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RIEMANNIAN NATURAL GRADIENT METHODS

JIANG HU*, RUICHENG AOf, ANTHONY MAN-CHO SO%, MINGHAN YANGE!, AND
ZAIWEN WENY

Abstract. This paper studies large-scale optimization problems on Riemannian manifolds whose
objective function is a finite sum of negative log-probability losses. Such problems arise in various
machine learning and signal processing applications. By introducing the notion of Fisher information
matrix in the manifold setting, we propose a novel Riemannian natural gradient method, which can
be viewed as a natural extension of the natural gradient method from the Euclidean setting to the
manifold setting. We establish the almost-sure global convergence of our proposed method under
standard assumptions. Moreover, we show that if the loss function satisfies certain convexity and
smoothness conditions and the input-output map satisfies a Riemannian Jacobian stability condition,
then our proposed method enjoys a local linear—or, under the Lipschitz continuity of the Riemann-
ian Jacobian of the input-output map, even quadratic—rate of convergence. We then prove that
the Riemannian Jacobian stability condition will be satisfied by a two-layer fully connected neural
network with batch normalization with high probability, provided that the width of the network is
sufficiently large. This demonstrates the practical relevance of our convergence rate result. Numer-
ical experiments on applications arising from machine learning demonstrate the advantages of the
proposed method over state-of-the-art ones.

Key words. Manifold optimization, Riemannian Fisher information matrix, Kronecker-factored
approximation, Natural gradient method

AMS subject classifications. 90C06, 90C22, 90C26, 90C56

1 Introduction Manifold constrained learning problems are ubiquitous in ma-
chine learning, signal processing, and deep learning ; see, e.g., [6, 14, 32, 40, 17]. In
this paper, we focus on manifold optimization problems of the form

(L1) min W(O) = —ﬁ S logp(ylf(e,0)),
(z,y)€S

where M is either an embedded submanifold of R™*" or a quotient manifold whose
total space is an embedded submanifold of R™*" © € M is the parameter to be es-
timated, S is a collection of |S| data pairs (x,y) with € X,y € Y, X and Y are the
input and output spaces, respectively, f(-,0) : X — } is a mapping from the input
space to the output space, and p(y|f(z,©)) is the conditional probability of taking
y conditioning on f(x,®). If the conditional distribution is assumed to be Gaussian,
the objective function in (1.1) reduces to the square loss. When the conditional distri-
bution p(y|f(x,0)) obeys the multinomial distribution, the corresponding objective
function is the cross-entropy loss. As an aside, it is worth noting the equivalence be-
tween the negative log probability loss and Kullback-Leibler (KL) divergence shown
in [38].

Let us take the low-rank matrix completion (LRMC) problem [14, 32] as an
example and explain how it can be fitted into the form (1.1). The goal of LRMC
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is to recover a low-rank matrix from an observed matrix X of size n x N. Denote by
Q) the set of indices of known entries in X, the rank-p LRMC problem amounts to
solving

1
(1.2) min ~[Pa(UA - X)|?,

UeGr(n,p),AERPXN 2
where Gr(n, p) is the Grassmann manifold consists of all p-dimensional subspaces in
R™. The operator Pqo(X) is defined in an element-wise manner with Po(X;;) = X;;
if (i,7) € Q and 0 otherwise. Partitioning X = [z1,...,2zy] leads to the following
equivalent formulation

N

. 1

UeGr(glglaE]RP ﬁ Z HPQ%' (Uai - l‘i)HQ )
D)5 i1

where z; € R" and the j-th element of Pq, (v) is v; if (4,5) € 2 and 0 otherwise.
Given U, we can obtain a; by solving a least squares problem, i.e.,

a; = a(U;z;) := argmin || Po, (Ua — z;)|1*.
Then, the LRMC problem can be written as
| XN
1.3 i V() = — Ua(U;z;) — z;) )%
(13) pin ) VO) = 5 3 [P, (UalUia) 20|

For the Gaussian distribution p(y|z) = \/(;ﬁ exp(—3(y — 2) T (y — 2)), it holds that

—logp(ylz) = 3lly — z[|* + . Hence, problem (1.3) is a special case of problem

(1.1), in which S = {(z;,0)}}¥,, X = R", Y = R", f(x,U) = Pq, (Ua(U;z) — z),

M = Gr(n,p), and p(y|z) = m exp(—%(y —2)T(y — 2)). Other applications that

can be fitted into the form (1.1) will be introduced in Section 4.

nlog(2m)
2

1.1 Motivation of this work Since the calculation of the gradient of ¥ in
(1.1) can be expensive when the dataset S is large, various approximate or stochastic
methods for solving (1.1) have been proposed. On the side of first-order methods, we
have the stochastic gradient method [47], stochastic variance-reduced gradient method
[31], and adaptive gradient methods [19, 35] for solving (1.1) in the Euclidean setting
(i.e., M = R™*™). We refer the reader to the book [37] for variants of these algorithms
and a comparison of their performance. For the general manifold setting, by utilizing
manifold optimization techniques [1, 26, 13], Riemannian versions of the stochastic
gradient method [11], stochastic variance-reduced gradient method [52, 67, 29], and
adaptive gradient methods [10] have been developed.

On the side of second-order methods, existing algorithms for solving (1.1) in
the Euclidean setting (i.e., M = R™*") can be divided into two classes. The first
is based on approximate Newton or quasi-Newton techniques; see, e.g., [48, 44, 15,
60, 61, 21, 45]. The second is the natural gradient-type methods, which are based
on the Fisher information matrix (FIM) [4]. When the FIM can be approximated
by a Kronecker-product form, the natural gradient direction can be computed us-
ing relatively low computational cost. It is well known that second-order methods
can accelerate convergence by utilizing curvature information. In particular, natural
gradient-type methods can perform much better than the stochastic gradient method

2
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[39, 63, 7, 62, 9, 42] in the Euclidean setting. The connections between natural gra-
dient methods and second-order methods have been established in [38]. Compared
with the approximate Newton/quasi-Newton-type methods, methods based on FIM
are shown to be more efficient when tackling large-scale learning problems. For the
general manifold setting, Riemannian stochastic quasi-Newton-type and Newton-type
methods [34, 33, 65] have been proposed by utilizing the second-order manifold ge-
ometry and variance reduction techniques. However, to the best of our knowledge,
there is currently no Riemannian natural gradient-type method for solving (1.1). In
view of the efficiency of Euclidean natural gradient-type methods, we are motivated
to develop their Riemannian analogs for solving (1.1).

1.2 Our contributions In this paper, we develop a new Riemannian natural
gradient method for solving (1.1). Our main contributions are summarized as follows.
e We introduce the Riemannian FIM (RFIM) and Riemannian empirical FIM
(REFIM) to approximate the Riemannian Hessian. These notions extend the
corresponding ones for the Euclidean setting [4, 38] to the manifold setting.
Then, we propose an adaptive regularized Riemannian natural gradient de-
scent (RNGD) method. We show that for some representative applications,
Kronecker-factorized approximations of RFIM and REFIM can be construc-
ted, which reduce the computational cost of the Riemannian natural gradient
direction. Our experiment results demonstrate that although RNGD is a
second-order-type method, it has low per-iteration cost and enjoys favorable
numerical performances.

e Under some mild conditions, we prove that RNGD globally converges to a
stationary point of (1.1) almost surely. Moreover, if the loss function satisfies
certain convexity and smoothness conditions and the input-output map f
satisfies a Riemannian Jacobian stability condition, then we can establish the
local linear—or, under the Lipschitz continuity of the Riemannian Jacobian of
f, even quadratic—rate of convergence of the method by utilizing the notion
of second-order retraction. We then show that for a two-layer neural network
with batch normalization, the Riemannian Jacobian stability condition will
be satisfied with high probability when the width of the network is sufficiently
large.

1.3 Notation For an m X n matrix 6, we denote its Frobenius norm by ||©]|
and its vectorization by 6 = vec(©) € R™". For a smooth function h : R™*" — R, we
use Vh(O©) € R™*" to denote its Euclidean gradient at ©@ € R™*". For simplicity, we
set 7 = mn. When no confusion can arise, we use Vh(6) to denote the vectorization
of Vh(©). We use V2h(f) € R™" to denote the Euclidean Hessian of h at § € R".
We denote the tangent space to M at © by ToM. We write d € Ty M to mean
mat(d) € ToM, where d € R” and mat(d) converts d into a m-by-n matrix. For a
retraction R defined on M, we write Ry(d) := vec(Rg(D)) for D € ToM, 6 = vec(0),
and d = vec(D). We shall use 6 and © interchangeably when no confusion can arise.
Basically, © is used when we want to utilize the manifold structure, while € is used
when we want to utilize the vector space structure of the ambient space.

1.4 Organization We begin with the preliminaries on manifold optimization
and natural gradient methods in Section 2. In Section 3, we introduce the RFIM and
its empirical version REFIM and derive some of their properties. Then, we present our
proposed RNGD method by utilizing the RFIM and REFIM. In Section 4, we discuss
practical implementations of the RNGD method when problem (1.1) enjoys certain

3
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Kronecker-product structure. In Section 5, we study the convergence behavior of the
RNGD method under various assumptions. Finally, we present numerical results in
Section 6.

2 Preliminaries

2.1 Manifold optimization Consider the optimization problem

(2.1) Juin - A(6),
where M is either an embedded submanifold of R™*™ or a quotient manifold whose
total space is an embedded submanifold of R™*™ and A : R™*™ — R is a smooth
function. For every © € M, we endow the tangent space TgM with a general
Riemannian metric (U, V)g := vec(U) T D(6)vec(V), where D(f) € R"™" is symmetric
and positive definite on Ty M. The design and analysis of numerical algorithms for
tackling (2.1) have been extensively studied over the years; see, e.g., [1, 26, 13] and the
references therein. One of the key constructs in the design of manifold optimization
algorithms is the retraction operator. A smooth mapping R : TM := UgepmToM —
M is called a retraction operator if

e Ro(0) =6,

e DRe(0)[¢] := L Ro(tE) |i=o= &, for all £ € To M.
We call R a second-order retraction [1, Proposition 5.5.5] if Prg (;—;R@(tﬁ)h:o)

=0 for all © € M and £ € ToM. Some examples of second-order retraction can be
found in [3, Theorem 22]. Another key concept is the Riemannian gradient. Given
© € M, the vectorization of the Riemannian gradient gr_e\xah(G) e R™*" of h at O is
given by

gradh(0) = D(0) " Pr, m(Vh(6)) € R",

where Pr, am(+) is the orthogonal projection operator onto Ty, M. The retraction-based
methods for solving (2.1) perform updates of the form

(2.2) Ok = Rgu (td"),

where d* is a descent direction in the tangent space Tgs M and t > 0 is the step size.
The retraction operator R constrains the iterates on M. For the case where M is
an embedded submanifold, we always take the Euclidean metric as the Riemannian
metric (i.e., (U,V)e = vec(U) vec(V) for any © € M) and use gradh(f) € R"
and Hessh(f) € R"™™" to denote the Riemannian gradient and Riemannian Hessian
of h under the Euclidean metric, respectively. For the case where M is a quotient
manifold, we use a Riemannian metric that satisfies the horizontally invariant property
in [1, Equation (3.38)], so that the Riemannian norm of a vector on Ty.M does not
depend on the representative element of # in M. We also assume that the total space
has a retraction satisfying the projection property in [1, Equation (4.9)], so that the
retraction R on M can be defined according to [1, Equation (4.10)].

2.2 Natural gradient descent method The natural gradient descent (NGD)
method was originally proposed in [4] to solve (1.1) in the Euclidean setting (i.e.,
M =R™*"). Suppose that y follows the conditional distribution Pyt e). Consider
the population loss under Py,(0©) := Pyj¢(z,0), i.¢.,

(2.3) ®(0) := —Ep, [EPm(e) 10gp(y|f(w79))} .
4
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When P, (0) and P, are replaced by their empirical counterparts defined using S,
the population loss ®(0) reduces to the empirical loss ¥(©). Now, the FIM associated
with @ is defined as

F6):=Ep,[Ep

ylz

@ [Viogp(y|f(z,0))Vlogp(y|f(z,0))T]] € R™*".

Under certain regularity condition [20], we can interchange the order of expectation
and derivative to obtain F(#) = V2®(#). In what follows, we assume that such a
regularity condition holds. Since the distribution of x is unknown, we set P, to be
the empirical distribution defined by S. In practice, we may only be able to get hold
of an empirical counterpart of P,,(©). The empirical FIM (EFIM) associated with
VU is then defined by replacing P,|,(©) with its empirical counterpart [53], i.e.,

F(0) = g > Viogplul(r.0)Vlogp(ul(x.0) .
(z,y)€S

With the FIM, the natural gradient direction is given by
V() = (F(0)"'V®(H) e R".

It is shown in [5, Theorem 1] and [43, Proposition 1] that V®(6) is the steepest descent
direction in the sense that
Vo(h) 1

—— = lim - arg min ®(0+d),
[V(O)|l(r(o))-1 €70 € deRrrKL(P, ,(04d)|| P,y (8))<c?/2

where [V (6) | (o)) + = /@) (F () V(D).
In the k-th iteration, the iterative scheme of NGD for minimizing (2.3) is

okt = 0% — 1, Vo (6"),

where t;, > 0 is a step size. In the case where F(f) is computationally expensive or
inaccessible, we use the EFIM instead of the FIM. The connections between NGD
and second-order methods are presented in [38].

3 Riemannian natural gradient method

3.1 Fisher information matrix on manifold When the parameter to be
estimated © lies on M, the Euclidean natural gradient direction need not lie on the
tangent space to M at © and thus cannot be used as a search direction in retraction-
based methods. To overcome this difficulty, we first introduce the RFIM, which is
defined as

(81) FR(9):=Ep, [Ep, (o) [grad log p(y|f(z, 6))grad log p(y|(z,6)T]| € R,

where grad log p(y|f(x,0)) is the Riemannian gradient of log p(y|f(x, 6)) with respect
to @ under the Euclidean metric.! Note that the generalization of FIM in the manifold
setting has been developed in [55, 12]. The RFIM defined in (3.1) can be regarded
as an extrinsic representation (i.e., an r-by-r matrix) of the said generalization. Such

I The RFIM should not be confused with the Riemannian Fisher information metric. For any two
tangent vectors u,v € Ty M, the Riemannian Fisher information metric associated with the RFIM
(3.1) is given by u' FE(0)v.
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an extrinstic representation relies on the Euclidean representation of the Riemannian
gradient in the total space and presents a straightforward way to compute RFIM. It
is easy to see that the range of F7(f) is included in Ty M. Assuming that FT(0) is
positive definite on Ty M, we define the Riemannian natural gradient direction d(8)
as

(3.2) df(0) .= (F(0)) 'grad ®(9) € R",

which is a vector on Ty, M. The following theorem justifies our definition of RFIM. It
extends the corresponding results on FIM given in [5, Theorem 1] and [43, Proposition
1].

THEOREM 3.1. Let M be either an embedded submanifold of R™*™ or a quotient
manifold whose total space is an embedded submanifold of R™*" and ® : M — R be
the function given in (2.3). Given © € M, suppose that F¥(0) is positive definite on
TyM. Then, for any second-order retraction R on M, the steepest descent direction
in the tangent space to M at © is given by —df(0) in (3.2), i.e.,

—dR(0 1

() = lim arg min D(Ry(d)),

lgrad @(0)[|(pr()) -1 <=0 € yep, pimp, [KL(Py10 (Ro ()| Py 2 (6))] <e2/2

(3.3)

where ||grad ®(0)||pr(g)) -1 = /grad ®(0) T (FE(F))~Lgrad ®(0).
Proof. For © € M, from the definition

KL(Py2(0)[|Py=(Ro(td))) = Ep, _ (0) logp(y| f(2,0)) — Ep, , (9) log p(y|f (z, Re(td))),

we have

S Er,. o) logplylf (. Rotd)) li=o

= —d"VEp 1 (6) y logp(ylf(x,0)).

By definition of the Riemannian gradient, we obtain

SKL(P, 2 (0)|[Pyje(Ro(td) o = -

d" grad KL(Py;(0)||Pyjz(Ro(td))) |i=o= —d " VEp, 9y logp(ylf(,0)), Vd € TyM,
where grad KL(P,|,(0) || Py (Ro(td))) [t=0€ Tp.M. Then, we have

grad KL(P|;(0) || Pyjz(Ro(td))) |t=0= —gradEp,(g)logp(yl|f(z,0)).

Accordingly, using the Leibniz integral rule and the property of second-order retrac-
tions [1, Proposition 5.5.5], we have the second-order derivative

C KL(B0) 1o (Ro (1) o

=Ep, ()" grad log p(y|f(z,0)) (grad log p(y| f(x,0))) " d].

It follows that gradEp  (s)logp(y|f(z,0)) = 0. By the definition of FE we conclude
that

EPTKL( y\x( )|| Ix(RG( )) = ngFR(Q)d“F O(d3), Vd € Ty M.

From the fact [43, Proposition 1] that

—A~1VR(0) 1
————— = lim — argmin h(6 + d
IVR(O)[[ a1 0 € gjjda<e @+9)

6
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where A is a positive definite matrix and ||d||4-1 = VdT A~1d, we have

—B_1V((I) o Rp)(0) — lim 1 argmin  ®(Rp(d)),

3.4)
( V(@0 Ro)(0) s o2 e 4 imgiin

where B : TyM — TyM is a positive definite linear operator. Note that for all
u € Ty M, it holds that

V(® o Rg)(0)[u] = VO(Ry(0))[DRy(0)[u]] = u" grad ®(6).

This gives

V(® o Rp)(0) = grad ®(h).
Substituting the above into (3.4) and letting B = F#(6), we have
—(FE(9)) tgrad () 1

= lim — arg min D(Ry(d)).
lgrad @(0)[|(rrio) -1 <=0 € acTyMillallr gy <e

(3.5)

Therefore, (3.3) holds for any second-order retraction R. This completes the proof.O
Note that for an embedded submanifold M endowed with the Euclidean metric,
the Riemannian Hessian [2, Equation 7] of ® at 6 along u € Ty M is given by

Hess ®(0)[u] = Pr,m (V2@(0)[u]) — Pr,mDu(grad ®(0)).

Since Ep,_0)Vlogp(y|f(z,0)) = [, Vp(ylf(z,0))dy = V [ p(ylf(z,0))dy = 0, we
have grad®(f) = 0 and Hess®(f) = F(¢). Due to the uniqueness of the second-
order Taylor expansion, the Riemannian Newton’s direction at 6 does not depend on
the Riemannian metric and is equal to d¥(#) in (3.2). Hence, it is reasonable to use
the Euclidean metric to define the Riemannian natural gradient direction (3.2). For
a quotient manifold M whose total space is an embedded submanifold and whose en-
dowed Riemannian metric is horizontally invariant, it follows from [1, Equation (3.39)]
that the Riemannian gradient of ® in the total space is the horizontal lift of the corre-
sponding Riemannian gradient in M. Since the total space is an embedded manifold,
we see from [2, Equation 7] and our earlier argument that F%(6) is the Riemannian
Hessian of @ in the total space at the representative element 6. Furthermore, by [1,
Proposition 5.3.3], the horizontal lift of the corresponding Riemannian Hessian in M
at the representative element @ equals the horizontal projection of F(6). Since the
Riemannian gradient of ® in the total space at a representative element 6 belongs to
the horizontal space at 6, we conclude that d?(6) in (3.2), which lies in the horizontal
space at 0, is the Riemannian Newton’s direction at #. As the Riemannian natural
gradient direction is independent of the choice of the Riemannian metric, we can use
the Euclidean metric to define (3.2), but a horizontally invariant Riemannian metric
should be introduced to compare the norms of Riemannian gradients. In summary,
the Riemannian natural descent direction (3.2) behaves as the Riemannian Newton’s
direction whenever M is an embedded submanifold or a quotient manifold whose total
space is an embedded submanifold.
Similar to EFIM, we can define REFIM as

(3.6) FR0) === Y gradlogp(y|f(z,0))grad log p(y|f(z,0)) .
(z,y)€S
7
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3.2 Algorithmic framework To fix ideas, let us first consider the case where
M is an embedded submanifold. In the k-th iteration, once we obtain an estimate Fj
of the RFIM (3.1) associated with ® or the REFIM (3.6) associated with W at 6%, the
Riemannian natural gradient direction in the tangent space to M at 0% is computed
by solving the following optimization problem:

1
(3.7) d¥ = argmin  my(d) := Uy, + (¢",d) + = ((F) + MeI)d, d)
dETekM 2

where (u,v) := u'v for two vectors u,v € R", Fyd is the usual matrix-vector multi-
plication, ¥}, and g* are stochastic estimates of ¥(#*) and grad ¥(6*), respectively,
and A\ > 0 is usually updated adaptively by a trust region-like strategy. In view
of the finite-sum structure of ¥ (see (1.1)), the stochastic estimates W) and g can
be obtained using, e.g., a mini-batch strategy (i.e., randomly sample a subset of S
and sum the corresponding terms in ¥ and grad ¥ to get ¥y and g, respectively).
Since Fj + M\ : Tyr M — Ty M is positive definite and g* € Ty M, the solution of
(3.7) is d¥ = —(Fy + M\eI)~1g". If the inverse of F}, + \iI is costly to compute, then
the truncated conjugate gradient method can be utilized [41]. We will introduce the
constructions of a few computationally efficient approximation Fj in Section 4.
Once d* is obtained, we construct a trial point

(3.8) 2% = Rogu (d¥).

To measure whether z¥ leads to a sufficient decrease in the objective value, we first
calculate the ratio p; between the reduction of ¥ and the reduction of my. Since the
exact evaluation of W is costly, one popular way [16] is to construct estimates ¥9 and

\Ilik of W(#*) and ¥ (z*), respectively. Then, we compute the ratio as

v - wl
3.9 =—b k.
(3.9) PE = Ry — 09
Here, we take ¥;, = W9 in the calculation of my(d*). Lastly, we perform the update
k
k : k 2
k1 _ J 2% ifpr = moand (g7 = 2,
(3.10) o = { 0%, otherwise,

where n; € (0,1) and 72 > 0 are constants and o} > 0 is used to control the regular-
ization parameter \;. Indeed, to ensure the descent property of the original function
¥, some assumptions on the accuracy of the estimates of ¥(#*), ¥(z*) and the model
my, are needed, and they will be introduced later in the convergence analysis. Due to
the error in the estimates, the regularization parameter Ax41 should not only depend
on the ratio pj but also on the norm of the estimated Riemannian gradient g*. In
particular, we set A\ry1 := op41/|g**!|| and update oy41 as

(3.11) Oyl = max{dmin, %Uk}, if pp > ny and ||g*| > %7
Ok otherwise,

where 1 € (0,1), 12 > 0 are as before and o, > 0, v > 1 are parameters. Our
proposed RNGD method is summarized in Algorithm 1. It is worth mentioning that a
trust-region method is developed in [16] to solve stochastic optimization problems. Al-
gorithm 1 can be seen as a combination of the stochastic update rule of the trust-region

8
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Algorithm 1: Riemannian natural gradient descent (RNGD) for solving

(1.1).

1 Choose an initial point #° and parameters oo > 0, omin > 0, Ao = 00l|¢° |,
m € (0,1), 72 >0, and v > 1. Set k =0.

2 while stopping conditions not met do

3 Compute the estimated Riemannian gradient ¢* and the estimated
Riemannian Fisher information matrix Fj.

4 Compute the negative natural gradient direction d* by solving (3.7) and

compute the trial point z¥ by (3.8).
Update 6*+1 based on (3.10).
Update Ar41 based on (3.11).
k< k+1.

radius in [16] and the adaptive regularization technique for manifold optimization in
[27]. Compared with the trust-region subproblem in [16, Equation (2)], the subprob-
lem (3.7) can be efficiently solved if the cost of computing the inverse of Fj, + Al
is low. We remark that regularized subproblems similar to (3.7) have appeared in
39, 63, 62].

Now, for the case where M is a quotient manifold, we have a horizontally invariant
Riemannian metric (U, V) g = vec(U) " D(f)vec(V). The Riemannian gradient in the
k-th iteration is g* = D(6%)~'g*. Thus, in Algorithm 1, we can still use g and F}, in
(3.7) but should replace ||g*|| in Ag, (3.10), and (3.11) with ||gx|lgr := /(5%)T D(6%)g*.

4 Practical Riemannian natural gradient descent methods From the
definitions of RFIM and REFIM in Section 3, the computational cost of solving sub-
problem (3.7) may be high because of the vectorization of ©. Fortunately, analogous
to [39], the Riemannian natural gradient direction can be computed with a relatively
low cost if the gradient of a single sample is of low rank, i.e., for a pair of observations
(z,y) € S and ¥(0;x,y) := —log p(y|f(x,0)), Vi) takes the form

(4.1) VY (0;2,y) = Glz,y)Az,) "

where G(z,y) € R™*? and A(x,y) € R"*? with ¢ < min(m,n). Let us now elaborate
on this observation.
Recall that the Riemannian gradient of 1 is given by

grady(0;z,y) = Prem(VY(©;2,y)).
When Vi) has the form (4.1), the linearity of the projection operator implies that
42) FR(0) =Ep, (o) [grad(6; z, y)grad v (6; 2, y) ']
~ P (EPI,y(O) [A(l', y)A(.’E, y)T} 0y EPH,(G) I:G(J?, y)G(l‘, y)T]) Pa

where P, () is the joint distribution of (z,y) given 6, P € R™ " is the matrix
representation of Pryaq (note that PT = P due to the symmetry of orthogonal
projection operators), and the approximation is due to the assumption that A(x,y)
and G(z,y) are approximately independent; see also [23, Theorem 1] for a use of such
an assumption to derive a simplified form of the FIM. By replacing P, ,(0) with its

9

This manuscript is for review purposes only.



w
o
ot

326

340

343
344
345
346
347
348
349
350

351

0O W
ut

v C

w W w
ot [@1§
Y Ot R W N

w W
SRR
(@2}

at
3

empirical distribution observed from S, an approximate REFIM is given by
(4.3)

FRO) ~P 1 Z Az, y) Az, y) " Z G(x,y)G(x,y)" | | P.

S
| ‘ (z,y)€S (m y)ES

When a direct inverse of F7(f) is expensive to compute, the truncated conjugate
gradient method can be used. In preparation for the applications, we now show how
to construct computationally efficient approximations of the RFIM and REFIM on
the Grassmann manifold.

4.1 RFIM and REFIM on Grassmann manifold If the matrix represen-
tation P of the projection operator Prg a4 has dimensions m-by-m or n-by-n, i.e.,

grad(0;2,y) = B1G(z,y)A(z,y) " or grady(8;z,y) = Glz,y)A(z,y) ' B
with By € R™*™ and By € R™*"™, then we can approximate the RFIM in (4.2) by
FR0) ~Ep, (o) [A@,9)A(z,y) "] @ Ep, ,0) [B1G (2, y)G(x,y) " Bi]

FR0) ~ Ep, o) [B2A(z,y)A(z,y) " B2] @ Ep, (o) [Gla,y)G(z,y) "] .

Moreover, if we replace P, ,(6) by its empirical distribution observed from S, then
we can approximate the REFIM in (4.3) by

FR(9 ZAxy mE ZBl (z,9)G(z,y) " B

(z,y)ES (myGS

or

FRO~ | g 3 BaA@y)A@y)' B 5 2 Gty

(z,y )ES (x,y )ES

Note that the Kronecker product form allows the inverse of F%(0) to be calculated
efficiently by inverting two smaller matrices [39]. A typical manifold that yields the
above Kronecker product representations is the Grassmann manifold Gr(m,n), which
consists of all n (resp., m) dimensional subspaces in R™ (resp., R™) if m > n (resp.,
m < n). The matrix representation of the projection operator at a point © with
'@ =Tis B =1, -00"T (m>n)or By =1, —0T0 (m < n). In what
follows, we derive the RFIMs associated with three concrete applications involving
the Grassmann manifold and explain how they can be computed efficiently.

4.2 Applications

4.2.1 Low-rank matrix completion For simplicity, we derive the RFIM
associated with problem (1.3) for the fully observed case, ie., @ = {1,...,n} X
{1,..., N}. One can derive the RFIM for the partly observed case in a similar fashion.
By definition, we have f(z,U) = Ua(U;z) — x and ¥(U; z,y) = —logp(y|f(z,U)) =
Hf(@,U) —yl* + ”1%(2”). It follows from [14, Subsection 3.4] that the Jacobian
of a along a tangent vector H € TyGr(n,p) is given by J,(U;x)[H] = Hz and its

10
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adjoint J, (U; ) satisfies J, (U;z)[v] = " v for v € RP. The Riemannian gradient of
T/)('Qflfay) is
grad(U;z,y) =(I —UU ") (Ua(U;z) — 2 — y)a(U;z) ")
+ (I -UUNz(Ua(U;z) —x—y) U

By assuming that the residual Ua(U;z) —  is close to zero, we have (I — UU ")z ~
(I-UU ")Ua(U;x) = 0. This leads to the following approximate Riemannian gradient

of (5 x,y):
(4.4) grad¢(U;z,y) ~ (I - UU " )(Ua(U;z) — 2 — y)a(Usz) ).

Plugging the above approximation into (4.2) leads to

FR(u

~—

Ep, [Ep,, ) [grad(u o, y)grad v(us,) "]
~Ep, {Epmw) [a(U;2)a(Us2) @ [(I - UUT)(Ua(U;z) -z —y)
Ua(Usz) =z —y) " (I -UUT)]]]

N
1
~ |y 2o aUizaUsz) | @ (1 -UUT),

=1

where u = vec(U) is the vectorization of U, the second line is due to (4.4), vec(uv ) =
vRu, (A B)T = AT®@ BT, and (A® B)(AT ® BT) = (AAT) ® (BBT'), and the
last line follows from Ep () [(Ua(U;z) =2 —y)(Ua(U;z) =z —y) "] = I and by
substituting P, with its empirical distribution. For H € Ty Gr(n,p), we have

N
mat(F(u)[vec(H)]) ~ []1[ Za(U;xi)a(U;xi)T ® (I —UU "vec(H)

(4.5)

)

1 N T
- H lN ;a(U;xi)a(U;wi)

where mat(b) converts the vector b € R™ into an n-by-p matrix and the equality
follows from (I — UUT)H = H. For the partly observed case, the matrix Ff(u)
defined in the above equation can serve as a good approximation of the exact RFIM.
Note that & SN | a(Us;z;)a(U;z;)T € RP*P is of low dimension since the rank p is
usually small. Thus, the Riemannian natural gradient direction can be calculated
with a relatively low cost.

4.2.2 Low-dimension subspace learning In multi-task learning [6, 40], dif-
ferent tasks are assumed to share the same latent low-dimensional feature represen-
tation. Specifically, suppose that the i-th task has the training set X; € R%*" and
the corresponding label set ; € R% for i = 1,..., N. The multi-task feature learning
problem can then be formulated as

N
1
4. in YU)=-— X; s Xa i) — will
(46) L, MO = 5y IV i)~
where w(U; X;,y;) = arg min,, 1| X;Uw — y;[|* + A|w||? and A > 0 is a regularization
parameter. Suppose that dy = --- = dx = d. Then, problem (4.6) has the form (1.1),
11
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where § = {((X17y1)70) i]\le X = Rdx(n+1)7 Y= Rd: f(XayvU) = XUU)(U;X, y)—y,
and p(z|f(X,y,U)) = \/(;T)d exp(—3(z — f(X,y,U)) " (z = f(X,y,U))). By ignoring
the constant \/(;T)d when computing 1, we denote ¢(U; X, y, 2) = || XUw(U; X, y)—
y — z||?. Using the optimality of w(U; X,y), we have UT X T (XU
w(U; X,y) —y) + Aw(U; X,y) = 0. Then, we can compute the Euclidean gradient of
V(3 X,y,2) as

Vy(U; X, y, )
=X (XUw(U; X,y) —y = 2)w(U; X,y) " + Ju (U) [UT X (XUw(U; X, y) —y — 2)]
~X T (XUw(U; X,y) — y)w(U; X,y) "

where J,,(U) is the Jacobian of w(U;X,y), J,) (U) denotes the adjoint of J,(U),
and the approximation holds for small A and ||z||. Note that z will lie in a small
neighborhood of zero with high probability if f(X,y,U) is close to 0. Besides, z is
always zero in the dataset S. With the above, an approximate Riemannian gradient
of ¥(-; X,y, 2) is given by

4.7)  grady(U; X,y,2) ~ (I - UU )X (XUw(U; X,y) —y — 2)w(U; X,y) "

Consequently, we have

FR(U‘) = ]EP(X,y) |:EPZ|(X7y)(u) [gfadf/f(U; Xa Y, Z)grad'l/}(ua Xv Y, Z)T]:|

%%Z(wi @ ((I-UUNX ) (w; @ (I-vU")X, )T
(4.38) N
=5 2 [(wiw]) @ (I - VU)X X,(1 - UU )]
i=1
~y ZN: lil UUNX X;(I-UUT)|,
N |& N 2

where u = vec(U) is the vectorization of U, w; := w(U; X;, y;), the second line follows
from (4.7), Ep_  , (w[(XUw(U; X, y) —y—2)(XUw(U; X,y)—y—2)"] = I, and the
empirical approximation of Px ), and the last line holds under the same condition
as in (4.2). Though the construction of F®(u) is for the case d; = --- = dy;, it can
be easily extended to the case where the d;’s are not equal.

4.2.3 Fully connected network with batch normalization Consider an
L-layer neural network with input ag = x. In the [-th layer, we have

s1i —E(s1)

4.9 =Wiai_1 + by, t1; =
(4.9) s 1aj—1 + 0, 1, Var(s..)

XY+ By i =1,...,n, ap = o (t),

where ; is an element-wise activation function, W, € R™*™-1 is the weight, b; € R™
is the bias, s;; is the i-th component of s; € R™, v,,,6;; € R are two learnable
parameters, Var(s; ;) is the variance of s;;, and f(z,0) = ar € R™ is the output of
the network with © being the collection of parameters {W;, b;,v1, 5;}. By default, the
elements of ~y; ; are set to 1 and the elements of /5 ; are set to 0. In [28], ¢ ; is called
the batch normalization of s; ;.

12
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Given a dataset S, our goal is to minimize the discrepancy between the network
output f(z,0) and the observed output y, namely,

_ L

(4.10) min (6) =~

> logp(ylf(x, ).

(z,y)eS

By [17], each row of W lies on the Grassmann manifold Gr(1,n;—_1). It follows that W,
lies on the product of Grassmann manifolds, i.e., W; € Gr(1,n;_1) x---xGr(1,n;_1) €
R™>*™-1_ The remaining parameters lie in the Euclidean space. Rather than batch
normalization, layer normalization [8] and weight normalization [49] have also been
widely investigated in the study of deep neural networks, where vec(W;) € Gr(n; x
ni—1,1) and W; € Sp(nj—1 — 1) x - -+ x Sp(ny—1 — 1) € R™*™-1 with Sp(n;_; — 1) :=
{u € R™-1: ||u|| = 1}, respectively.

By back-propagation, the Euclidean gradient of ¥ with respect to W, is given by

g1 < Day © ¢} (t;) ©Dt;, VU(W)) « gia)y, Daj_y < W, g1.

In particular, we see that VU (W) has the Kronecker product form (4.1). Moreover,
note that ¥(w; ;) = ¥(cw;), Yc # 0. Now, we compute

V\I/(wl,i)wl—ri = tlir% W (wri + twlt’) — W(wi) =0.
’ —

By definition of the projection operator defined on the product of Grassmann man-
ifolds, the Riemannian gradient grad U(W;) is actually the same as the Euclidean
gradient VU(W)). Specifically, for the i-th row of grad ¥(W;), we have

lgrad U(W;)], = grad ¥(w; ;) = V¥ (w; ;) — V\Il(wu)wl—':iwl,i = VU(w;).

Therefore, the RFIM coincides with the FIM. The inverse of F(f) can be computed
easily when the FIM has a Kronecker product form.

5 Convergence Analysis In this section, we study the convergence behavior
of the RNGD method (Algorithm 1).

5.1 Global convergence to a stationary point To begin, let us consider
the case where M is an embedded submanifold and extend some of the definitions
used in the study of Euclidean stochastic trust-region methods (see, e.g., [16]) to this
setting.

DEFINITION 5.1. Let Kef, keg > 0 be given constants. A function my, is called a
(Kef, Keg)-fully linear model of ¥ on By« (0,1/0y) if for any y € Bgx(0,1/0%),

Ke Re
G IV R)) — V()] 55 and (80 Ryry) — mu)] < 5,
k

where By(0,p) :={d € ToM : ||d]| < p}.
DEFINITION 5.2. Let €p, 01 > 0 be given constants. The quantities \I/g and \I/ik
are called ep-accurate estimates of W (9’“) and Uy, (zk), respectively if

(52 e N S e
k k

where 2* is defined in (3.8).
13
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Analogous to [16, 58], the inequalities (5.1) and (5.2) can be guaranteed when
M is compact, the number of samples is large enough, and V(¥ o R) is Lipschitz
continuous.

Next, we introduce the assumptions needed for our convergence analysis. Their
Euclidean counterparts can be found in, e.g., [16, Assumptions 4.1 and 4.3].

ASSUMPTION 5.3. Let 6° € R",omin > 0 be given. Let L(6°) denote the set
of iterates generated by Algorithm 1. Then, the function ¥ is bounded from below
on L(8°). Moreover, the function U o R and its gradient V(¥ o R) are L-Lipschitz
continuous on the set

1
Laa(0®)= |J Bo (o,g : )
) min

0eL(00

ASSUMPTION 5.4. The RFIM or REFIM Fy, satisfies || Fi|lop < Kfm for all k >0,
where || - |lop s the operator norm.

We remark that Assumptions 5.3 and 5.4 hold for any compact M and smooth
V. With the above assumptions, we can prove the convergence of Algorithm 1 by
adapting the arguments in [16]. The main difference is that our analysis makes use of
the pull-back function ¥ o R and its Euclidean gradient; see Definitions 5.1 and 5.2.

THEOREM 5.5. Suppose that Assumptions 5.3 and 5.4 hold, my is a (Ket, Keg)-

fully linear model for some Kef, keg > 0, and the estimates \112 and \Ilik are €p-

accurate for some e€p > 0. Furthermore, suppose that no > maX{K,ﬁm, %Gjlelf} and

er < min {Iﬁ:cf, 3%7]1772}. Then, the sequence of iterates {0} generated by Algorithm
1 will almost surely satisfy

lim inf ngad\I/(Gk)H =0.
k—o0

Proof. One can prove the conclusion by following the arguments in [16, Theorem
4.16]. We here present a sketch of the proof. Define Fj, as the o-algebra generated by
WO wE v, \I/zk and my, ..., my. Consider the random function ®; = vW¥(0*) +
(1—v)/o?, where v € (0,1) is fixed. The idea is to prove that there exists a constant
7 > 0 such that for all &,

.
(53) E [q)k+1 — Py | ]:k—l} < —? < 0.
k

Summing (5.3) over k > 1 and taking expectations on both sides lead to >_,—, 1/0% <
00. The inequality (5.3) can be proved in the following steps. Firstly, a decrease on ¥
of order —O(1/03) can be proved using the fully linear model approximation and the
positive definiteness of Fj, + oy ||g”||I with a sufficiently large 0. Secondly, the trial

point z* is accepted provided that the estimates U9 and \I/zk are ep-accurate with

sufficiently small er and large 0. In addition, with 72 > max {nﬁm, i(i”;f }, if 2% is

accepted (i.e., 0¥F1 = 2*), then a decrease of —O(1/02) on ¥ can always be guaranteed
when €7 < min {Ket, 357172} based on the update scheme (3.11). On the other hand,
if 2* is rejected (i.e., 08T = 0%) then E [®) 41 — Pp|Fr—1] = (1 —v)(1/4% — 1)/0}.
By choosing v to be sufficiently close to 1, the inequality (5.3) holds for any k.

Now, we will have o, — o0 as k — oo with probability 1. If there exist € > 0
and ko > 1 such that ||grad ¥(6%)|| > € for all k& > ko, then the trial point will be
accepted eventually because the estimates \Ilg and \Ilzk are ep-accurate. Recall that

14
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o is decreasing in the case of accepting z*. This means that o}, is bounded above,

which leads to a contradiction. Hence, we conclude that lim infj_, ||grad ¥(6%)|| = 0

will hold almost surely. ]
REMARK 5.6. Analogous to [16, Theorem 4.18], one can show that khj& lgrad \I/(Gk)HI

=0 will hold almost surely by assuming the Lipschitz continuity of grad ¥.

REMARK 5.7. For the case where M is a quotient manifold, we modify Algorithm
1 according to the approach mentioned in the last paragraph of Section 3.2. The iterate
0% and the tangent space at OF should be understood as a representative element and the
horizontal space at %, respectively. Due to the horizontal invariance of the Riemann-
ian metric, the almost sure convergence result of liminfy_, oo || D(6%) " grad ¥ (6%)||gx
— 0 also holds.

5.2 Convergence rate analysis of RNGD In this subsection, we study the
local convergence rate of a deterministic version of the RNGD method. Let us start
with some definitions. Let

L(z,y) == —logp(ylz)

and suppose that P, is the empirical distribution defined by S. We define S, := {x :
(z,y) € 8}, Sy = {y: (x,y) € S}, Fr(x,0) := Ep,(9)[V:10g p(y|2) V. log p(y|2) "] .= f(x.0) ]
and write JE(z,0) = [grad fi(z,0),...,grad f,(z,0)]T for the Riemannian Jaco-
bian of f(x,0) = [fi(z,0),..., f;(z,0)]" with respect to . Furthermore, we write
S = {(zs,y:) Y, with N = |S| and w(0) = [f(21,0),..., f(zn,0)]T. Let JE(O) :=
[JE(21,0), ..., J%(xN,0)] and Hp(u(0)) := blkdiag(Hr (w(6)1),. .., Hr(u(f)n)). For
simplicity, we write u® := u(0%).

5.2.1 Convergence rate Throughout this subsection, we make the following
assumptions on the loss function L.

ASSUMPTION 5.8. For any y € Sy, the loss function L(-,y) is smooth and p-
strongly convex and has ky,-Lipschitz gradient and kg-Lipschitz Hessian, namely,

pl 2 V2. L(z,y) 2 kl,  |VZL(zy) = V3. L(z,y)l| < kpllz — 2|, Vz,z eR™
In addition, the following condition holds:
(54) FL(xv 9) = vizL(Zvy)‘z:f(a:,e) = HL(f<xv 9))

We remark that the equality (5.4) holds if V2, L(z, Y)|z=f(2,0) does not depend on
y, which is the case for the square loss L(z,y) = ||z — y||* and the cross-entropy loss
L(y,z) = —>_,yjlogz; +1og(3_; exp(z;)). We refer the reader to [38, Section 9.2]
for other loss functions that satisfy (5.4). We remark that the square loss L(z,y) =
|z — y||?, which appears in both the LRMC and low-dimension subspace learning
problems, satisfies Assumption 5.8.

According to the definition of RFIM in (3.1) and the chain rule, we obtain

1

FHO) = 15

> T w,0)" Fr(x,0).0%(x,0).

zES,

Based on Assumption 5.8, we have F®(0) = J®(0) " Hr(u(0))JT(6). Note that F£(8)
may be singular when J(6) is not of full column rank. In this case, provided that
(JR(Gk)JR(Hk)T)_l exists, we can use the pseudo-inverse
FR(ek)Jr _ JR(Hk)T(JR(ek)JR(ek)T)leL(uk)fl(JR(gk)JR(Gk)T)fljR(ak)
15
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for computation. As mentioned at the beginning of this subsection, we focus on a
deterministic version of the RNGD method, in which we adopt a fixed step size ¢t > 0
and perform the update

(5.5) d* = (FR@O)TTROF) TVL(WF, y), 05T = Row (—td")).

For concreteness, let us take R to be the exponential map for M in our subsequent
development. Our convergence rate analysis of this deterministic RNGD method can
be divided into two steps. The first step is to prove that the iterates {#*} always stay
in a neighborhood of §° if J% satisfies certain stability condition. The second step
is to establish the convergence rate of the method by utilizing the strong convexity
of L. We remark that the zero acceleration property of the exponential map [1,
Equation (5.24)] is essential to our analysis. As such, we can only handle the case
where the retraction is the exponential map. The analysis for the case of a more
general retraction is left as an open problem. Motivated by [66], we now formulate
the aforementioned stability condition on J%.

ASSUMPTION 5.9. For any 0 satisfying || — 0°| < 4rr(uoo)™||u® — y||, where
00 = v/ Amin (JE(O9)JE(00)T) > 0, it holds that

(5.6) 17R(6) — TR(8%)]| < mm{;,&i}%.

As will be seen in Section 5.2.2, Assumption 5.9 is satisfied by the Riemannian
Jacobian that arises in a two-layer fully connected neural network with batch nor-
malization and sufficiently large width. We are now ready to prove the following
theorem.

THEOREM 5.10. Let R be the exponential map for M. Suppose that Assumptions
5.8 and 5.9 hold. Let {0%} be the iterates generated by (5.5).

(a) There exists a constant kg > 0 such that if |[u® — y|| < 3£ and t <

KH
: 1 EH Y\ . 3#200
min {17 (76|\|u0—y|\ — Tu) Srpnd [0 then

t
(5.7 ot ol < (1= 5 ) et =l

(b) Suppose further that Jf is k-Lipschitz continuous with respect to 0, i.e.,
(5.8) |JE(0) — JEW)| < ks||0 —v|, VO,veR".

The rate of convergence is quadratic when t = 1, namely, there is a constant
kg > 0 such that

(5.9) lut* =yl < figllu® —yl*.
Proof. (a). We proceed by induction. Assume that for j < k, we have
167 = 6°)) < 4rs (o) u® =yl ! —yll < (1= ) ll? ™ =gl
By the definition of d* in (5.5),
|| < 77(0F) T (7 O%) T (0) )T HIIIHL (%) M VW L(u®, y) = VuL(y, )|

(5.10) < KL (JTHO) [ — |

min
< 21 (uoo) " Hlub — yll,
16
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where the first inequality is due to VL(y,y) = 0 and the last inequality is from
Assumption 5.9. Now, define the map ¢y, : [0,1] — M as cx(s) = Rgr(—std*). Note
that for the exponential map R, the geodesic distance between 6 and Ry(€) is equal
to ||€]] [1, Equation (7.25)], and inequality (2.2) holds with o = 1 when we take the
Euclidean metric as the Riemannian metric on M. Thus, for any s € [0, 1],

k—1 k
lew(s) = 6°1l < llew(s) — (1 + D 1167 =67 <t ||
j=0 j=0
k .
< 20z (o) 1D flud — .
j=0

Since [[uf —y|| < (1—-3)||u? "t —y| for all j < k, we have || (s)—0°|| < 4k (uoo) ™ u—|
y| for all s € (0,1]. This gives [|0¥+t! — 0°|| < 4pukpoy *||u® — y||. To prove (5.7), we

split [|u**1 — y|| into three terms, namely,
1
uF T — oy =M ok oy = / TR (e (8))ch(s)ds +u* —y
0
1 1
:/ JE(c(5))(c(5) —tdk)ds—i—t/ (JB(c(s)) — JE(O%))d"ds
(5.11) 0 0

b1 b2

1
+t/ JEO")dFds +ub —y.
0

b3
For the exponential map R [1, Equation (5.24)], it holds that
(5.12) . (s) — td* = ¢l (s)[—std®] + mps*t?||d*|?,

where ¢/ (s)[—std*] belongs to the normal space to M at ci(s) and &g > 0 is the
smoothness constant. Plugging (5.12) into (5.11), we have

1
o] S/O UTEO) + 11T (ew(s)) = THE) ) aRs™t||d"||*ds

1
2
< / 2o0m5” 225 = Sount? |,
0
where kg := kg - (1/4+ ||J7(6°)|/(200)). By (5.6) and (5.10), we have

1
. 1 _ t
ol < ¢ [ i { 5. 2 b o2 ) s < L =
17
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Now, the update (5.5) yields JF (uk) d* = Hp, (uk)_1 VL (uk, y) It follows that

lbs]| = l[u* —y — tHy («*) " (VL (u¥,y) — VL(y.y)) |
= |y (u*) " (Hp () (4 = ) = £ (VL (u*,) = V2(.0)) |

- HHL (k)™ (HL (u¥) (u* —y) t/o1 Hy, (uf + s (y —u¥)) (u* —y) d5> H
[t [ 01 ) e a5 ] )|
< /01 (L=t +tn " kps |u* = yl)) ds- [Ju* -y

t
— (1= e+ e =) |

where the first inequality is due to Assumption 5.8. Combining the estimates on
b1, ba, b3, we conclude that

(5.13)
2t KHt 8 _ _
=yl < (1= 2 S ) =+ S 2l ol
t
<(1=2) | =
<( 2) ]
whenever [[u* —y|| < 3£~ and ¢ < (m _ %) 83’5 Zo Therefore, the inequality

(5.7) holds by using the mductlve hypothesis [[u* —y| < [Ju® —y].
(b). The proof is similar to that for (a). Substituting ¢ = 1 into (5.11), we obtain

”uk-i-l

IN

-yl

Ry 1 8 _ —
ﬂllu"”’ = yl* + Sralldt|* + guknriog lut - yl®

4
2 () (e + o) | =,

where we use (5.8) to get

/I(JR(Ck(S)) B JR(ek))dkds
0

1
1 -
SHJ/ lex(s) = 0% [[lld*[lds < S lld*|[* < 267 (no0) *|u* — ]
0

The verification of the neighborhood condition for 6 is similar to that in (a). This
completes the proof. O

5.2.2 Jacobian stability of two-layer neural network with batch nor-
malization

Problem setting From the previous subsection, we see that the Jacobian stability
condition in Assumption 5.9 plays an important role in the convergence rate analysis
of the RNGD method. Let us now show that such a condition is satisfied by a two-layer
neural network with batch normalization, thereby demonstrating its relevance. The
difference between our setting and that of [66] lies in the use of batch normalization.
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To begin, consider the input-output map f given by

07 (¢ — Ez))
NOXD

where z € R" is the (random) input vector, V = E[(z — E[z])(z — E[z])"] is the
covariance matrix, 6 = [0 ,0,5 ,...,01]T € R™ is the weight vector of the first layer,
a; € R is the output weight of hidden unit j, and ¢ is the ReLU activation function.
This represents a single-output two-layer neural network with batch normalization.
We fix the a;’s throughout as in [66] and apply the RNGD method with a fixed
step size on 6, in which each weight vector 6; is assumed to be normalized. For the
Grassmann manifold Gr(1,n), we choose d with ||d|| = 1 as the representative element
of the one-dimensional subspace {cd : ¢ # 0}. With a slight abuse of notation, we
write Gr(1,n) := {d € R" : ||d|| = 1}. Then, we can regard the vector # as lying on a
Cartesian product of Gr(1,n)’s.

(5.14) f(z,0,a) = imzajgb
j=1

Jacobian stability It is well known that if 0; is a standard Gaussian random
vector, then the random vector 6,;/||6;]| is uniformly distributed on Gr(1,n). We draw
each 0; uniformly from Gr(1,n) and each a; uniformly from {—1,+1}. As mentioned
in Section 4.2.3, we have J%(#) = J(#). Thus, our goal now is to establish the stability
of J. To begin, let S = {(z;,v:;)}}, denote the dataset and w() = [f(z1,6,a),
f(xa,0,a),...,f(xn,0,a)]" denote the output vector. Following [18, 59, 66], we make
the following assumption on S.

AsSUMPTION 5.11. For any (z,y) € S, it holds that ||z|| = 1 and |y| = O(1).
For any x;,x; € Sy with © # j, it holds that x; # £x;. In addition, the input vector
x satisfies E[x] = 0 and the covariance matriz V = E[zz "] is positive definite with
minimum eigenvalue oy > 0.

The above assumptions on the dataset S are mild as explained in [66, Assump-
tion 1]. The positive-definite property of the variance V is used to ensure the
well-posedness of the input-output map (5.14). If V is just positive semidefinite,
one can replace it by the shift matrix V + oy I in (5.14) and remove the assump-
tion on V. Motivated by [66], we use [z 6], to represent the k-th smallest en-

try of [z, 69,2]69,...,276%] in absolute value. Since V is positive definite and
Gr(1,n) = {d € R™ : ||d|| = 1} is compact, for ¢ = 1,..., N, the function u —
pi(u) = u”TiVu — (1)/;“‘1/‘;)?/2 is L-Lipschitz on Gr(1,n) for some constant L > 0, i.e.,

[lpi(u) — pi(v)]] < L|ju — v|| for any u,v € Gr(1l,n). To prove the desired Jacobian
stability result, we need the following lemmas. They extend those in [66], which are
developed for the Euclidean setting, to the Grassmann manifold setting. In what
follows, we use d4 to denote the indicator function of an event A, i.e., §4 takes the
value 1 if the event A happens and 0 otherwise.

LEMMA 5.12. Let Qj,H? € Gr(l,n), where j = 1,...,m, be given. Suppose that
for some k € {1,...,m}, we have |6 —6°|| < \/E[xiT@?]k_ fori=1,2,...,N and
7=1,2,...,m. Then, we have

< 2NkEM + NkL
- m

)

(5.15) 17(6) — 70|

VuuTa:,i

X4 _
) VuTVau (uTVu)3/2

,,,,,

)
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Proof. Let A; ; denote the event that the signs of z;6; and x 6] are different.
We claim that, for i = 1,2,..., N, there are at most 2k non-zero entries of {4, , };”:1
Otherwise, there exists an ¢ € {1,..., N} such that

16— 617 > |l 6; — ol 6]

j=1

e S T A N o e vl R o
J€{j:da,; ;=1} j€{j:6a, =1}

which contradicts our assumption. Now, the generalized Jacobian of f with respect
to 6 is given by

J(H):%Z

j=11i

N
T

a; |:6$;F9120 : @i(el)—ra R 6x;r9m20 ' %(Gm)
1
When z 0; and z;/ 07 have the same sign, the difference 6,7 ¢ \‘/%gai(Hj) — 0,7 9050
%@i(e;?) is either O or %(%(ﬁj) —©i(09)). Splitting ||J(8) — J(6°)||* into two parts
according to the event A; ; yields

17(6) = 7(6")]>

M - L -
=D DD ST S S O &

(z4,y:)€S J=1 (4,y:)€S J=1
2NkM L
< - _ 00y 2
S——+— > le—6°
(zi,9:)€S
<2N/€M+NkL
= m b)

where the last inequality follows from the assumption on ||# — 6°| and the fact that
[z 09]k—| <1lfori=1,...,Nandj=1,...,m. 0

The next lemma gives an upper bound on the probability of the event {|z; 6;| <~}
for all 4 > 0, which will be used to estimate [z 9] in Lemma 5.14.

LEMMA 5.13. Let v be uniformly distributed on Gr(1,n), x € Gr(1,n) be a given
unit-norm vector, and v > 0 be a given positive number, where n > 2. Then, we have
P(|lz"v| < v) < /7ny. Moreover, the dependence on n in the bound is optimal up to
constant factors.

Proof. Without loss of generality, we may assume that z = (1,0,...,0) since
the Euclidean inner product and the distribution of v are invariant under orthogo-
nal transformation. Then, we have x'v = v;. Let Z1,...,Z, be standard Gauss-
ian random variables. Then, the random variable z T v has the same distribution as
B:= \/ﬁ It is well known that B? follows the distribution Beta(3, 25%) [30,
Section 25.2]. As a result, the density function h of B can be explicitly written as

I'(%)

2 )t <1
AT

(5.16) h(r) =
It follows directly that

G BT <) =B(Bl <) = [ bt < e < v
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where the last step uses the classic result ['(2) < 7y/nI'(%52) in calculus.
To see the optimality of the dependence on n in the bound, note that for v < ﬁ,

we have
P(j2 o] <) = B(IB| < ) = / hr HANS Y. B
— fl—\(n 1) ~ 12 /26 ’
where the third step uses (1 — 7“2)"53 > 1— 2372 and the fact that y < f and
the last step follows from an application of Stlrhng s formula; see, e.g., [56, Eq. (33)].
Hence, the dependence on n in the bound is optimal up to constant factors. 0

Using the above lemmas, we show that Assumption 5.9 will hold with high prob-
ability.

LEMMA 5.14. Let 0j,9? € Gr(1l,n), where j = 1,...,m, be given. For any given
Q,e >0, if |0 — 6°]] < Q, then with probability at least 1 — €, we will have

2(rn)s NI MQ3 N (nn)3 N3 LQ3

2 1 2 1
€3MmMs3 €E3M3

(5.18) 17(0) = T(O°)]* <

Proof. For given integers k € {1,...,m} and i € {1,2..., N}, we prove that with
probability at least 1 — ¢/N, there will be at most k£ — 1 hidden units 90 such that

|:L'T90| < Nmﬁ For 7 > 0, let 7, be the positive number such that ]P’(\g| <) =T,
TQO

where g follows the same distribution as It follows from Lemma 5.13 that

Vr > WT. Let 7 = Nm. Then, we have

o ke
T 40

(5.19) E ,ZI(SW@?K% ZIE” [l 6] <] < -

i=
Applying the Markov inequality yields
(5.20) P> Oaros<y, 2 k| < N

j=1
Zmi 5N

Therefore, by taking k = €M NS tho inequalities VE[z] 6%, > ke =Q

¢ Nm+/tn —
will hold simultaneously for ¢ = f , N with probability at least 1 — e. The desired

conclusion then follows from Lemma 12. 0

Linear convergence of RNGD With the help of Lemma 5.14, we are now ready
to establish the convergence rate of the RNGD method when applied to the two-layer
neural network with batch normalization.

THEOREM 5.15. Suppose that Assumptions 5.8 and 5.11 hold. Let € > 0 be a
given constant. Suppose that the number m of hidden units satisfies

128(L + 2M)37mnN6x2

2,8 3mj 1 _p
progoye mm{2, GnL}
where the constants L, M, kr,u, 09,0y are defined previously. If we draw 0;) uni-

formly from Gr(l,n) and a; uniformly from {—1,+1} for j = 1,2...,m, then the
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Riemannian Jacobian stability condition in Assumption 5.9 will hold with probability

3 5 .2
at least 1 — e. Furthermore, when m > —oUF2MmnNwy, [u® —yl| < -, and
90§ K2, €2 mm{é G:L } kH
7 < min {1, (m - ’;—ﬁ) . ;:;:% }, with probability at least 1 — €, we will have
k+1 1 k
(5.21) [u™ =yl < {1 =5m) l[u® =yl

Proof. By Assumption 5.11 and the fact that a; is drawn uniformly from {—1,+1} ]
we have E [uo] =0 and

2
1 (& (69)7 (z — Elz])
B[] =E |~ (Y [ e
[(uj) ] m ;aﬂ (Og)TV9?
- 2
—F l zm: ; =0 (1) Jj=1 N
m & \/W ov s
This gives
N
(5.22) E [[[u® = y[*] = llyl® + 2y "E[u’] + E [|u°|*] = O (w) :

Applying the Markov inequality, we see that ||[u® — y||> = O (%) will hold with

probability at least 1 — %e. This, together with the result of Lemma 5.14 with @ =
4kp (o) ~H|u® — y||, implies that Assumption 5.9 will hold with probability at least

l—eform=Q

_n

128(L+2M)3*7nN°®x2
5 |-
3
,u 0’00‘\/6 m1n{2 6KL

To establish the convergence rate result, observe from Theorem 5.10 that ||§% —
0% < 4kp(poo) Hu®—y|| when [[u®—y|| < F&- — and 7 < min {1 (m - ’;—Z’) . Bty }I

8KRKT

By taking Q = 4kz0,"'/(3kg) in Lemma 5 14 we see that Assumption 5.9 will hold
16(L+2M) nN°k2
6
90§ k2 €2 min{ % , ﬁ }
Theorem 5.10, we conclude that (5.21) will hold for all k¥ > 0 with probability at least
1 — e. This completes the proof. O

with probability at least 1 — € if m > Following the proof of

6 Numerical results In this section, we demonstrate the efficacy of our pro-
posed method via numerical experiments on three problems: Low-rank matrix com-
pletion, low-dimension subspace learning, and deep learning model training. Our code
is available at https://github.com/hujiangpku/RNGD.

6.1 Low-rank matrix completion We compare our proposed RNGD method
with the Riemannian stochastic gradient descent (RSGD) method [11], the Riemann-
ian adaptive stochastic gradient algorithm (RASA) [32], the Riemannian stochastic
variance-reduced gradient (RSVRG) method [52], and the Riemannian conjugate gra-
dient (RCG) method without preconditioner [14, 46, 51]. All algorithms are initial-
ized by the QR decomposition of a random n-by-p matrix whose entries are generated
from the standard Gaussian distribution. We consider two real datasets. One is taken
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from the Jester joke recommender system,” which contains ratings (with scores from
—10.00 to +10.00) of 100 jokes from 24983 users. The other is the movie rating dataset
MovieLens-1M,? which contains ratings (with stars from 1 to 5) of 3952 movies from
6040 users. In the experiments, each dataset is randomly divided into 2 sets, one
for training and the other for testing. We utilize the implementations of RSGD and
RSVRG given in the RSOpt package® and the implementation of RCG given in the
Manopt package.” For RASA, the LR-type variant is adopted due to its efficiency.
The default parameters therein are used. For RNGD, the same variance reduction
technique as that in RSVRG is adopted to update both the estimated gradient and
the approximate RFIM (4.5). Specifically, we compute a;(U) for all ¢ in each outer
iteration and update a;(U) if the i-th sample is used in the estimation of the gradient.
We use fixed step sizes for RNGD and RSVRG. For RSGD, the step size 7y is set to
e = 1-&-772%' As suggested in [32], the step size 7, = 10/Vk is used for RASA. We

search in the set {2,1,0.5,...,2 x 1078,1078,5 x 1077} to find the best initial step
size 1y for RSGD and RASA and the best step size for RSVRG. The step size for
RNGD is set to 0.05 for both datasets.

Figure 6.1 reports the mean squared error (MSE) on both the training and test-
ing datasets, which are defined as ||Pq,,...(UA — X)|?/|Qrain| and ||Pa,...(UA —
X)|1?/|Q%est|, respectively, where Q¢rain and Qyes; are the sets of known indices in the
training and testing datasets, respectively. The label “#grad/N” means the number
of epochs, which is defined as the number of cycles through the full dataset. The
label “time” represents the wall-clock time. We run all algorithms with a specified
number of epochs for different datasets. On the Jester dataset, we see that RNGD,
RSVRG, and RCG achieve lower MSEs than the other two methods. Furthermore,
RNGD converges faster than RSVRG and RCG. In the case of the MovieLens-1M
dataset, RASA and RSVRG exhibit fast reductions of MSEs in the early iterations.
However, RNGD returns a point with the lowest MSE.

—RCG
—+RSGD

—RCG
—+RSGD

——RASA
——RSVRG
@ ANGD

ASA
——RSVRG
-+ ANGD

MSE on training set
MSE on training set
MSE on test set
MSE on test set

20 25 30

0 5 10 15 20 25 30 0 5 10 15 20 25 o 5 10 15
#gradN time #gradiN

F1G. 6.1. Numerical results for LRMC on the Jester dataset (first row) and the MovieLens-1M
dataset (second row).

2The dataset Jester can be downloaded from https://grouplens.org/datasets/jester

3The dataset MovieLens-1M can be downloaded from https://grouplens.org/datasets/movielens
4The code of RSOpt can be downloaded from https://github.com /hiroyuki-kasai/RSOpt
5The code of Manopt can be downloaded from https://github.com/NicolasBoumal /manopt
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Fic. 6.2. Numerical results for multitask learning on the School dataset (first row) and the
Sarcos dataset (second row).

6.2 Low-dimension subspace learning We compare our proposed RNGD
with RCG, RSGD, RASA, and RSVRG on two real-world datasets: School [22] and
Sarcos [57]. The dimension p is set to be 6 for both datasets. We choose the best step
sizes for RSVRG, RASA, and RSGD from the set {1,0.5,0.2,0.1,0.05,0.02,...,1078,5
x1072,2x 1072,107?}. We use the step size 4 (resp., 1) on the School (resp., Sarcos)
dataset for RNGD. All the codes are implemented within the RSOpt framework and
the other parameters of the algorithms are set to the default values therein.

Figure 6.2 reports the normalized MSE (NMSE) [40] on both datasets, which is the
mean of the normalized squared error of all tasks. For both datasets, RNGD returns a
point with the lowest NMSE. Especially for the Sarcos dataset, a significant difference
in the NMSE between RNGD and other methods is observed. Another noteworthy
phenomenon is that RSGD and RSVRG tend to be less efficient than RCG. This
demonstrates the advantage of using the Fisher information.

6.3 Deep learning model training Batch normalization and momentum-
based optimizer are standard techniques to train state-of-the-art image classification
models [24, 50, 54]. We evaluate the proposed method with Kronecker-factorized
approximate RFIM described in Section 4, denoted by MKFAC, on VGG16BN [54]
and WRN-16-4 [64] while the benchmark datasets CIFAR-10/100 [36] are used. The
detailed network structures are described in [54, 64]. In VGG16BN, batch normaliza-
tion layers are added before every ReLLU activation layer. Additionally, we change the
number of neurons in fully connected layers from 4096 to 512 and remove the middle
layer of the last three in VGG due to memory allocation problems (otherwise, one
has to compute the inverse of 40962-by-40962 matrices). This setting is also adopted
in [17, 63].

The baseline algorithms are SGD, Adam, KFAC [39], AdamP, and SGDP [25].
The tangential projections are used to control the increase in norms of the weight
parameters in AdamP and SGDP. These methods can be seen as approximate Rie-
mannian first-order methods. We fine tune the initial learning rates of the base-
line algorithms by searching in the set {0.5,0.2,0.1,0.05,0.02,0.01,...,5 x 107°,2 x
107°,1075}. The learning rate decays in epoch 30, 60, and 90 with a decay rate 0.1,
where an epoch is defined as one cycle through the full training dataset. We choose
the parameters 1, 82 in Adam and AdamP from the set {0.9,0.99,0.999}. We search
in the set {0.05,0.1,0.2,0.5,1,2} to determine the damping parameter A used in cal-
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TABLE 6.1
Classification accuracy of various networks on CIFAR-10/100 (median of five runs).

Dataset CIFAR-10 CIFAR-100
Model | WRN-16-4 | VGG16BN | WRN-16-4 | VGG16BN
SGD 93.84 92.88 74.30 71.79
SGDP 93.42 92.49 73.67 71.54
Adam 92.53 89.88 71.64 62.79
AdamP 92.55 91.43 71.23 58.88
KFAC 93.90 94.36 74.31 76.38
MKFAC 94.06 94.76 74.55 77.28

culating the natural direction (Fj + A\I)~1g* and update the KFAC matrix in epoch
30, 60, and 90. The initial damping parameter of KFAC is set to 2 in all four tasks.
We set the weight decay to 5 x 10™* for all algorithms. Each mini-batch contains
128 samples. The maximum number of epochs is set to 100 for all algorithms. For
MKFAC, we use RNGD for parameters constrained on the Grassmann manifold and
SGD for the remaining parameters. Let 7,7, denote the learning rates for the Euclid-
ean space and Grassmann manifold, respectively. For the dataset CIFAR-10, we set
1g = 0.25 and 1 = 0.05 with decay rates 0.2 and 0.1, respectively. The weight decay
is only applied to the unconstrained weights with parameter 5 x 1074, The initial
MKFAC damping parameters for WRN-16-4 and VGG16BN are set to 1 and 2 with
decay rates 0.8 and 0.5, respectively, when the preconditioners update in epoch 30,
60, and 90. For the dataset CIFAR-100, we set 1, = 0.3 for WRN-16-4, n, = 0.15
for VGG16BN, and = 0.05 for both. The learning rate n, has a decay rate 0.15 for
WRN-16-4 and 0.2 for VGG16BN, while n has a decay rate 0.1 for both of them. The
initial MKFAC damping parameters for VGG16BN and WRN16-4 are set to 0.5 and
1 with decay rates 0.5 and 0.8, respectively. Other settings are the same as KFAC.

Table 6.1 presents the comparison of the baseline and the proposed algorithms
on CIFAR-10 and CIFAR-100 datasets. We list the best classification accuracy in
100 epochs, where the results are obtained from the median of 5 runs. The per-
formance of our proposed MKFAC method is the best in all four tasks. Compared
with the second-order type method KFAC, our MKFAC method reaches higher accu-
racy, though KFAC has a much better behavior than SGD on these tasks. Compared
with the manifold geometry-based first-order algorithms SGDP and AdamP, we see
that using second-order information can give better accuracy than using first-order
information alone.

7 Conclusion In this paper, we developed a novel efficient RNGD method for
tackling the problem of minimizing a sum of negative log-probability losses over a
manifold. Key to our development is a new notion of FIM on manifolds, which we
introduced in this paper and could be of independent interest. We established the
global convergence of RNGD and the local convergence rate of a deterministic ver-
sion of RNGD. Our numerical results on representative machine learning applications
demonstrate the efficiency and efficacy of the proposed method.
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