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A Stochastic Beamformed Amplify-and-Forward
Scheme in a Multigroup Multicast MIMO Relay

Network with Per-Antenna Power Constraints
Sissi Xiaoxiao Wu, Qiang Li, Anthony Man-Cho So and Wing-Kin Ma

Abstract—In this paper, we consider a two-hop one-way
relay network for multigroup multicast transmission between
long-distance users, in which the relay is equipped with multiple
antennas, while the transmitters and receivers are all with a
single antenna. Assuming that perfect channel state information
is available, we study amplify-and-forward (AF) schemes that
aim at optimizing the max-min-fair (MMF) rate. We begin
by considering the classic beamformed AF (BF-AF) scheme,
whose corresponding MMF design problem can be formulated
as a rank-constrained fractional semidefinite program (SDP).
We show that the gap between the BF-AF rate and the SDR
rate associated with an optimal SDP solution is sensitive to the
number of users as well as the number of power constraints in
the relay system. This reveals that the BF-AF scheme may not
be well suited for large-scale systems. We therefore propose the
stochastic beamformed AF (SBF-AF) schemes, which differ from
the BF-AF scheme in that time-varying AF weights are used.
We prove that the MMF rates of the proposed SBF-AF schemes
are at most 0.8317 bits/s/Hz less than the SDR rate, irrespective
of the number of users or power constraints. Thus, SBF-AF can
outperform BF-AF especially in large-scale systems. Finally, we
present numerical results to demonstrate the viability of our
proposed schemes.

Index terms− MIMO relay network, stochastic beamforming,
amplify-and-forward (AF), multigroup multicast, semidefinite
relaxation (SDR).

I. INTRODUCTION

It is well known that path loss, shadowing, and multi-path
fading can cause a severe degradation of the channel between
long-distance users. To overcome these effects, a popular
approach is to employ relay nodes to amplify the signals of
the transmitters and forward them to the receivers. Besides
supporting applications such as military communications and
device-to-device (D2D) communications, where users are usu-
ally limited by power or apparatus, such an approach has also
found its role in 5G broadband applications. Indeed, there is a
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new trend of employing fronthaul-backhaul links to coordinate
relay nodes to form a big MIMO relay station. For example,
the studies of C-RAN [1]–[4] have led to the so-called cloud
relay network (C-RN) in [4] (see Figure 1), where the channel
state information (CSI) is perfectly known and fully shared,
while data information is partially or fully shared within the
cloud processing unit (PU) pool.1 It is easy to see that if CSI
and data information in the C-RN are both fully shared, then
we are actually dealing with an MIMO relay network. This
motivates us to study the design of amplify-and-forward (AF)
schemes for such kind of networks.2

Fig. 1. An example of a cloud relay network.

In this paper, we consider a typical two-hop one-way MIMO
relay network, where there is no direct link between far-apart
transmitters and receivers, and reliable information delivery
is facilitated by relays. We assume that the transmitters and
receivers are all equipped with a single antenna, and that
the CSI is perfectly known in the network. Our goal is to
design the AF relay schemes so as to achieve good system
performance. In the literature on MIMO relay networks, there
are different formulations of such problem; see, e.g., [5]–[20].
Here, we focus on the multigroup multicast scenario and aim
at optimizing the max-min-fair (MMF) rate. Towards that end,
a classic approach is to adopt the beamformed AF (BF-AF)
scheme [11]. The MMF design problem corresponding to the

1In practice, the limited capacity of the fronthaul and backhaul links of
C-RN is also an important issue. Here, for simplicity, we do not impose any
specific constraint on the link capacity and focus on the AF relaying design.

2The relays can also decode-and-forward (DF) the received signals, but this
is beyond the scope of this paper.
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BF-AF scheme can be formulated as a fractional quadratically-
constrained quadratic program (QCQP), which is NP-hard
in general [21], [22]. Nevertheless, the fractional QCQP is
known to be equivalent to a rank-one constrained fractional
semidefinite program (SDP), which can be tackled using the
semidefinite relaxation (SDR) technique [23]. Roughly speak-
ing, the SDR technique involves first computing an optimal
solution to the fractional SDP without the rank constraint
(which can be done efficiently). Then, using a Gaussian
randomization procedure, the optimal solution is converted
into a rank-one solution, from which a feasible BF-AF solution
can be extracted [24], [25]. A natural question here is to
quantify the gap between the MMF rate associated with the
SDR-based BF-AF solution (which we call the BF-AF rate)
and the MMF rate associated with an optimal fractional SDP
solution (which we call the SDR rate). Building upon the
results in [24], [25], our first contribution is to show that in
the worst-case, the gap is on the order of logM + log logL
bits/s/Hz, where M is the number of users in the MIMO relay
network and L is the number of power constraints on the
relay antennas. One immediate consequence of this result is
that the BF-AF scheme may not be well suited for large-scale
MIMO relay systems, where there are either many users or
many power constraints.

The potentially large gap between the BF-AF rate and the
SDR rate can be attributed to the mismatch between the rank
of the SDR-based BF-AF solution (which is equal to one)
and that of the optimal fractional SDP solution. To improve
the rate performance, one possibility is to design an AF relay
scheme that can somehow utilize the information contained
in the possibly high-rank optimal fractional SDP solution.
This motivates our second and main contribution of the paper,
which is the design and analysis of stochastic BF-AF (SBF-
AF) schemes for MIMO relay networks. The key idea behind
these schemes is to adopt time-varying random AF weights to
simulate “high-rank” BF-AF. This is achieved by choosing the
distribution of the AF weights so that their covariance matrix
is exactly equal to the optimal fractional SDP solution. In this
paper, we propose two SBF-AF schemes, which correspond to
using the Gaussian and elliptic distributions to generate the AF
weights, respectively. Under some mild assumptions, we show
that the MMF rates of the proposed SBF-AF schemes (which
we call the SBF-AF rates) are at most 0.8317 bits/s/Hz less
than the SDR rate. Note that this bound is independent of the
number of users or power constraints, which suggests that our
proposed SBF-AF schemes can have a significant performance
gain over the SDR-based BF-AF scheme, especially in large-
scale MIMO relay systems. As we shall see in Section V, such
a claim is corroborated by our numerical results. Moreover, the
implementation of the SBF-AF schemes does not require the
Gaussian randomization procedure. Instead, it only requires
the nodes in the network to have knowledge of a pre-specified
random seed and then use it to perform beamformer generation
and coherent detection (more implementation details are pro-
vided in Section III.C). Thus, the proposed SBF-AF schemes
can reduce the computational complexity in the computing
center of the network. We remark that some efficient heuristics
have recently been proposed for finding a high-quality solution

to a fractional QCQP; see, e.g., [26]–[29]. However, the fast
convergence of these heuristics highly depends on a good
initialization (such as the Gaussian randomization solution).
Moreover, there is no theoretical guarantee on the quality
of the solutions found by these heuristics. By contrast, our
proposed SBF-AF schemes enjoy strong theoretical properties.

The idea of stochastic beamforming (SBF)—i.e., using
time-varying random beamformers to simulate “high-rank”
beamforming—was first proposed in [30] for the single-group
multicast scenario, where SBF is proven, both theoretically
and numerically, to outperform transmit beamforming in terms
of the multicast rate [30], [31]. Our current work extends the
works [30], [31] in two ways. From the design perspective,
we are the first to introduce SBF schemes in relay networks
and expand their scope to cover the multigroup multicast sce-
nario. From the theoretical perspective, the rate performance
analysis we conduct for the proposed SBF schemes is more
involved than those in [30], [31], as it needs to account for
the interference in the system. It should also be noted that
the problem considered in this paper, namely beamformer
design for multi-user to multi-user multigroup multicasting in
MIMO relay networks, has not been well addressed in the
literature. Indeed, existing works on MIMO relay transceiver
design mainly focus on the point-to-point [7]–[9], [12], [13],
[16], [20], single-user to multi-user [14], multi-user to single-
user [15], and multi-user to multi-user unicast [5], [10], [11],
[19] and multicast [32] scenarios. Although the work [33]
studies beamformer design in a multigroup multicast relay
network, it only considers BF-AF schemes for single-antenna
relays, whereas our focus is on SBF-AF schemes for a multi-
antenna relay. Moreover, it is worth mentioning that the same
SBF technique developed in this paper is also applicable
to multigroup multicasting in a standard MISO downlink
scenario.

The paper is organized as follows. In Section II, we first
introduce the system model of the MIMO relay network. Then,
we review the SDR-based BF-AF scheme and analyze its rate
performance. Next, in Section III, we develop the SBF-AF
framework and analyze the rate performance of two SBF-
AF schemes. In Section IV, we discuss how the SBF-AF
framework can be applied to a distributed relay network. Then,
we present numerical results on the performance of different
AF schemes in Section V. Finally, we conclude the paper in
Section VI.

Our notation is standard: RN and CN are the sets of real
and complex N -dimensional vectors, respectively; RN+ is the
set of real N -dimensional non-negative vectors; HN+ is the set
of N×N Hermitian positive semidefinite matrices; ‖ ·‖ is the
vector Euclidean norm; A •B, A ⊗B, and A �B denote
the inner product, Kronecker product, and Hadamard product
between matricesA andB, respectively; rank(X), λmax(X),
and λ+min(X) stand for the rank, the largest eigenvalue, and
the smallest non-zero eigenvalue of the matrixX , respectively;
vec(A) is the vectorization of the matrix A; Diag(v) is the
diagonal matrix with the vector v on the diagonal; ei is
the vector whose ith entry is 1 and the remaining entries
are 0; Ir denotes the r-by-r identity matrix; Ew∼D[·] is
the expectation operator with respect to the distribution D
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of the random vector w; CN (0,X) denotes the circularly
symmetric complex Gaussian distribution with mean vector 0
and covariance matrix X .

II. PROBLEM FORMULATION AND THE SDR-BASED
BF-AF SCHEME

A. System Model of the One-Way Relay Network

We consider multigroup multicast information delivery in an
MIMO relay network as depicted in Figure 2. In the network,
G single-antenna transmitters send G independent data streams
to G groups of single-antenna receivers (henceforth referred
to as users). Users in the same group request the same
information, while users in different groups request different
information. Let mk denote the number of users in the kth
group (where k = 1, . . . , G) and M =

∑G
k=1mk denote

the total number of users in the network. We assume that
there is no direct link between the transmitters and receivers,
and reliable information delivery is enabled by the MIMO
relay, which AF the signals received from the transmitters to
the receivers. We assume that the relay is equipped with L
antennas. Moreover, all the channels are quasi-static. Under
this setting, the information delivery process consists of the
following two phases:
1) Phase I: Transmitters send information to relay. The receive
model of the transmitters-to-relay link is given by

r(t) =

G∑
j=1

fjsj(t) + n(t), (1)

where r(t) =
[
r1(t), . . . , r`(t), . . . , rL(t)

]T
with r`(t) =∑G

j=1 f
`
j sj(t) + n`(t) being the received signal at the `th

antenna of the MIMO relay; sj(t) is the common information
designated for group j with E[|sj(t)|2] = Pj , and Pj is the
transmit power at transmitter j; fj =

[
f1j , . . . , f

`
j , . . . , f

L
j

]T
with f `j being the channel from transmitter j to the `th antenna
of the MIMO relay; n(t) =

[
n1(t), . . . , n`(t), . . . , nL(t)

]T
with n`(t) being the mean zero, variance σ2

` Gaussian noise
at the `th antenna of the relay.
2) Phase II: Relay processes the received signals and forwards
them to receivers. A popular AF scheme in the literature is the
BF-AF scheme [11], which can be expressed as

x(t) = V r(t), (2)

where V is the AF weighting matrix. The received signal of
user i in group k is then given by

yk,i(t) = gHk,ix(t) + vk,i(t) (3)

= gHk,iV fksk(t)︸ ︷︷ ︸
desired signal

+ gHk,iV

∑
m 6=k

fmsm(t)

+ gHk,iV n(t) + vk,i(t)︸ ︷︷ ︸
interference and noise

,

where gk,i =
[
g1k,i, . . . , g

`
k,i, . . . , g

L
k,i

]T
with g`k,i being the

channel from the `th antenna of the relay to user i in group k;

vk,i(t) is the Gaussian noise at user i in group k with mean
zero and variance σ2

k,i. Under the above setting, the signal-to-
noise-plus-interference ratio (SINR) of user i in group k can
be expressed as

Pk

∣∣∣gHk,iV fk∣∣∣2∑
m 6=k

Pm
∣∣gHk,iV fm∣∣2 + gHk,iV ΣLV

Hgk,i + σ2
k,i

, (4)

where ΣL = Diag(σ2
1 , . . . , σ

2
L).

Phase I Phase II

Transmitters to Relay Relay to Receivers

f 1

f G

g 1 ;i

g G ;i

Fig. 2. The one-way MIMO relay multigroup multicasting model.

In designing the AF weighting matrix V for the MIMO
relay, we consider two types of power constraints. The first
is the total power constraint on the relay. Using (2), such a
constraint can be formulated as

E[‖x(t)‖2] = Tr

V
 G∑
j=1

Pjfjf
H
j + ΣL

V H

 ≤ P̄0,

(5)
where P̄0 > 0 is a given total power threshold. The second
is the per-antenna power constraints on the relay, which
commonly arise in physical implementations of multi-antenna
systems; see, e.g., [34], [35]. These constraints can be formu-
lated as

eH` V

 G∑
j=1

Pjfjf
H
j + ΣL

V H

︸ ︷︷ ︸
E[x(t)xH(t)]

e` ≤ P̄`, ` = 1, . . . , L,

(6)
where P̄` > 0 is a given power threshold for the `th antenna
of the relay.

By letting w = vec(V ) ∈ CL2

and using the identity

Tr
(
AHBCD

)
= vec(A)H

(
DT ⊗B

)
vec(C),

which is valid for arbitrary complex matrices A,B,C,D of
appropriate dimensions, we can express (4) as

γk,i(ww
H) =

wHAk,iw

wHCk,iw + 1
,



4

where

Ak,i = Pk(f∗k ⊗ gk,i)(f∗k ⊗ gk,i)H/σ2
k,i, (7)

Ck,i =
∑
m 6=k

Pm(f∗m ⊗ gk,i)(f∗m ⊗ gk,i)H/σ2
k,i

+ ΣL ⊗
(
gk,ig

H
k,i

)
/σ2

k,i. (8)

Similarly, we can rewrite constraints (5) and (6) as

wHD`w ≤ P̄`, ` = 0, 1, . . . , L, (9)

where

D0 =

 G∑
j=1

Pjf
∗
j (f∗j )H + ΣL

⊗ IL, (10)

D` =

 G∑
j=1

Pjf
∗
j (f∗j )H + ΣL

⊗ (e`eH` ) , ` = 1, . . . , L.

(11)

B. An SDR-Based MMF Formulation

Assuming that the CSI (i.e., fk and gk,i) is perfectly known,
we can now formulate the MMF design problem corresponding
to the BF-AF scheme as

(BF) w? = arg max
w∈CL2

min
k=1,...,G
i=1,...,mk

γk,i(ww
H)

subject to (9).

Problem (BF) is an instance of a fractional QCQP, which is
NP-hard in general [21], [22]. Nevertheless, it can be tackled
by the SDR technique [23]. Specifically, upon observing that

W = wwH ⇐⇒ W � 0, rank(W ) ≤ 1, (12)

we can relax Problem (BF) to the following fractional SDP:

(SDR) W ? = arg max
W∈HL2

+

γ(W )

subject to D` •W ≤ P̄`, ` = 0, 1, . . . , L. (13)

Here, we define

γ(W ) = min
k=1,...,G
i=1,...,mk

Ak,i •W
Ck,i •W + 1

. (14)

It is well known that (SDR) can be rewritten as

max
W∈HL2

+ , t

t

subject to γk,i(W ) ≥ t, k = 1, . . . , G, i = 1, . . . ,mk,

(13) is satisfied,

whose solutions are in correspondence with those to the
following power minimization problem [22]:

min
W∈HL2

+

D0 •W (15)

subject to γk,i(W ) ≥ γ, k = 1. . . . , G, i = 1, . . . ,mk,

D` •W ≤ P̄`, ` = 1, . . . , L.

Thus, the optimal value of Problem (SDR) can be approx-
imated to arbitrary accuracy efficiently by performing a bi-
section search on γ, where each iteration of the search
involves solving the SDP (15) (see [22], [27] for details). If
rank(W ?) ≤ 1, then by (12), we have W ? = w?(w?)H for
some w? ∈ CL2

. Moreover, w? is optimal for (BF). On the
other hand, if rank(W ?) > 1, then by applying a Gaussian
randomization procedure (Algorithm 1; cf. [24], [25]), we can
generate a rank-one feasible solution Ŵ to (SDR) and extract
from it a feasible but generally sub-optimal solution ŵ to (BF).

Now, a fundamental issue is to quantify the quality loss
of the solution ŵ generated by Algorithm 1. We shall tackle
this issue from an achievable rate perspective and bound the
achievable rate gap between the approximate solution ŵ and
the optimal solution w? to (BF). To begin, let

rBF = log
(
1 + γ

(
ŵŵH

))
be the BF-AF rate associated with the approximate solution
ŵ. Furthermore, let

rSDR = log (1 + γ(W ?))

be the SDR rate associated with an optimal solution W ? to
(SDR). Since γ (W ?) ≥ γ

(
w?(w?)H

)
≥ γ

(
ŵŵH

)
, we

clearly have rSDR ≥ rBF. The following theorem shows that a
reverse inequality (approximately) holds, which characterizes
the quality of the solution return by Algorithm 1.

Theorem 1 Let M ≥ 1 be the total number of users in the
relay network and L ≥ 2 be the number of relay antennas in
Problem (BF).3 Then, the following hold:
(a) When M+L ≤ 3, an optimal solution W ? to (SDR) with

rank(W ?) ≤ 1 can be found efficiently. Consequently,
the solution ŵ returned by Algorithm 1 satisfies rBF =
rSDR.

(b) When M+L > 3, the solution ŵ returned by Algorithm 1
satisfies

rSDR− rBF ≤ logM + log(log(3(L+ 1)) + 1/6) + log 48
(16)

nats/s/Hz with probability at least 1− (5/6)N , where N
is the number of randomizations used in Algorithm 1.

We relegate the proof to Appendix A. From Theorem 1(b),
we see that the gap between the BF-AF rate and the SDR rate
is on the order of logM + log logL in the worst case. This
implies that the BF-AF scheme may not work well in large-
scale MIMO relay systems, where there are either many users
or many power constraints. Such a shortcoming motivates us to
search for alternative AF schemes. In the next section, we shall
introduce the SBF-AF framework and propose two SBF-AF
schemes that provably outperform the BF-AF scheme. Before
we proceed, however, several remarks are in order.
Remark 1: Chang et al. [24] have studied Problem (BF) with
only the total power constraint and established a bound similar
to (16) on the corresponding gap between the BF-AF rate and
the SDR rate. Theorem 1(b) generalizes the result in [24] by

3Here, we assume that L ≥ 2, since we have D0 = D1 when L = 1 in
Problem (BF).
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allowing both the total power constraint and the per-antenna
power constraints to be present in (BF).

Remark 2: Although Theorem 1(b) is presented for sum
power and per-antenna power constraints, it can be further
generalized to cover the case where the constraints in (BF)
are replaced by

wHQsw ≤ bs, s = 1, . . . , S

for some arbitrary Q1, . . . ,QS ∈ HL2

+ and b1, . . . , bS ≥ 0

(cf. (9) and note from (10) and (11) that D` ∈ HL2

+ for ` =
0, 1, . . . , L). In particular, it can be shown that the gap between
the BF-AF rate and the SDR rate in this case will be on the
order of logM + log logS. Such a generalization is useful, as
it allows us to model other types of power constraints, such
as the interference temperature constraints considered in [25].

Remark 3: It should be noted that in order to practically
achieve the BF-AF rate rBF, we need to apply a powerful
enough channel code with relatively long codelength.

Algorithm 1 Rank-One Gaussian Randomization Procedure
for Problem (BF)

1: Input: an optimal solution W ? to (SDR), number of
randomizations N ≥ 1

2: if rank(W ?) ≤ 1 then
3: let W ? = w?(w?)H and output ŵ = w?

4: else
5: for n = 1 to N do
6: generate ξn ∼ CN (0,W ?)
7: let

ŵn = ξn · min
`=0,1,...,L


√√√√ P̄`

D` •
(
ξn (ξn)

H
)


8: set θn = γ
(
ŵn(ŵn)H

)
9: end for

10: set n? = arg maxn=1,...,N θn and output ŵ = ŵn?

11: end if

III. THE SBF-AF SCHEMES

A. System Model under the SBF-AF Framework

The gap between the BF-AF rate and the SDR rate is mainly
caused by the fact that the rank-one BF-AF solution Ŵ =
ŵŵH does not fully capture the spatial information contained
in the potentially high-rank optimal solution W ? to (SDR).
This motivates us to propose the SBF-AF framework to further
improve the rate performance. The key idea behind the SBF-
AF framework is to adopt time-varying random AF weights, so
that we can simulate “high-rank” BF-AF. Specifically, we keep
the receive model of the transmitters-to-relay link as in (1), but
modify the AF scheme in (2) to

x(t) = V (t)r(t). (17)

Note that unlike the fixed weighting matrix V used in the
BF-AF scheme (2), the weighting matrix V (t) used in (17)
depends on the time t.

Now, let Ω ∈ HL2

+ be a positive semidefinite matrix
and D = D(Ω) be a probability distribution with mean
vector 0 and covariance matrix Ω. The choice of Ω and
D will be specified later. At each time t, we generate an
independent random vector w(t) of AF weights according to
the distribution D and form the AF weighting matrix V (t) via
w(t) = vec(V (t)). Since w(t) is i.i.d. in time, we shall drop
the time index t and simply write w for w(t) in the sequel.
Using (2) and (17), we can rewrite the receive model in (3)
as

yk,i(t) = gHk,ix(t) + vk,i(t)

= gHk,iV (t)fksk(t) + gHk,iV (t)

∑
m 6=k

fmsm(t)


+ gHk,iV (t)n(t) + vk,i(t). (18)

The above expression suggests that we are dealing with a
multi-user fast-fading interference channel, where the fading
effect is due to the time-varying nature of the AF scheme (17).
By treating the interference as noise (cf. [36]–[40]), we may
define the SBF-AF rate as

rSBF(D)

= min
k=1,...,G
i=1,...,mk

Ew∼D

[
log

(
1 +

wHAk,iw

Ew∼D[wHCk,iw] + 1

)]
.

(19)

In particular, the term Ew∼D
[
wHCk,iw

]
= Ck,i •Ω, which

arises from the interference to user i in group k, is regarded
as the noise variance.

B. The Gaussian and Elliptic SBF-AF Schemes

With the above setup, it is natural to choose the covariance
matrix Ω and probability distribution D jointly so that the
SBF-AF rate defined in (19) is maximized. However, such a
joint optimization problem does not seem to be tractable. To
circumvent this difficulty, one idea is to take a simple zero-
mean distribution D that can be completely characterized by
the covariance matrix Ω and then optimize over Ω. Such an
idea turns out to be viable and leads to two easily imple-
mentable SBF-AF schemes. The first is the Gaussian SBF-
AF scheme, where we take D to be the circularly symmetric
complex Gaussian distribution CN (0,Ω) and generate the AF
weight vector w via

w ∼ CN (0,Ω). (20)

The second is the elliptic SBF-AF scheme, where we take D to
be the so-called complex elliptic distribution with mean vector
0 and covariance matrix Ω and generate the AF weight vector
w via

w =
LHα

‖α‖/
√
r
, α ∼ CN (0, Ir), (21)

where L ∈ Cr×L satisfies LHL = Ω and r = rank(Ω). It
is known that the random vector w in (21) indeed has the
prescribed mean vector and covariance matrix; see, e.g., [41].

To complete the description of the Gaussian and elliptic
SBF-AF schemes, it remains to specify the choice of the
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covariance matrix Ω. Towards that end, consider the following
optimization problem, which aims at finding an Ω such that the
SBF-AF rate rSBF is maximized, while the power used by the
relay antennas, when averaged over all possible realizations
of the AF weight vector w, is below certain prescribed
thresholds:

(SBF) max
Ω∈HL2

+

rSBF(D)

subject to Ew∼D
[
wHD`w

]
≤ P̄`, ` = 0, 1, . . . , L.

Here, D0 and D`, where ` = 1, . . . , L, are defined in (10)
and (11), respectively; D is either the circularly symmet-
ric complex Gaussian distribution (which corresponds to the
Gaussian SBF-AF scheme) or the complex elliptic distribution
(which corresponds to the elliptic SBF-AF scheme) with
mean vector 0 and covariance matrix Ω. The upshot of the
above formulation is that its optimal solution can be explicitly
characterized:

Proposition 1 For both the Gaussian and elliptic SBF-AF
schemes, an optimal solution to (SBF) is given by W ?, the
optimal solution to (SDR).

The proof of Proposition 1 can be found in Appendix B.
Proposition 1 shows that by setting Ω = W ?, the random
AF weight vector w satisfies Ew∼D

[
wwH

]
= W ?, which

suggests that the proposed SBF-AF schemes are simulating
a “high-rank” BF-AF scheme. Moreover, it opens up the
possibility of comparing the rates of the proposed SBF-
AF schemes with the SDR rate. In particular, we have the
following theorem, which constitutes one of the main results
of this paper:

Theorem 2 Let rSBF(G) and rSBF(E) be the Gaussian and
elliptic SBF-AF rates, respectively, when Ω = W ?. Then, we
have

rSDR − rSBF(G) ≤ 0.5772

and

rSDR − rSBF(E) ≤
r−1∑
k=1

1

k
− log(r) < 0.5772,

where r = rank(W ?).

We relegate the proof to Appendix C. Theorem 2 is significant,
as it shows that the Gaussian SBF-AF rate is at most 0.8317
bits/s/Hz (0.5772 nats/ log 2 = 0.8317 bits) less than SDR
rate rSDR, and that the elliptic SBF-AF rate is even better.
Compared with the BF-AF scheme (see Theorem 1(b)), we see
that the rate performance of the proposed SBF-AF schemes
does not degrade with the number of users in the network
or the number of power constraints on the relay antennas.
This suggests that the SBF-AF schemes should outperform
the SDR-based BF-AF scheme in large-scale systems.

C. Implementation Issues

To implement the SBF-AF schemes, there are several
practical issues that need to be addressed. First, all nodes
in the network (transmitters, receivers, and relay) should be
synchronized. This can be realized by virtue of synchro-
nization signals, just as it is usually done in existing relay
networks. Second, to receive the SBF signals, each receiver
needs to know the covariance matrix Ω. Such information can
be transmitted at the beginning of each data frame as part
of the preamble. Third, all the relays and receivers should
know the instantaneous AF weights. At first sight, it may
seem that we need to repeatedly do the signaling for the AF
weights. However, this is not necessary. Indeed, we can simply
pre-specify a common random seed in the network before
transmission. With the aid of the common random seed, the
relay and the receivers can locally generate the same SBF-AF
weight at each time slot (this is very similar to reproducing
the same random realizations in MATLAB by using the same
random seed). Therefore, there is no need to inform the
receivers the instantaneous SBF-AF weights. Since all transmit
signals are synchronized, the receivers can therefore perform
simple coherent symbol reception, demodulation, and channel
decoding. In practice, the SBF-AF schemes are just as efficient
as the BF-AF schemes with channel coding (see Remark 3 in
Section II-B).

The fourth issue concerns the peak-to-average-power ratio
(PAPR) at the relay. Note that the PAPR here is defined over
the time-varying AF weights. In this context, although the
Gaussian SBF-AF scheme is interesting from a theoretical
viewpoint, it may suffer from high instantaneous peak power,
as the Gaussian distribution has unbounded support. In prac-
tice, we could truncate the Gaussian signal envelope at the
relay to limit the peak power. Nevertheless, this may result
in performance degradation. By contrast, the elliptic SBF-AF
scheme exhibits a good PAPR. Indeed, using the Courant-
Fischer min-max theorem, we can prove the following:

Proposition 2 For the elliptic SBF-AF scheme, we have

wHD`w ∈
[
rλ+min

(
D

1/2
` W ?D

1/2
`

)
,

rλmax

(
D

1/2
` W ?D

1/2
`

)]
with probability 1, where ` = 0, 1, . . . , L (recall that D0 is
defined in (10) and D1, . . . ,DL are defined in (11)).

Proposition 2 implies that the instantaneous transmit power of
the elliptic SBF-AF scheme is bounded.

To further investigate the issue of PAPR at the relay, we plot
the complementary cumulative distribution function (CCDF)
in Figure 3 to compare the actual PAPR at each relay antenna
for the BF-AF and SBF-AF schemes. The CCDF gives the
probability that the PAPR of a data block exceeds a given
threshold and is one of the most frequently used criteria
for measuring PAPR [42]. Herein, we adopt the 64-QAM
modulation scheme and test 10000 data blocks to get the
plots. The horizontal and vertical axes represent the threshold
γ for the PAPR and the probability that the PAPR of a data
block exceeds γ, respectively. The simulation results show that
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Gaussian SBF-AF has around 5dB loss while elliptic SBF-AF
has only 2dB PAPR loss when compared to BF-AF. However,
we get a significant rate performance improvement with the
SBF-AF schemes.
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Fig. 3. The CCDF of the PAPR at each relay for BF-AF and SBF-AF under
64-QAM modulation.

IV. EXTENSION TO THE DISTRIBUTED RELAY NETWORK

Although our development so far has focused on the MIMO
relay network, it is worth noting that the SBF-AF framework
can be applied to other relay networks as well. As an il-
lustration, let us briefly describe the SBF-AF scheme for a
distributed relay network. The system model of such a network
is similar to that of the MIMO relay network described in
Section II-A, except that the L-antenna relay is replaced by
L single-antenna relays that are distributively located in the
network. In particular, the received signals cannot be shared
among the L relays. Under this setting, the BF-AF scheme is
modeled as

x(t) = V r(t) with V = Diag(v). (22)

The difference between the BF-AF schemes (2) and (22) is that
the matrix V in (22) is diagonal, as there is no information
exchange among the relays. Then, similar to the development
in Section II-B, we can formulate the following BF-AF design
problem for the distributed relay network:

(DBF) max
v∈CL

min
k=1,...,G
i=1,...,mk

vHĀk,iv

vHC̄k,iv + 1

subject to vHQsv ≤ bs, s = 1, . . . , S,

where

Āk,i = Pk(f∗k � gk,i)(f∗k � gk,i)H/σ2
k,i,

C̄k,i =
∑
m 6=k

Pm(f∗m � gk,i)(f∗m � gk,i)H/σ2
k,i

+ Diag(|g1k,i|2σ2
1 , . . . , |gLk,i|2σ2

L)/σ2
k,i,

and Qs is the matrix corresponding to the sth power constraint
(see Remark 2 in Section II-B). It can be readily seen that
Problem (DBF) has exactly the same form as Problem (BF).

Hence, the development and analysis of the SDR-based BF-
AF scheme and SBF-AF schemes in Sections II and III can be
carried over to the distributed relay network directly. We refer
the readers to our recent conference paper [43] for details.

V. NUMERICAL SIMULATIONS

In this section, we provide numerical results to compare
the performance of the various AF schemes. Without loss of
generality, we assume that each multicast group has an equal
number of users (i.e., mk = M/G for k = 1, . . . , G). The
channels fk, gk,i, where k = 1, . . . , G and i = 1, . . . ,mk,
are independently generated according to CN (0, I). The sig-
nal power at each transmitter is 0dB (i.e., Pj = 0dB for
j = 1, . . . , G). We assume without loss of generality that
all antennas of the relay have the same noise power (i.e.,
σ2
` = σ2

ant for some σ2
ant > 0, where ` = 1, . . . , L), and

that all users have the same noise power (i.e., σ2
k,i = σ2

user for
k = 1, . . . , G and i = 1, . . . ,mk). The total power threshold
at the relay is P̄0; the power threshold at the `th antenna of
the relay is P̄`, where ` = 1, . . . , L. For each AF scheme,
100 channel realizations were averaged to get the plots. The
number of randomizations for generating BF-AF weights is
1000. Note that the channels fk, gk,i are fixed for a whole
data frame transmission. For the BF-AF scheme (2), a fixed
AF weight is adopted; for the SBF-AF scheme (17), T time-
varying AF weights are generated (here, we assume that each
data frame contains T symbols). In the following, we will
show the numerical results first for the MIMO relay network in
Sections V-A to V-E and then for the distributed relay network
in Section V-F.

A. Multicast Rates versus Total Power Threshold at the MIMO
Relay

In this simulation, we consider the scenario where only the
total power constraint is present. There are L = 8 antennas at
the MIMO relay and G = 2 multicast groups with a total of
M = 16 users. In particular, each multicast group has 8 users.
We set σ2

ant = σ2
user = 1 and vary the total power threshold P̄0

at the relay to study the performance of different AF schemes.
The results are shown in Figure 4. From the figure, we see
that the SDR rate serves as a performance upper bound for the
other schemes. The Gaussian SBF-AF scheme outperforms the
SDR-based BF-AF scheme when P̄0 < 7dB, while the elliptic
SBF-AF scheme outperforms the BF-AF scheme at all the
considered power thresholds.

B. Multicast Rates versus Per-Antenna Power Threshold at the
MIMO relay

In this simulation, we consider the scenario where both
total power constraint and per-antenna power constraints are
present. There are L = 4 antennas at the MIMO relay and
G = 1 multicast group with a total number of M = 16 users.
We set σ2

ant = σ2
user = 0.25, and the total power threshold

P̄0 = 3dB. We assume that the per-antenna power thresholds
are the same for all antennas (i.e., P̄1 = · · · = P̄L) and
vary this threshold to study the performance of different AF
schemes. From Figure 5, we see that as the per-antenna power
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Fig. 4. Worst user’s rate achieved by different AF schemes versus total power
threshold at the MIMO relay: L = 8, G = 2, M = 16, σ2
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Fig. 5. Worst user’s rate achieved by different AF schemes versus per-antenna
power threshold at the MIMO relay: L = 4, G = 1, M = 16, P̄0 = 3dB,
σ2
ant = σ2

user = 0.25.

threshold increases, the BF-AF rate and the Gaussian and
elliptic SBF-AF rates increase. The SDR rate still serves as a
performance upper bound for the other schemes. On the other
hand, the SBF-AF schemes outperform the SDR-based BF-AF
scheme at all the considered per-antenna power thresholds.

C. Multicast Rates versus Number of Users

In this simulation, we consider the scenario where only the
total power constraint is present. There are L = 8 antennas
at the MIMO relay and G = 2 multicast groups. We set
σ2
ant = σ2

user = 0.25, and the total power threshold P̄0 = 6dB.
In Figure 6, we show how the BF-AF rate and the Gaussian
and elliptic SBF-AF rates scale with the total number of
users M . From the figure, we see that the SDR rate is a
performance upper bound for the other schemes. The BF-AF
rate diverges from the SDR rate as M increases. Moreover,
the Gaussian SBF-AF scheme outperforms the SDR-based
BF-AF scheme when M > 10, while the elliptic SBF-AF
scheme outperforms both the SDR-based BF-AF scheme and
the Gaussian SBF-AF scheme for all values of M . Note that

when M is small, Problem (SDR) is likely to have a rank-one
optimal solution. If it does, then the rank-one solution is also
optimal for (BF). In our experiments, we observe that when
M ≤ 10, a large number of problem instances do possess
a rank-one solution. This explains why the BF-AF scheme
outperforms the Gaussian SBF scheme when M ≤ 10. It is
also worth noting that the Gaussian and elliptic SBF-AF rates
exhibit the same scaling as the SDR rate, which is consistent
with the results in Theorem 2.
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Fig. 6. Worst user’s rate achieved by different AF schemes versus number of
users in the MIMO relay system: L = 8, G = 2, P̄0 = 6dB, σ2

ant = σ2
user =

0.25.

D. Multicast Rates versus Number of Power Constraints

In this simulation, we consider the scenario where both
total power constraint and per-antenna power constraints are
present. There are L = 4 antennas at the MIMO relay and
G = 1 multicast group with a total of M = 16 users. We set
σ2
ant = σ2

user = 0.25, and the total power threshold P̄0 = 4dB.
We assume that the per-antenna power threshold is −5dB for
all antennas (i.e., P̄1 = · · · = P̄L = −5dB) and vary the
number of per-antenna power constraints from 0 to L to study
the performance of different AF schemes. Figure 7 shows that
the BF-AF rate and the Gaussian and elliptic SBF-AF rates are
still upper bounded by the SDR rate. As the number of per-
antenna power constraints increases, the BF-AF rate diverges
from the SDR rate, while the Gaussian and elliptic SBF-AF
rates exhibit the same scaling as the SDR rate. Moreover, the
Gaussian SBF-AF scheme outperforms the SDR-based BF-AF
scheme when the number of per-antenna power constraints
is greater than 2, while the elliptic SBF-AF scheme always
outperforms the BF-AF scheme, regardless of the number of
per-antenna power constraints.

E. Actual Bit Error Rate (BER) Performance

To further demonstrate the efficacy of the proposed SBF-
AF schemes, we consider again the scenario in Section V-A
and study the coded bit error rate (BER) performance of the
different AF schemes. The system setting here is L = 8,
G = 2, M = 16, and σ2

ant = σ2
user = 1, just like that in

Figure 4. For each symbol time slot, we simulate the actual
AF process by generating sj(t), n`(t) according to the receive
models (3) and (18). In particular, the SBF weighting matrix
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Fig. 7. Worst user’s rate achieved by different AF schemes versus number
of per-antenna power constraints: L = 4, G = 1, M = 16, P̄0 = 4dB,
P̄` = −5dB for ` = 1, . . . , L, σ2

ant = σ2
user = 0.25.

V (t) in (18) is generated for each of the symbol time slot t
following (20) or (21). We then perform coherent detection
and iterative decoding on sj(t) at each receiver. The resulting
BERs are shown in Figures 8 and 9. To simulate the SDR
bound in the BER plots, we assume that there exists an SISO
channel whose SINR is equal to γ(W ?). In our simulations,
we adopt a gray-coded QPSK modulation scheme and a rate-
1/3 turbo code in [44] with codelengths 2880 and 576. We
simulate 100 code blocks for each channel realization and
thus the BER reliability level is 10e−4. From Figure 8,
we see that under a relatively long codelength, the actual
BER performance of the SBF-AF schemes outperform the
SDR-based BF-AF scheme at almost all power thresholds.
Moreover, the elliptic SBF-AF scheme achieves the best BER
performance, which is consistent with the results in Figure 4.
When the channel codelength is relatively short, Figure 9
shows that the BER performance of the Gaussian SBF-AF
scheme degrades a bit, while the elliptic SBF-AF scheme can
still outperform the SDR-based BF-AF scheme. The results in
Figures 4, 8 and 9 imply that the SBF-AF schemes, especially
the elliptic SBF-AF scheme, can achieve a good rate and are
more effective than the existing SDR-based BF-AF scheme.
The advantage of the SBF-AF schemes becomes even more
apparent when there are many users in the MIMO relay
system.

F. Simulation Results for a Distributed Relay Network

In this section, we provide numerical results to demonstrate
the effectiveness of our proposed SBF-AF schemes in a
distributed relay network. The setting is essentially the same
as that in the MIMO relay network, except that the multiple
single-antenna relays do not share the received signals. For
simplicity, we consider the scenario where only the total power
constraint is present in Problem (DBF) (i.e., S = 1 and
Q1 = I). There are L = 8 relays and G = 2 multicast groups
in the distributed relay network. We set σ2

ant = σ2
user = 0.25.

Figure 10 shows how the BF-AF rate and the Gaussian and
elliptic SBF-AF rates scale with the total number of users M
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Fig. 8. Worst user’s BER achieved by different AF schemes versus total power
threshold at the MIMO relay: L = 8, G = 2, M = 16, σ2

ant = σ2
user = 1.

A rate- 1
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turbo code with codelength 2880 is used.
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Fig. 9. Worst user’s BER achieved by different AF schemes versus total power
threshold at the MIMO relay: L = 8, G = 2, M = 16, σ2

ant = σ2
user = 1.

A rate- 1
3

turbo code with codelength 576 is used.

when the total power threshold is fixed at 6dB (i.e., b1 = 6dB
in Problem (DBF)). From the figure, we see that the BF-
AF rate diverges from the SDR rate as M increases. The
Gaussian SBF-AF scheme outperforms the SDR-based BF-
AF scheme when M > 10, while the elliptic SBF-AF scheme
outperforms the SDR-based BF-AF scheme for all values of
M . Moreover, the Gaussian and elliptic SBF-AF rates exhibit
the same scaling as the SDR rate, which is consistent with the
results obtained for the MIMO relay network.

In Figure 11, we compare the coded BER performance of
the different AF schemes for the case where M = 12. Here,
we also adopt a gray-coded QPSK modulation scheme and a
rate-1/3 turbo code in [44] with codelengths 576 and 2880.
From the figure, we see that the actual BER performance of the
SBF-AF schemes outperform the SDR-based BF-AF scheme
at almost all power thresholds, and the elliptic SBF-AF scheme
achieves the best BER performance. The results are consistent
with those in Figure 10 and show that the SBF-AF schemes
can also achieve a good rate in a distributed relay network.
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Fig. 10. Worst user’s rate achieved by different AF schemes versus number
of users in a distributed relay network.
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Fig. 11. Worst user’s BER achieved by different AF schemes versus
total power threshold in a distributed relay network. The dashed and solid
curves correspond to the rate- 1

3
turbo code with codelengths 576 and 2880,

respectively.

G. A Comparison with the Feasible Point Pursuit (FPP)
Algorithm

In this section, we compare the proposed SBF-AF schemes
with the FPP algorithm [27], [28], which is recently proposed
for solving QCQPs and has been numerically proven to
outperform most of the existing algorithms. Specifically, we
compare the SBF-AF schemes with the FPP scheme in [28]
in a distributed relay network and with the FPP-SCA scheme
in [27] in an MIMO relay network. In the left sub-figure
of Figure 12, we consider only the total power constraint
and use the system setting L = 8, G = 1, M = 16,
σ2
ant = σ2

user = 0.25. In the right sub-figure of Figure 12, we
include both the total power constraint and per-antenna power
constraints. The system setting is L = 4, G = 1, M = 16,
σ2
ant = σ2

user = 0.25, and P̄0 = 3dB. We assume that the per-
antenna power thresholds are the same for all antennas (i.e.,
P̄1 = · · · = P̄L). The results show that the elliptic SBF-AF
scheme exhibits a performance gain over the FPP scheme, and
both SBF-AF schemes outperform the FPP-SCA scheme.
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Fig. 12. Comparison with the feasible point pursuit method.

VI. CONCLUSIONS

In this paper, we studied various AF schemes for an MIMO
relay network. We proved that for the classic SDR-based
BF-AF scheme, the gap between the BF-AF rate and the
SDR rate will grow with the number of users and power
constraints. Thus, the SDR-based BF-AF scheme may not
work well for large-scale systems. In view of this, we proposed
two SBF-AF schemes, namely the Gaussian and elliptic SBF-
AF, to improve the rate performance. The proposed SBF-AF
schemes employ time-varying AF weights and are essentially
simulating a “high-rank” BF-AF scheme. As such, they are
capable of outperforming the SDR-based BF-AF scheme.
Indeed, we proved that the Gaussian and elliptic SBF-AF
rates are at most 0.8317 bits/s/Hz less than the SDR rate,
irrespective of the number of users or power constraints. We
further demonstrated the superiority of the proposed SBF-AF
schemes by comparing their BER performance with that of the
SDR-based BF-AF scheme. Lastly, we discussed how the SBF-
AF framework can be applied to a distributed relay network
and showed the good rate performance of the corresponding
SBF-AF schemes. As the SBF framework proves to be quite
powerful, a possible future direction would be to develop SBF-
AF schemes for more involved relay networks, such as a two-
way relay network with direct link. It would also be interesting
to consider imperfect CSIs in the SBF framework.

ACKNOWLEDGMENT

The authors would like to sincerely thank the Editor and
the anonymous reviewers for their helpful and insightful com-
ments, which help improve the quality of the paper. Moreover,
we want to take this opportunity to express our gratitude to
Professor Nikos Sidiropoulos and his group at University of
Minnesota for kindly providing their MATLAB code and data
to help us produce part of Figure 12.



11

APPENDIX

A. Proof of Theorem 1

Let W̄ ? be an optimal solution to (SDR). Set

γ?k,i =
Ak,i • W̄ ?

Ck,i • W̄ ? + 1
, k = 1, . . . , G, i = 1, . . . ,mk,

P ?` = D` • W̄ ?, ` = 0, 1, . . . , L.

It is clear that W̄ ? is feasible for the following SDP:

max
W∈HL2

+

(
A1,1 − γ?1,1C1,1

)
•W

subject to
(
Ak,i − γ?k,iCk,i

)
•W = γ?k,i, (k, i) 6= (1, 1),

D` •W = P ?` , ` = 0, 1, . . . , L. (23)

Moreover, since D0 is positive definite, the feasible set of
Problem (23) is compact. This implies that Problem (23) has
an optimal solution. Hence, by [45, Theorem 5.1], there exists
a rank-one optimal solution W ? to Problem (23) whenever
M−1+L+1 = M+L ≤ 3. Upon observing that W ? is also
optimal for (SDR), we obtain the conclusion in Theorem 1(a).

To prove Theorem 1(b), fix a particular randomization n ∈
{1, . . . , N} in Algorithm 1 and let Ŵ = ξn (ξn)

H , where
ξn ∼ CN (0,W ?). For any β > 0 and ρ > 1, consider the
events

Ek,i =

{
Ak,i • Ŵ

Ck,i • Ŵ + 1
≤ β Ak,i •W ?

Ck,i •W ? + 1

}
,

F` =
{
D` • Ŵ ≥ ρD` •W ?

}
,

where k = 1, . . . , G, i = 1, . . . ,mk, and ` = 0, 1, . . . , L. To
bound Pr(Ek,i) and Pr(F`), we need the following results:

Lemma 1 Let A,C ∈ HL2

+ be such that rank(A) = 1. Then,

Pr

(
A • Ŵ

C • Ŵ + 1
≤ β A •W ?

C •W ? + 1

)
≤ 3β

1− 2β
,

where 0 < β < 1/2.

Lemma 2 Let D ∈ HL2

+ be given. If D •W ? = 0, then
D • Ŵ = 0 almost surely. Otherwise, for any ρ > 1,

Pr
(
D • Ŵ ≥ ρD •W ?

)
≤ exp

(
−ρ− 1

6

)
.

Lemma 1 is a simple consequence of [24, Lemma 2]; cf. [25,
Lemma 2]. On the other hand, Lemma 2 can be obtained from
the proof of [46, Proposition 2.1] and the remarks after it.

From (7), we have rank(Ak,i) = 1 for k = 1, . . . , G and
i = 1, . . . ,mk. Hence, by taking β = 1/(8M) and invoking
Lemma 1, we have Pr(Ek,i) ≤ 3/2(4M−1) for k = 1, . . . , G
and i = 1, . . . ,mk. This, together with the union bound, yields

Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

 ≤ ∑
k=1,...,G
i=1,...,mk

Pr(Ek,i) ≤
3M

2(4M − 1)
<

1

2
.

In addition, by taking ρ = 6 log(3(L + 1)) + 1 and invoking
Lemma 2, we have

Pr

(
L⋃
`=0

F`

)
≤

L∑
`=0

Pr(F`) ≤ (L+ 1) · exp

(
−ρ− 1

6

)
=

1

3
.

Thus, if we let Eck,i (resp. Fc` ) to be the complement of Ek,i
(resp. F`), then

Pr


 ⋂

k=1,...,G
i=1,...,mk

Eck,i

 ∩( L⋂
`=0

Fc`

)
≥ 1− Pr

 ⋃
k=1,...,G
i=1,...,mk

Ek,i

− Pr

(
L⋃
`=0

F`

)

≥ 1

6
.

In particular, with probability at least 1/6, the rank-one
solution Ŵ /ρ is feasible for Problem (SDR) and

γ
(
Ŵ /ρ

)
= min

k=1,...,G
i=1,...,mk

Ak,i • (Ŵ /ρ)

Ck,i • (Ŵ /ρ) + 1

= min
k=1,...,G
i=1,...,mk

Ak,i • Ŵ
Ck,i • Ŵ + 1

· Ck,i • Ŵ + 1

Ck,i • Ŵ + ρ

≥ 1

ρ
min

k=1,...,G
i=1,...,mk

Ak,i • Ŵ
Ck,i • Ŵ + 1

≥ β

ρ
· γ (W ?)

=
1

8M(6 log(3(L+ 1)) + 1)
· γ (W ?) .

Since this holds for each randomization n ∈ {1, . . . , N}, it
follows that

Pr

({
∃n : γ

(
ŵn(ŵn)H

)
≥ γ (W ?)

8M(6 log(3(L+ 1)) + 1)

})
≥ 1− (5/6)N .

Using the above result and the monotonicity of the logarithm,
we see that with probability at least 1− (5/6)N ,

rSDR − rBF
= log (1 + γ(W ?))− max

n=1,...,N
log
(
1 + γ

(
ŵn(ŵn)H

))
≤ log

(
1 + γ(W ?)

1 + (β/ρ)γ (W ?)

)
≤ log(8M(6 log(3(L+ 1)) + 1))

= logM + log(log(3(L+ 1)) + 1/6) + log 48.

This completes the proof of Theorem 1(b). �

B. Proof of Proposition 1

For k = 1, . . . , G and i = 1, . . . ,mk, define

Γk,i(Ω) =
Ak,i •Ω

Ck,i •Ω + 1
.
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Since rank(Ak,i) = 1 for k = 1, . . . , G and i = 1, . . . ,mk,
according to the results in Sections III-B to III-D of [30], we
have

rSBF(D) = min
k=1,...,G
i=1,...,mk

Ew∼D

[
log

(
1 +

wHAk,iw

Ck,i •Ω + 1

)]

= Eξ∼p

[
log

(
1 + ξ min

k=1,...,G
i=1,...,mk

Γk,i(Ω)

)]
, (24)

where for the Gaussian SBF-AF scheme, the probability
density function (PDF) of ξ is given by

p(t) = pG(t) = e−t, t ≥ 0, (25)

while for the elliptic SBF-AF scheme, the PDF of ξ is given
by

p(t) = pE(t) =

(
1− 1

r

)(
1− t

r

)r−2
, 0 ≤ t ≤ r (26)

with r = rank(Ω). Moreover,

Ew∼D
[
wHD`w

]
= D` •Ω, ` = 0, 1, . . . , L.

Thus, by the monotonicity of the logarithm, we see that
Problem (SBF) is equivalent to

max
Ω∈HL2

+

min
k=1,...,G
i=1,...,mk

Γk,i(Ω)

subject to D` •Ω ≤ P̄`, ` = 0, 1, . . . , L,

which has exactly the same form as Problem (SDR). This
implies that every optimal solution to (SDR) is also optimal
for (SBF). �

C. Proof of Theorem 2

Using (14) and (24), we have

rSDR − rSBF(D)

= log (1 + γ (W ?))− Eξ∼p [log (1 + ξγ (W ?))]

when Ω = W ?. Now, let gp : R+ → R be the function
defined by

gp(y) = log(1 + y)− Eξ∼p [log(1 + ξy)] .

For the Gaussian SBF-AF scheme, the PDF of ξ is given
by (25). By Jensen’s inequality, we have

g′pG(y) ≥
(

1

1 + y
− Eξ∼pG [ξ]

1 + yEξ∼pG [ξ]

)
y = 0,

which implies that g is non-decreasing. This, together with [30,
Theorem 1], yields

rSDR − rSBF(G) ≤ gpG(+∞) = 0.5772.

For the elliptic SBF-AF scheme, the PDF of ξ is given
by (26). It is known that Eξ∼pE [ξ] = 1; see, e.g., [30, Fact
3]. Hence, gpE is also non-decreasing, which implies that
rSDR− rSBF(E) ≤ gpE(+∞). To determine gpE(+∞), we first
use (26) to compute the elliptic SBF-AF rate as shown at the
top of the next page. Note that (27) follows from the definition
of expectation; (28) follows from integration by parts; (29)
follows from the change of variable y = 1 + tγ (W ?); (30)

follows from the binomial theorem; (31) follows from the
identity

n∑
k=1

(
n

k

)
(−1)k

k
= −

n∑
k=1

1

k
(32)

(see [47, Formula 0.155(4)]). Therefore,

gpE(y) = log(1 + y)

−
(

1 +
1

ry

)r−1 [
log(1 + ry)

−
r−1∑
k=1

1

k
−
r−1∑
k=1

(
r − 1

k

)
(−1)k

k(1 + ry)k

]
.

Now, by the l’Hôpital rule, we have

gpE(+∞) = lim
y→∞

gpE(y) =

r−1∑
k=1

1

k
− log(r).

To complete the proof, we simply use the fact that the function
r 7→

∑r−1
k=1

1
k−log(r) is strictly increasing and tends to 0.5772

as r →∞ (see, e.g., [47, Formula 0.131]). �
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