easy to see
that for the one-bit case,

Ty, (1) = [R(w)] Y25+ [S@)2 5

and that for the CE case,

Iy (u) = {

u <1,
|u| > 1.

u?
u/lul,

I
—

-

Fig. 4: Illustration of the projection onto I for the DCE case.
M =8, the circle “o” and the diamond “¢” represent a given
point u and its projection IT;(u), resp. It can be seen that i)
for u lying in region 1, IT;;(u) = w; ii) for u lying in region
2, ;7 (u) = cos(m /M) +jsin(w/M)j; iii) for u lying in region
3, I (u) = cos(w/M) + j(u); iv) for u lying in region 4,
I (u) = cos(n /M) — jsin(nw/M).

The projection for the DCE case is less obvious. At first
glance, one would be tempted to solve the projection by
rewriting the constraint u € Upce as linear inequalities (see,
e.g., [25]) and then by calling a convex optimization solver to
find the solution to IT;; . (u). As it turns out, it can be shown
that IT;7 . (u) admits the closed-form expression

;2mn ~ s(7w /M . ~\1sin(w /M
Ty, (1) = €% (m(u)]g(”( M [%(u)]_sﬁn(ﬂ/%) »

where

n= {ég:;r]&MJ . = ue
In fact, one can even see the solution (32) by pictures; see
Fig. 4 for one such picture. The second key operation is with
the computations of the gradient of F), which is shown in
(33) and (34) at the top of page 9; VG (U, d|U) takes the
same form as (34), with all “®” and “R” replaced with “3”
and “I”, resp.

Remark 5 We should discuss the complexity of our GEMM
algorithm in Algorithm 1. It can be verified that the complexity
at each iteration is O(NKT). Specifically, the computations
of the gradient in (33)—(34) are the main contributor of the
overall complexity, and O(NKT) is the one-time computing
cost of the gradient. As an aside, we should mention that the
popularly-used SQUID algorithm in one-bit precoding [11] has
a per-iteration complexity of O(NKT + NT log(NT)).

VI. SIMULATION RESULTS

In this section, we illustrate the performance of our precod-
ing design via Monte-Carlo simulations.
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azfil Vo) it (e, @)+ 1) Ve(un firt (s, d)

R
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ZtT:1 ZzK:1 fit(ut,d)

e (1+R(sie)) + e
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Algorithm 1 GEMM for CE, one-bit and DCE Precoding

1: given a starting point (U°, d°), an extrapolation sequence
{ak}k>0, an initial penalty A > 0, a penalty threshold
Aupp > 0, an integer J, ¢ > 1, § > 0.

2: k=0.

3 Zp'=2Z) =U° 2" =25 =d"

4: repeat

5. Update

Zf =U* + (U - U,
2k = d" + ap(dF — d*7).

. Find S by backtracking line search.
7. Update

1

5 TuG(Zh.2HU")) .

1
d" 1 =TIp (z’; - &Cvde(Z{ﬁ,z(’ﬂU’“)) .

Ukr{i}1 = HZ:{NXT (Z[]} —_

8 Update A\ = Ac every J iterations, or if |U*! —
UF|? +||d* ! — d*|? < 0.

9 k=k+1.

10: until A > App.

A. One-Bit Precoding

Firstly, we consider one-bit precoding. The simulation set-
tings are as follows. We evaluate the average bit error rates
(BERs) of our algorithms and some other algorithms over
10,000 channel trials. The channels h;’s at each trial are
randomly generated, and we use the standard circular complex
Gaussian distribution to generate the elements of h;’s in an
independent and identical fashion. The transmit power is set
to P = 1. We benchmark our algorithm against several other
algorithms. The first is the zero-forcing (ZF) precoder

2F—gHT(HH" ) 'sy, t=1,...,T,
where d is chosen such that Eg, [||£ZF||?] = P. The reason
for including the ZF precoder in our simulations is to help us
evaluate how close a one-bit precoder can achieve compared to
a free-space precoder. The second is the quantized ZF (QZF)
precoder, where we element-wise quantize €5 to the nearest
point in U/;_p;; and use that as the one-bit precoder. The third

is the SQUID algorithm proposed in [11], which is an MMSE-
based design. Following the original work [11], [13], SQUID
is implemented by the Douglas-Rachford splitting method with
the maximum number of iterations being set to 50. The fourth
is the iterative discrete estimation (IDE) method proposed in
[16], which adopts the same MMSE-based design as SQUID
but uses a different optimization algorithm. The fifth is the
multi-user transmitting signal design (MUTSD) proposed in
[7], which is an SEP-based design but uses a different design
formulation from ours.

The settings of our algorithm, GEMM, are as follows. The
smoothing parameter is ¢ = 0.05; the penalty parameter is
initialized as A = 0.01; it is increased by a factor of ¢ = 5
when the number of GEMM iterations is more than J = 400 or
when the distance of successive iterates is less than 6 = 1074,
and the algorithm stops when A > 100; and we initialize
the algorithm by random initialization. By our numerical
experience, we found that GEMM is not too sensitive to
initialization. Our numerical experience also indicates that
good results are generally yielded if we choose a small initial
A and increase A gradually (which means not a too large c).
The intuition for such a parameter selection is that we may
tackle the problem better if we gradually increase the hardness
of the problem; note that our problem in (22) is convex when
A = 0, and concave (and undesirable) for sufficiently large
A. Furthermore, the smoothing parameter o should not be too
small. Naturally we desire to have o as small as possible,
but reducing o also increases the Lipschitz constant of the
gradient of the objective function, which can lead to slower
convergence (cf., Theorem 3).

In addition to GEMM, we also try MM, or more precisely,
the exact MM with the APG method as the solver for the MM
iterations.

Figs. 5 and 6 show the BERs for the 16-QAM and 64-QAM
cases, resp., and for (N, K,T) = (128,16,10). It is seen
that GEMM and MM perform better than SQUID and QZF.
Also, for the 16-QAM case, the SNR gap between ZF and
GEMM (or MM) is about 5dB. This number is encouraging as
it suggests that one-bit precoding has the potential of offering
comparable performance relative to free-space ZF precoding.
However, the situation is not as promising for the 64-QAM
case, where the SNR gap is widened to more than 10dB. But
still, the performance of GEMM and MM is reasonably good
and does not show error floor effects as in SQUID and QZF.
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Fig. 5: BER performance for one-bit precoding. (N, K,T) =
(128,16, 10), 16-QAM.
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Fig. 6: BER performance for one-bit precoding. (N, K,T') =
(128,16, 10), 64-QAM.

Table I compares the runtimes of SQUID, MM and GEMM.
In this simulation we set KX = 16, T' = 10, and the QAM
size to be 64. The simulation was conducted by MATLAB on
a desktop computer with Intel i7-4770 processor and 16GB
memory. We observe that GEMM is the fastest for larger
problem dimensions, specifically, N = 256 and N = 512,
and that the runtime differences between GEMM and the other
algorithms are significant when N increases. GEMM is also
seen to run about three times faster than MM.

In the previous BER simulation, we have chosen the trans-
mission block length to be 7" = 10. In practice, the block
length can be as large as a few hundreds. Fig. 7 shows a
BER result wherein not only the block length is increased
to T' = 200, but we also scale up the number of transmit
antennas and the number of users to N = 256 and K = 24,
resp. This results in a design problem whose number of

TABLE I: Average runtime (in Sec.) for each transmission
block; (K,T) = (16,10), 64-QAM, one-bit precoding.

N | 128 192 256 512
SQUID 3.06 6.67 11.91 55.03
IDE 0.16 0.31 0.63 3.83
MUTSD 2.95 3.23 3.54 5.46
MM 1.35 1.46 1.51 2.17
GEMM 0.36 0.41 0.49 0.85

decision variables exceeds 100, 000, which is computationally
challenging. We found that SQUID cannot be run (at least
with our computer). However, MM and GEMM can still be
run; e.g., GEMM took about 4 second for each trial. We see
that MM and GEMM provide reasonably good performance,
as in the previous simulation in Figs. 5 and 6.
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Fig. 7: BER performance for one-bit precoding. (N, K,T) =
(256,24, 200).

B. CE Precoding

Secondly, we consider CE precoding. The simulation set-
tings are the same as those in the last subsection. The
benchmarked algorithms are ZF, QZF (with the quantization
changed to that of the CE set), and an existing algorithm called
MUImin [12]. We no longer show the results for MM. Like the
results in the last subsection, we found that MM and GEMM
provide almost the same BER performance, but GEMM runs
faster than MM.

Fig. 8 shows the BER results for 16-QAM and (N, K,T) =
(128,16,10). It is seen that GEMM performs better than
MUImin and QZF, and the SNR gap between GEMM and
ZF is about 2dB only—which, again, is promising. Table II
compares the average runtimes of GEMM and MUImin for
64-QAM and (K,T) = (16,10). GEMM is seen to run faster
than MUImin. Fig. 9 shows the BERs of GEMM and ZF
under different QAMs, specifically, 16-QAM, 64-QAM and
256-QAM; we set (N, K,T) = (128,16, 50). It is interesting
to see that the SNR gap between GEMM and ZF is within
5dB even for 256-QAM; again, such a result is encouraging.



TABLE II: Average runtime (in Sec.) for each transmission
block; (K,T) = (16,10), 64-QAM, CE precoding.

N | o4 128 192 256
MUImin 0.53 0.42 0.62 0.93
GEMM 0.14 0.18 0.23 0.27
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Fig. 8: BER performance for CE precoding. (N,K,T) =
(128,16, 10), 16-QAM.
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Fig. 9: BER performance for CE precoding. (N, K,T) =
(128,16,50) with different QAM sizes.

C. DCE Precoding

Finally, we consider DCE precoding. Fig. 10 shows BER
results for 64-QAM, (N, K,T) = (128,16,100) and under
different numbers of phase combinations M. For benchmark-
ing purposes we also plotted the CE precoding result, which
appears as “CE (M = o0)” in the figure. We see that
DCE precoding for M = 8 is about 2dB away from CE
precoding, and that DCE precoding for M = 16 approaches
the BER performance attained by CE precoding. This suggests
that DCE precoding with moderate phase resolutions has the

potential of achieving near-CE precoding performance.
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Fig. 10: BER performance of DCE precoding. (N, K,T) =
(128,16, 100), 64-QAM.

VII. CONCLUSION

In this paper we laid a framework for one-bit, CE and dis-
crete CE precoding for the multiuser MISO downlink scenario.
The framework is SEP-based and focuses on optimization.
Simulation results indicated that the proposed framework pro-
vides satisfactory SEP performance; its runtime performance is
also competitive. We hope that this study would also provide
a framework for attacking even more challenging precoding
designs, such as the multiuser MIMO scenario, multi-bit
precoding, and the scenario of imperfect channel information.

APPENDIX
A. Proof of Proposition 1

_Let (U*,d*) be an optimal solution to Problem (16). Let
dR be an optimal solution to

(E‘}izno Jnax max{—l;ft, —Civhs (35)
where i)f’t and éft are given by (13) at u; = uj, i.e.,
B, = (14 R(si)df — JER(AT ), (6w)
e, = (1 - R(s))df + JER(BT ). (36b)
Similarly, let Jﬁ be an optimal solution to
min  max max{—i)l{t, —Cith 37

di>0 t=1..T

where b!, and ¢!, are obtained by changing “R” and “R”
to “I” and “$”, resp., in (36). Let d® = [ dff,... d}t |7,
d' =[df,....di |7, d=[(d®)T (d")"]". First, we argue
that (U™, d) is also an optimal solution to Problem (16). To
see this, consider fixing U = U* in Problem (16); i.e.,

. iR AR I N
min max max{—b;%,—¢&"%, —b;,,—C ,}. 38)
d>0 i=1,.,K, { 7,t 7, 7,0 z,t} (
t=1,...,T



Clearly, if d is an optimal solution to Problem (38), then
(U*,d) is an optimal solution to Problem (16). By noting
that bf%, and ¢!, in (36) depend on d!* only, and that the same
applies when we change “R” to “I”, one can easily see that
Problem (38) can be decoupled as the problems in (35) and
(37). Thus, d is an optimal solution to Problem (38).

Second, we prove that there exist d? and d! such that
they are bounded by +/P/N||h;||1; this, together with the
optimality of (U*,d), lead to Proposition 1. The following
lemma will be needed.

Lemma 1 Let

f(z) = max a;x+b;,
i=1,...,m

where m > 2 and a; # a; for some i # j. Consider

wmin f (z), (39)

and suppose that f is bounded below over R. Then, there
exists an optimal solution x* to Problem (39) such that

by — b,
rjr,lgglk il

|z*] < (40)

i, las = axd
The proof of Lemma 1 is shown in Appendix B. Let us
consider d?. A solution d* to Problem (35) is either d* = 0
or an unconstrained minimizer of the objective function of
Problem (35). We can verify that the objective function of
Problem (35) is bounded below on R. Specifically, from (36)
we have

max{—8f%, —ef} = —df 4 \%(a;»dﬁ PR

Y]

—df + [ R(si0)| |dF] — ‘\/Eé}t(hfut*)

- ]ﬁ%(h?u;) ,

where the second inequality is due to |R(s;¢)] > 1 for
all s,; € S. The above inequality implies that the ob-
jective function of Problem (35) is bounded below by
—max;—1__ 1 |\/P/NR(hTu})|. By applying Lemma 1,
there exists an unconstrained minimizer dﬁ of the objective
function of Problem (35) such that

v

R £ max{C, D}
jdfy < Y20 : 41
min{A, B}
where
A= ?;éin |§R(Sz7t) - éR(Si,'r)'a
%(Si,t)iﬁé(siﬂ')
B = min |R(si,6) + R(s4,7)],

t,T,
R(si,0)#—R(si,7)
€ = max [R(T (i — w2, D = mpax [R(B] (uf + ).
Notice that A > 2, B > 2 for any s;4,s; » € S, that

C < hillalluf = urlloo < 2[R,

and similarly, that D < 2||h;||;. Putting the above inequalities
into (41), and combining it with cff” > 0, we are led to the
final result d® < \/P/N|h;||;. Following the same proof as
above, we also get d! < \/P/N||h;|);. The proof is complete.

B. Proof of Lemma 1

To proceed, rewrite Problem (39) as

min ¢! z
= 42)
s.t.z€P,
where z = [ z,t |7, e=[0,1]7,
P={z|alz+b;<0,i=1,...,m}, (43)
and a; = [ a;,—1 1%, i = 1,...,m. In particular, if 2* =

[ 2*,¢* |7 is an optimal solution to Problem (42), then z* is
an optimal solution to Problem (39), and ¢* attains t* = f(z*).
Firstly, we claim that P has an extreme point. A polyhedron
in the form of (43) and with vector size n is known to have an
extreme point if and only if {a1,...,a,} contains n linearly
independent vectors [39, Proposition 2.1.5]. Since we have
assumed that a; # a; for some ¢ # j, the corresponding
a;,a; are linearly independent. It follows that {aq,...,an}
contains n = 2 linearly independent vectors, and thus P has
an extreme point.

Secondly, we explore a relationship between the optimal
solutions and extreme points. It is known that if P has an
extreme point and ¢’z is bounded below over P, then there
exists an optimal solution z* to Problem (42) such that it is
also an extreme point of P [39, Proposition 2.4.2]. We already
showed that P has an extreme point, and it is easy to see that
¢’z is bounded below over P if and only if f is bounded
below over R, which we assume. As an extreme point of P,
z* satisfies the following condition [39, Proposition 2.1.4]: the
set {a; | al'z* +b; = 0} contains n = 2 linearly independent
vectors. This implies that we can find two indices j, k such that
a;, ay, are linearly independent, and a] z* +b; = aj z* + by.
The above equations are equivalent to

a; # ag, (a; —ag)x* =by —bj,

and they imply that
min

J#k,a;Fak

The proof is complete.

i — 1 < br — bjl.
lay = aulo”| < max[bi b,

C. Proof of Theorem 1

Let us rewrite Problem (19) as

— ; 2.
Foig = min f(u) — Allull; (44)
note that |u| = 1 for any u € Y. Also, denote
Fisp = min f(u) — Alul*. (45)
ueUn™

It is seen that FJ;, > Fygsp. Also, if all optimal solutions to

Problem (45) lie in U", then F3;, = Fysp and the optimal
solution sets of Problems (44)—(45) are equivalent. Now, we

show that any optimal solution to Problems (45) must lie



in U™ if A > X () is defined in Theorem 1). Let & be an
optimal solution to Problem (45), and suppose @ ¢ U™. Then
there exists an index ¢ such that 4; ¢ U. Let 4 = 4; and
h(u) = f(aq,.. ,Up). We will show that
there exists a u € U such that

h(a) — Aaf* > h(a) — Aal?, (46)
which implies that f(@) — Al|la|*> > f(u) — Aul|/? for
w = (Gy,...,%;—1, U Uix1,.-.,0y,), and which contradicts
the optimality of @ for Problem (45).

Firstly, consider the CE case for which & = {u | |u| = 1}
and U = {u | |u| < 1}. Note |4]| < 1, and let & = e“%. Also,
let L be a Lipschitz constant of f on U™, which, following
the definition, is also a Lipschitz constant of 4 on /. We get

h(@) = A|a*> > h(a) - Lla —a| - A|al
= h(@) — Nal> + (A = L)(1 — |a]),

sy Ui—1, Uy Uit 15 - - -

(47a)
(47b)

where (47a) is due to the Lipschitz continuity of 4 and the fact
that a > a? for a € [0,1]; (47b) is due to |@ — @ = 1 — |4
and |a| = 1. Hence, if A > L, then (46) holds.

Secondly, consider the DCE case for which {u =
S (FFm+37) | m =0,1,...,.M — 1}, with M > 4 and M
being even. Note that the one-bit case is an instance of the
DCE case, with M = 4. We divide the proof into two cases.

As the first case, suppose that 4 lies in the interior of /. Let

r = max{a | ae“® € U}, (48)
and note |@| < r. Let us characterize 4 as i = are“?, where
0< &< 1,and let & = re4®. Following the same proof as in

(47), we can readily show that
h(@) — Aa* > h(a) — Ma* + (W — L)r(1 — &).

It follows that (46) holds if A\ > L/r; As the second case,
suppose that @ lies in the boundary of ¢/. It can be seen, e.g.,
from Fig. 3(c), that & € conv {vy,vs}, where
U1 :ej(zﬁwarﬁ), V2 :ej(%(kJrl)Jrﬁ)’

for some integer k. It can be shown that

u € conv{vy, v} <= wu=ad+c ac[-1,1],
where
(v 4 vg) = &3 B+ cos( /M),

(v1 —vg) = je) i (k+1) sin(7/M).

(49a)
(49b)

CcC =

d:

SIS

Let us characterize @ as @& = &d + ¢, where |&| < 1. Also, let

u=d+cif & >0and u =—d+ cif & < 0. Following the
same proof as in (47), we get

h(@)—=Aa>> h(a) — Lla — a| — AM(|a*|d|* + |¢[?)  (50a)

> h(@) — L& — a — A(|al|d]* + |¢|*)  (50b)

= (@) — Ala|*+(Ald| — L)|d|(1 — |al), (50¢c)

where we have used |ad + c|? = |a|?|d|? + |¢|? in (50a) and

(50c). Thus, (46) holds if A > L/|d|. Combining the above
two cases, we further conclude that (46) holds if

A > max{L/|d|, L/r}. (51)

It can be shown from (48) that r > cos(m/M), and it is
seen from (49b) that |d| = sin(w/M). Since cos(w/M) >
sin(w/M) for M > 4, (51) is implied by A > L/sin(w/M).
The proof is complete.

D. Proof of Theorem 2

Assume A > L/2 throughout this proof. Firstly, we show
that F) is strongly concave on ", i.e., there exists a constant
«a < 0 such that

(VF\(u1) — VFy\(u2),u1 — ug) < aflu; — uQ||2, (52)
for all wy,us € U™ with u; # uy [40]. The proof is as

follows. Since VFy(u) = Vf(u) — 2Au, the LHS of (52)
equals

LHS of (52)=(Vf(u1)—Vf(us),u; — uz)—2\|u; — ua|*

< Liluy — ug||* = 2M|lug — us|?,

where the above inequality is due to the Cauchy-Schwartz
inequality and the Lipschitz continuity of V f on ™. It follows
that (52) holds with o = L — 2.

Secondly, we show that any optimal solution to Prob-
lem (20) must be an extreme point of ", or equivalently,
a point in ™. Let @ be a locally optimal solution to Prob-
lem (20). By the definition of local optimality, there exists a
constant € > 0 such that
(53)

Fa(a) < F(w), Yuel"nB(a,e),

where B(u,e) = {u € C" | ||u — 4| < €}. Suppose that @

is not an extreme point of ¢/". This means that we can find
w1, ug € U", with uy # 4, ug # u, such that

u = 9“1 + (]. — 0)“2, (54)
for some 6 € (0,1). Let v = u; — ug, and let
U Z'll—Oé’l), U9 :Tl+061), (55)

for some o > 0. We argue that for a sufficiently small a, it
holds that w1, 1o € U"NB(@, ). It is immediate that i, 4y €
B(t,e) if a < ¢/||lv||. To see why @y, € U™, let L =
conv {uy,us}. Since U™ is convex, we have £ C U". Also,
by putting (54) into (55), and noting 0 < 6 < 1, one can
verify that w;,us € £ whenever a < min{6,1 — 6}. Thus,
we have @y, Uy € U™ for a < min{f,1 — 0}. Now, by @ =
0.5@; + 0.5%; and the strong concavity of F on U™, we get

Fx(a) > 3Fx (@) + 5 Fa()
Z miH{F)\(’l_l,l),F)\(’l_l,g)}. (56)

We see that (56) contradicts (53). Thus, a locally optiryal
solution to Problem (20) must be an extreme point of U™.
The proof is complete.



E. Proof of Corollary 1

Suppose A > L/ cos(w/M). Following the proof in Ap-
pendix C, any optimal solution % to Problem (45) must satisfy

@; € conv{v;1,v;2} for all i, where v;; = (3 ki+)
Vio = (3 kit DF31) for some integer k;. For i €
{1,...7TL}, let ’ELZ = Vi1 if |’ELZ — ’UZ"1| < |’LAI,Z — ’()1-72| and

U; = v;,2 otherwise. It can be verified that @ = Iy (w), and
that |i; — ;| < |d| = sin(7/M). It follows from Fy.. > Fyisp
that

Foig 2 Fisp = f(4) — M|al?
> f(a) — Ll — af - Ala|?
> f(a) — Ly/nsin(w /M) — An,
which, in turn, implies f* > f(a) — Ly/nsin(r/M). Also,
the inequality f* < f(a) follows trivially from the fact that
u € U". The proof is complete.

F. Proof of Fact 3

We have U = {u € C | |u| < 1} and Fy(u) = |u| — Aul?.
It can be verified that for 0 < |u| < 1/(2)), Fa(u) increases
as |u| increases; specifically, if we let z = |ul, and g(z) = z—
2%, we see that ¢/(2) = 1—2Xz > 0 for 0 < z < 1/(2)). This
implies that F\(0) < F»(u) for all w such that |u| < 1/(4\),
and thus uw = 0 is a locally optimal solution to Problem (20).
However, u = 0 is infeasible for Problem (19).

G. Proof of Theorem 3

The update (29) of GEMM can be written as

2

L +1x ().

Br
From the first-order optimality of «**!, we have

0 € Br(x*t — 2%) + VLG (2F|xr) + 0Ly ("),
Let v**1 € 91y (") be such that

0 = B (" — 2%) + Vo, G(2F|z") + vFH

"1 € argmin ?}C x — (28 — —V,G(2*|z"))
x

(57
Then, we have
dist(0, VF (") + 01y ("))
< [[VE(") + o
= [VoG(2*[a") + Br(a™ — 2%) — VF(a")]
< [IV2G(2*[a") — VF(@* )] + Bzt — 2" (58)
Now, we characterize the two terms in (58). First,
IV2G(2"|2*) - VF ()|
= [[V2G(2"|2") — VoG 21|
< IV2G(2"[a") = VoG (2" |a")||
+[IVaG(@Fla") — VoG ")
< Lglla® — 2*|| + Lp|la® — 2"+

— LGakHa:k — :ck_1|| + Lp||a:k — wk+1||,

(59)

where the first equation is due to VG (x|x) = VF(x); the
third equation is due to the Lipschitz continuity of V F'(x) and

k k

VzG(x|z"); the fourth equation uses z*¥ = x* + ay(xF —

x¥~1). Second,

Bellz"t — 2| =Billz” — " + ap(a® — )|
<apBela’ — | + Bt — M.

(60)

By combining the results in (58), (59) and (60), we get

dist(0, VF(z"1) + 0Ly (x*11))
< anlLo + Blla* — a1 + (Le + Gt — 2+
<Oy (a* — | + [|lz*F - =) 61)

where C7 = max{a(l + ¢3)Lg, Lr + coLg}; note that the
second and the last equation is due to a < @ and ¢1Lg <
Br < e2Lg.

Next, consider the following lemma.

Lemma 2 [38, Lemma 2.2] Let
1
T =Tly(z — EVH(z)),

where z = x +a(x —x), x,& € X, « > 0; H is convex and
has Lipschitz continuous gradient; X is convex; (B is chosen
to satisfy

B

H(z%) < H(z) + (VH(2),zt — 2) + §||as+ —z|%

Then, it holds that

H(z) - H(x") > 2 (=" - 2|® - o®|lz - z]?) .

[

According to the update rule (29)-(31), we have

F(Cl!k) _ F(warl) ZG($k|$k) _ G(wk+1|wk)

> Dok b — a2t — 2k,
where the first equation is due to F(x) = G(x|z) and
G(x|z) > F(&); the second equation is due to Lemma 2
(with H = G(-|z%)) and ay < &. As a result, we get

F(.’I}O) _ F(xk+1)

k
=Y F(a*) - F(z¥'*1)

k’=0

£ 8

’ !’ !’ !’ !

e e A A

k’=0

— B —@Brra1 w1 k2, By kel k2
=272 2" —a" | +7llw -z

k’=0

b B — @Bt ,
227-&-":1:]@4&_‘%]@ ”2

2
k'=0

"ol I
1Lg ' '
> ZT”:BkJrl_wk H27
k’=0

(62)



where the last inequality is due to i > ¢1 Lg, Brr+1 < coLg
and & = y/c1(1 — p)/ce. From (62), we get

F(z°) — F*

> F(:L'O) _ F(:Bk+1)

> Clléc,uﬁ

min

K’ % KoK —
SR L A R C AN i

By using a + b < /2(a? + b2), we have

min [|2* T — 2| + 2 - ¥

k'=0,....k

8
< \/CILGM (F(x0) — F*).

Substituting (63) in (61) yields

(63)

dist(0, VF (2 +1) 4 0Ly (" 1))

min
k'=0,...

K

8
< -
- Cl\/ClLG,Uk(

The proof is complete.

F(a0) — F*).
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