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Abstract. Simplex identification via split augmented Lagrangian (SISAL) is a popularly-used algorithm in4
blind unmixing of hyperspectral images. Developed by José M. Bioucas-Dias in 2009, the algorithm5
is fundamentally relevant to tackling simplex-structured matrix factorization, and by extension, non-6
negative matrix factorization, which have many applications under their umbrellas. In this article, we7
revisit SISAL and provide new meanings to this quintessential algorithm. The formulation of SISAL8
was motivated from a geometric perspective, with no noise. We show that SISAL can be explained9
as an approximation scheme from a probabilistic simplex component analysis framework, which is10
statistical and is principally more powerful in accommodating the presence of noise. The algorithm11
for SISAL was designed based on a successive convex approximation method, with a focus on practical12
utility. It was not known, by analyses, whether the SISAL algorithm has any kind of guarantee13
of convergence to a stationary point. By establishing associations between the SISAL algorithm14
and a line-search-based proximal gradient method, we confirm that SISAL can indeed guarantee15
convergence to a stationary point. Our re-explanation of SISAL also reveals new formulations and16
algorithms. The performance of these new possibilities is demonstrated by numerical experiments.17
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1. Introduction. Simplex identification via split augmented Lagrangian (SISAL) is an21

algorithm developed by José M. Bioucas-Dias in 2009 [4]. It appears in a 4-page conference22

paper, with open source code (in MATLAB). It basically deals with a simplex-structured23

matrix factorization problem from hyperspectral imaging; the problem is famously known24

as hyperspectral unmixing (HU) in the community of hyperspectral remote sensing. It is25

worth mentioning that HU is not only a key topic in hyperspectral imaging [5,21], it also has26

strong relationships with non-negative matrix factorization and the various machine learning27

applications thereof; see, e.g., [11, 15] and the references therein. The development of SISAL28

revolves around problem formulation and optimization algorithm design. SISAL has a unique29

place in the course of history of HU: it offered one of the first, and most pioneering, prac-30

tical algorithms for a promising but difficult-to-implement strategy for HU, namely, simplex31

volume minimization (SVMin). It has become a benchmark and has been frequently used32

by researchers. By the authors’ understanding, the reasons boil down to one: it works well33

in practice. SISAL has good running speed, scales well with the data sizes (very large ones)34
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computationally, delivers reasonably good unmixing results, and demonstrates resilience to35

noise and modeling error effects. SISAL shows powerful intuitions by its inventor. As an36

article to pay tribute to Bioucas-Dias’ tremendous insights to hyperspectral imaging, allow37

us to quote a saying by Steve Jobs: “Intuition is a very powerful thing, more powerful than38

intellect, in my opinion.”39

This article serves as an endeavor to continue the legacy of Bioucas-Dias’ SISAL. It can40

also be regarded as the sequel of [34]. The SISAL work has left some open questions. First and41

foremost, SISAL requires tuning of a regularization parameter. That parameter has an impact42

on SISAL’s noise resilience behaviors. It is not clear how we should choose that parameter,43

apart from empirical or human experience. To make the story more complicated, SISAL was44

motivated by the noiseless case, and the subsequent explanation of why SISAL works in the45

noisy case was intuitive. Our question is whether there exists an alternative explanation for46

the noisy case. To answer that, we pursue a probabilistic simplex component analysis (SCA)47

framework, wherein we employ a principled formulation, namely, the maximum likelihood,48

to deal with the problem under a pertinent statistical model (to be specified later). This49

statistical strategy for unmixing is different from SISAL or SVMin, which is geometric. The50

former, by principle, has the upper hand in the noisy case; it also frees us from parameter51

tuning. We will show that SISAL can be seen as an approximation scheme of probabilistic52

SCA. Moreover, the connections we build suggest a different concept: Rather than considering53

parameter tuning, we should work on a more general formulation of SISAL, which is induced54

from probabilistic SCA and has no pre-selected parameter (except for the noise variance which55

can be estimated from data).56

Some prior work on the aforementioned direction should be recognized. The links between57

SVMin (but not SISAL) and statistical inference were noted in earlier works [23, 24], [10,58

Appendix]. The prequel of this article [34] describes the connections between SVMin and59

probabilistic SCA more explicitly, but it only showed similarities, not a direct connection,60

between SISAL and probabilistic SCA. This article shows a close connection between SISAL61

and probabilistic SCA, compared to the previous work. Curiously, a simple second-order62

statistics observation (to be shown in Section 3.4) provides the very crucial piece of jigsaw to63

complete the puzzle.64

Second, it is intriguing to study the optimization aspects of SISAL. The problem formu-65

lated in SISAL is non-convex, and Bioucas-Dias derived a successive convex approximation66

algorithm to tackle the problem. The algorithm can be seen a first-order method, as will67

be elaborated upon later, and it is worth mentioning that, in 2009, non-convex first-order68

optimization was not as extensively studied as today. As mentioned, the algorithm proved to69

be a success in practice. Our question is whether the SISAL algorithm actually possesses any70

form of guarantees of finding a stationary point, leveraging on our much better understanding71

of non-convex first-order optimization today. We will see that the SISAL algorithm can be72

viewed as an instance of the proximal gradient method, with line search along the feasible73

direction. There are, however, caveats that prevent us from directly claiming convergence to74

a stationary point—a key component in the objective function does not have Lipschitz gra-75

dient, and its domain is the set of all invertible matrices (which is a non-convex set). In this76

connection we should mention that, in the current non-convex first-order optimization litera-77

ture, it is very common to assume the aforementioned component to have Lipschitz gradient.78
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We will confirm that the SISAL algorithm, with a minor adjustment, can indeed guarantee79

convergence to a stationary point (more accurately, limit-point convergence). This is made80

possible by establishing associations between the SISAL algorithm and the line-search-based81

proximal gradient framework in [6].82

Our endeavor to re-explain SISAL also gives rise to new insights for algorithms. Through83

connecting SISAL and probabilistic SCA, we see a more general formulation that resembles84

SISAL. The new formulation replaces SISAL’s penalty term with a probabilistic penalty term,85

and it has the regularization parameter (which requires tuning in SISAL) eliminated. We86

custom-design a practical algorithm for the formulation (which is more difficult than the87

SISAL), and we will illustrate by numerical experiments that this probabilistic SISAL performs88

well under the high SNR regime. We also study a SISAL variant that is easier to work with89

from an optimization algorithm design viewpoint, and numerical results suggest that the90

variant is computationally competitive.91

We organize this paper as follows. Section 2 provides the problem statement and reviews92

the formulation of SISAL. Section 3 studies probabilistic SCA, shows how probabilistic SCA93

and SISAL are connected, and, in the process, reveals new formulations. Section 4 considers94

the optimization aspects of SISAL, particularly, the stationarity guarantee of SISAL. Section95

5 develops a practical algorithm for the new formulation of probabilistic SISAL. Section 696

provides synthetic and semi-real data experiments. Section 7 concludes this work.97

Our basic notations are as follows. The sets of all real, non-negative and positive numbers98

are denoted by R,R+,R++, respectively; boldface lowercase letters, such as x, represent col-99

umn vectors; boldface capital letters, such as X, represent matrices; we may use the notation100

(x1, . . . , xn) to represent a column vector; the superscripts ⊤, −1 and † denote transpose, in-101

verse and pseudo-inverse, respectively; det(X) denotes the determinant ofX; Diag(x1, . . . , xn)102

denotes a diagonal matrix with the ith diagonal element given by xi; 0 and 1 denote all-zero103

and all-one vectors of appropriate sizes, respectively; x ≥ 0 means that x is element-wise104

non-negative, and similarly X ≥ 0 means that X is element-wise non-negative; ∥ · ∥ denotes105

the Euclidean norm for both vectors and matrices; conv(A) = {y = Ax | x ≥ 0,1⊤x = 1}106

denotes the convex hull of the columns of A; p(x;θ) denotes the probability distribution107

of a random variable x, with the distribution parameter given by θ; p(x,y;θ) denotes the108

joint probability distribution of two random variables x and y, with distribution parameter109

θ; p(x|y;θ) denotes the probability distribution of x conditioned on y, with distribution110

parameter θ; E[·] denotes the expectation. More notations will be defined in appropriate111

places.112

2. Background.113

2.1. Problem Statement. The problem of interest, in its most basic form, is as follows.114

We are given a collection of data points y1, . . . ,yT ∈ RM . We postulate that115

(2.1) yt = A0st,116

where A0 ∈ RM×N , with M ≥ N ; st is a latent (and thus unknown) variable. The latent117

variables lie in the unit simplex, i.e., st ≥ 0,1⊤st = 1. The matrix A0 is unknown. The118

problem is to recover A0 from y1, . . . ,yT . Note that after recovering A0, we can recover st119
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by solving the regression problem minst≥0,1⊤st=1 ∥yt − A0st∥2. For convenience, the above120

problem of recovering A0 from y1, . . . ,yT will be called SCA in the sequel.121

From a geometrical viewpoint, SCA is a problem of finding the vertices of a hidden simplex122

from a collection of data points that lie in that simplex. To be specific, observe from (2.1)123

that yt ∈ conv(A0); or, in words, the data points lie in conv(A0). The set conv(A0) is a124

simplex under the assumption of full-column rank A0, and, by the definition of simplices,125

the vertices of conv(A0) are the columns of A0.
1 Hence, the yt’s are simplicially distributed126

data, and recovering A0 is the same as finding the vertices. Such viewpoint is commonly127

used in the context of hyperspectral unmixing; see, e.g., [5, 21]. From a statistical viewpoint,128

SCA is reminiscent of latent factor analyses such as independent component analysis (ICA).129

Specifically they share the common goal of exploiting the underlying natures of the latent130

variables, which are based upon further postulates on the statistics of the st’s, to recover A0.131

Note that unit-simplex distributed st’s do not have element-wise independent st’s, the latter132

being the key postulate of ICA.133

An important application of SCA is hyperspectral unmixing (HU) in remote sensing [5,21].134

In fact, HU has provided strong motivations for researchers to study SCA, and one can argue135

that HU is central to the developments of SCA. A concise problem statement of HU is as136

follows. We are given a hyperspectral image taken from a scene. The image is represented by137

y1, . . . ,yT , where each yt ∈ RM is a collection of reflectance measurements over a number ofM138

(over a hundred) fine-resolution spectral bands at a particular pixel. Under some assumptions139

we may postulate that yt follows the SCA model (2.1) [5]. In particular, each column of A0140

describes the spectral response of a distinct material (or endmember), and each st describes141

the proportional distribution (or abundance) of the various materials at pixel t. The problem142

of HU is to identify the unknown materials and how they compose the scene, specifically,143

by uncovering the materials’ spectral responses and the proportional distributions from the144

image. The problem is, in essence, SCA. The reader is refered to [5,10,12,21–24,34] for further145

details of HU.146

SCA has strong connections with non-negative matrix factorization (NMF). To describe,147

consider an NMF data model zt = Bct for t = 1, . . . , T , where B ≥ 0 and ct ≥ 0 for all148

t. Note that ct may not satisfy 1⊤ct = 1. Consider normalizing the data points zt’s by149

yt = zt/(1
⊤zt). One can show that150

yt =
N∑
i=1

bi
1⊤bi︸ ︷︷ ︸
:=ai,0

1⊤bici,t∑N
j=1 1

⊤bjcj,t︸ ︷︷ ︸
:=si,t

= A0st,151

where bi and ai,0 denote the ith column of B and A0, respectively, and the above defined st152

is seen to satisfy st ≥ 0 and 1⊤st = 1; see [11, 15] and the references therein. Thus, NMF153

can be cast as an SCA problem by the above normalization process. It is worth noting that154

the application of SCA to NMF does not exploit the non-negativity of A0 in general; rather,155

1We should recall that a set S ⊆ Rm is called a simplex if it takes the form S = conv(A), where A =
[a1, . . . ,an] ∈ Rm×n has {a1, . . . ,an} being affinely independent. A simplex conv(A) has the property that
the set of vertices of conv(A) is {a1, . . . ,an}. Also, it should be noted that if A has full column rank, then
{a1, . . . ,an} is affinely independent; the converse is not true.
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it focuses on leveraging the structures of the unit-simplex-distributed st’s to recover A0. The156

reader is referred to [11,15] for details.157

2.2. Simplex Volume Minimization and SISAL. There are various ways to tackle SCA,158

and, among them, simplex volume minimization (SVMin) stands as a powerful approach.159

SVMin is built on the geometrical intuition that, if we can find a simplex that circumscribes160

all the data points and yields the minimum volume, that simplex is expected to be the ground-161

truth simplex conv(A0); see the literature [5,11,15,21] for more inspirations. The problem of162

finding the minimum-volume data circumscribing simplex can be formulated as163

(2.2)
min

A∈RM×N
vol(A) := (N − 1)! · (det(Ā⊤Ā))1/2

s.t. yt ∈ conv(A), t = 1, . . . , T,
164

where vol(A) is the volume of the simplex conv(A) [16] (we assume that every feasible point165

A of (2.2) has full column rank); Ā = [ a1 − aN , . . . ,aN−1 − aN ], with ai being the ith166

column of A. Recent studies have revealed that SVMin is more than an intuition. It is167

shown that, under some technical conditions which should hold for sufficiently well-spread168

st’s, the optimal solution to the SVMin problem (2.2) is the ground truth A0 or its column169

permutation [12,13,19]. In other words, SVMin is equipped with provable recovery guarantees.170

SISAL [4] is arguably the most popular algorithm for SVMin. Here we shed light onto171

how SVMin is formulated in SISAL. Bioucas-Dias, the author of SISAL, derived the SISAL172

formulation in an intuitively powerful way. In particular, he focused on rewriting SVMin to173

a form that is algorithmically friendly to handle. Assume M = N ; this is not a problem174

since we can apply dimensionality reduction to project the data points to a lower dimensional175

space [5, 21]. SISAL starts with the following variation of writing the SVMin problem176

(2.3)
min

A∈RN×N ,S∈RN×T
| det(A)|

s.t. Y = AS, S ≥ 0, S⊤1 = 1,
177

where Y = [ y1, . . . ,yT ]. In particular the above problem replaces the simplex volume178

vol(A) ∝ (det(Ā⊤Ā))1/2 in problem (2.2) with |det(A)|—which is easier to work with. The179

first key idea leading to SISAL is to perform a transformation180

B = A−1,181

for which we assume that every feasible point A of problem (2.3) is invertible. By Y =182

AS ⇐⇒ BY = S, we can transform problem (2.3) to183

(2.4)
min

B∈RN×N
1/|det(B)|

s.t. BY ≥ 0, Y ⊤B⊤1 = 1.
184

The transformed problem above is a non-convex optimization problem with convex constraints,185

and in this regard we should note that the constraint Y = AS in the SVMin problem (2.3)186
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is non-convex. The second idea, which looks minor but will be relevant to a key aspect later,187

is to assume that188

(2.5) Y ⊤B⊤1 = 1 ⇐⇒ B⊤1 = (Y ⊤)†1.189

Note that (2.5) is true for “=⇒”, but (2.5) is not necessarily true for “⇐=” when we are given190

an arbitrary Y . Applying (2.5), we rewrite problem (2.4) as191

(2.6)
min

B∈RN×N
1/| det(B)|

s.t. BY ≥ 0, B⊤1 = (Y ⊤)†1.
192

The constraint BY ≥ 0, albeit convex, is a number of NT linear inequalities. These linear193

inequalities are unstructured, meaning that there is no special structure that we can utilize to194

handle the inequalities efficiently. When T is large, which is often the case in practice, forcing195

the numerous linear inequalities to hold can be a computational challenge. The third idea,196

which is a compromise, is to approximate the constraint BY ≥ 0 by soft constraints. This197

gives rise to the final formulation of SISAL:198

Formulation 1, SISAL Formulation by Bioucas-Dias [4]:

min
B∈RN×N

− log(|det(B)|) + λ
T∑
t=1

N∑
i=1

hinge(b⊤i yt)

s.t. B⊤1 = (Y ⊤)†1,

where hinge(x) = max{−x, 0} is a hinge function, and it serves as a penalty function for
non-negative x; bi denotes the ith row of B; λ > 0 is a pre-selected penalty parameter;
recall B = A−1.

199

Our description of the formulation of SISAL is complete. Let us summarize the ideas that200

led to the SISAL formulation:201

i) use the SVMin formulation (2.3), which considers M = N and replaces the simplex202

volume vol(A) in (2.2) with |det(A)|;203

ii) apply the variable transformation B = A−1;204

iii) assume that the equivalence in (2.5) is true;205

iv) apply the soft constraint approximations, replacing the constraints BY ≥ 0 with a206

penalty function λ
∑T

t=1

∑N
i=1 hinge(b

⊤
i yt) in the objective function.207

All these operations aim at simplifying the problem for efficient optimization. Interestingly208

it is recently shown that, except for operation iv), and under appropriate model assumptions,209

all the above operations lead us to the same problem as the basic SVMin formulation in (2.2).210

Proposition 1 ( [20]). Suppose that the data points exactly follow the data model yt = A0st,211

with M = N ; that A0 has full column rank; and that S = [ s1, . . . , sT ] has full row rank.212

Then, the SVMin problem (2.2) is equivalent to problem (2.6). Particularly, given any feasible213

point A of problem (2.2), (a) A is invertible; (b) the both sides of the implications of (2.5)214

are true; (c) it holds that vol(A) = C · | det(A)| for some constant C.215
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2.3. Why is SISAL Successful?. There are two reasons for the success of SISAL. The216

first is with computational efficiency. Bioucas-Dias built a specialized algorithm for Formula-217

tion 1, which is a combination of successive convex approximation and the variable splitting218

augmented Lagrangian method. The result is a computationally efficient algorithm that scales219

well with the data size T , particularly compared to other SVMin algorithms that deal with the220

hard constraint BY ≥ 0. The second is with noise robustness. The reader may have noticed221

that the SISAL formulation was derived under a data model that postulates that every data222

point is perfectly drawn from yt = A0st—with no noise. As it turns out, the key success of223

SISAL lies in the noisy case. The soft constraint approximation, which was at first introduced224

to avoid the hard constraint BY ≥ 0, provides SISAL with resilience to noise effects. It225

was noticed that SISAL can be robust to outlying data points, while SVMin algorithms that226

faithfully implement the hard constraint BY ≥ 0 may not. This gives SISAL a significant227

advantage in practice.228

SISAL does have a weakness. It is not clear how the penalty parameter λ should be229

chosen, and usually it is manually tuned.230

3. SISAL as Probabilistic SCA, and Beyond. Intriguingly, we can provide an explanation231

of why SISAL works in the noisy case. The idea is to build a connection between SISAL and232

a probabilistic SCA framework, and this is the focus of this section.233

3.1. Probabilistic SCA. To put into context, consider a noisy data model234

(3.1) yt = A0st + vt, t = 1, . . . , T,235

where vt is noise. The model is accompanied with the following assumptions:236

i) A0 is square and invertible;237

ii) every st is uniformly distributed on the unit simplex; or, equivalently, every st follows238

a Dirichlet distribution with concentration parameter 1;239

iii) every vt is Gaussian distributed with mean zero and covariance σ2I;240

iv) the st’s are independent and identically distributed (i.i.d.), the vt’s are i.i.d., and the241

st’s are independent of the vt’s.242

Our point of departure is the maximum-likelihood (ML) estimator243

(3.2)
Â ∈ arg max

A∈RN×N

1

T

T∑
t=1

log p(yt;A)

s.t. A is invertible,

244

where p(y;A) is the probability distribution of a data point y parameterized by A, which245

will be specified shortly. The ML estimator (3.2) has been shown to possess a desirable246

identifiability characteristic [34]. In addition, ML estimation is deemed a principled and247

powerful approach for estimating A0 in the noisy case, and the same type of ML estimation is248

also seen in probabilistic forms of principal component analysis (PCA) and ICA [1,17,25,30].249

3.2. Approximating the Likelihood. The expression of p(y;A) and how we handle it hold250

the first key of connecting SISAL and the ML estimator. To derive p(y;A), let p(y, s;A) be251
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the joint distribution of a data point y and its associated latent variable s (parameterized by252

A). From the model in (3.1) and its accompanying assumptions, p(y, s;A) is given by253

p(y, s;A) = p(y|s;A)p(s),(3.3)254

p(y|s;A) = N (y;As, σ2I),(3.4)255

p(s) = (N − 1)! · 1∆(s), ∆ = {s ∈ RN
++ | 1⊤s = 1},(3.5)256257

where p(s) is the latent prior; p(y|s;A) is the distribution of y conditioned on s (and param-258

eterized by A); N (x;µ,Σ) denotes a real-valued multivariate Gaussian distribution function259

with mean µ and covariance Σ;260

1X (x) =

{
0 if x /∈ X
1 if x ∈ X .261

The distribution p(y;A) is the marginalization of p(y, s;A) over s:262

(3.6) p(y;A) =

∫
p(y, s;A)dµ(s),263

where µ is the Lebesgue measure on {s ∈ RN | 1⊤s = 1}. At first sight, and by intuition, one264

may be tempted to further write (3.6) as265

(3.7) p(y;A) =

∫
RN

p(y, s;A)ds.266

But the correct way should be267

p(y;A) =

∫
RN−1

p(y, (s1:N−1, 1− 1⊤s1:N−1);A)ds1:N−1,268

where s1:N−1 = (s1, . . . , sN−1), and we use the relation 1⊤s = 1 to explicitly represent sN by269

sN = 1 − 1⊤s1:N−1. Simply speaking, (3.7) does not consider the mathematical caveat that270

1∆(s) is not measurable on RN . There is however a simple trick to get around this caveat271

and thereby allow us to use (3.7) (which is simpler), as we will study later.272

The function in (3.6) requires us to solve an integral. Unfortunately, that integral is in-273

tractable in general. To be more precise, we do not know if there exists a simple analytical274

expression or a computationally efficient method to solve the integral, given an arbitrary in-275

stance of y,A, N . As with many scientific and engineering studies, we pursue approximations276

and heuristics. Firstly, we adopt a quasi latent prior277

(3.8) p(s) ≃ C · 1∆̂(s), ∆̂ = {s ∈ RN
++ | |1⊤s− 1| < δ/2},278

where δ > 0 is given and is small; C is a normalizing constant. Clearly, (3.8) should closely279

approximate the true latent prior when δ is very small. Since the quasi latent prior (3.8) is280

measurable on RN , we can use the expression (3.7) and write281

(3.9) p(y;A) ≃ C

∫
RN

N (y;As, σ2I)1∆̂(s)ds.282
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Let B = A−1. By the change of variable x = As, (3.9) can be rewritten as283

p(y;A) ≃ C| det(B)|
∫
RN

N (y;x, σ2I)1∆̂(Bx)dx284

= C| det(B)|
∫
RN

N (x;y, σ2I)1∆̂(Bx)dx.(3.10)285
286

By another change of variable v = x− y, we can further rewrite (3.10) as287

p(y;A) ≃ C| det(B)|
∫
RN

N (v;0, σ2I)1∆̂(B(y + v))dv288

= C| det(B)| · Prob(B(y + v) ∈ ∆̂),(3.11)289290

where v ∼ N (0, σ2I). By noting the definition of ∆̂ in (3.8), the probability term in (3.11)291

can be expressed as292

(3.12)

Prob(B(y + v) ∈ ∆̂) = Prob
(
b⊤1 (y + v) > 0, . . . , b⊤N (y + v) > 0, |1⊤B(y + v)− 1| < δ/2

)
,293

where bi denotes the ith row of B. For convenience, let294

Ei = {b⊤i (y + v) > 0}, i = 1, . . . , N,(3.13a)295

EN+1 = {|1⊤B(y + v)− 1| < δ/2},(3.13b)296297

and write298

Prob
(
B(y + v) ∈ ∆̂

)
= Prob

(
∩N+1
i=1 Ei

)
.299

The following heuristic is very crucial.300

Heuristic 1. Approximate (3.12) by301

Prob
(
∩N+1
i=1 Ei

)
≈

N+1∏
i=1

Prob(Ei).302

We will discuss how to make sense of Heuristic 1 in the next subsection. One can show from303

(3.13a) that304

Prob(Ei) = Φ

(
b⊤i y

σ∥bi∥

)
, i = 1, . . . , N,305

where Φ(x) = 1√
2π

∫ x
−∞ e−z2/2dz; the idea is that, for v ∼ N (0, σ2I), we have b⊤i (y + v) ∼306

N (b⊤i y, σ
2∥bi∥2). Also, we see from (3.13b) that307

Prob(EN+1) =

∫ δ/2

−δ/2
N (η;1⊤By − 1, σ2∥B⊤1∥2)dη ≃ δ · N (0;1⊤By − 1, σ2∥B⊤1∥2)308

for a very small δ; again, the idea is that, for v ∼ N (0, σ2I), we have 1⊤B(y + v) − 1 ∼309

N (1⊤By − 1, σ2∥B⊤1∥2). Putting the components together, we obtain an approximate ex-310

pression of p(y;A) as follows311

(3.14) p(y;A) ≈ δC|det(B)| ·

(
N∏
i=1

Φ

(
b⊤i y

σ∥bi∥

))
· N (0;1⊤By − 1, σ2∥B⊤1∥2).312
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3.3. Insights Revealed and Discussion. Allow us to pause a moment to examine how the313

ML problem looks like under the likelihood approximation derived in the preceding subsection.314

By applying (3.14) to the ML problem (3.2), the following formulation can be shown.315

Formulation 2, An Approximate Formulation of the ML Problem (3.2), Princi-
pally by Heuristic 1:

min
B∈RN×N

− log(| det(B)|) + g(B)− 1

T

T∑
t=1

N∑
i=1

log Φ

(
b⊤i yt

σ∥bi∥

)
,

where we recall Φ(x) = 1√
2π

∫ x
−∞ e−z2/2dz;

g(B) = log(∥B⊤1∥) + ∥Y ⊤B⊤1− 1∥2

2σ2T∥B⊤1∥2
.

316

As a minor point of note for Formulation 2, we do not explicitly write down the constraint317

of invertible B, which comes from the constraint of invertible A in the ML problem (3.2). This318

is because − log | det(B)| = +∞ for non-invertible matrices, which means that the invertible319

matrix constraint is already taken care of.320

Let us compare Formulation 2 and the SISAL formulation (Formulation 1). We see that321

both have penalty terms related to negative b⊤i yt. To better illustrate, Fig. 1 plots − log Φ(x)322

and the hinge function. It is observed that − log Φ(x) is monotone decreasing, and it gives323

stronger outputs as x is more negative. Hence we may see − log Φ(x) as a penalty function324

for negative x, serving a similar aim as the hinge function. Moreover, the constraint B⊤1 =325

(Y ⊤)†1 in the SISAL formulation, which comes from Y ⊤B⊤1 = 1, is seen to bear some326

resemblance to the penalty function g in Formulation 2. In the next subsection, we will put327

forth another element that will bring Formulation 2 even closer to the SISAL formulation.328

Some discussions are as follows.329

Figure 1. Comparison of − log Φ(x) and the hinge function.
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Remark 1. Some related work should be mentioned. In [34], we derived an approximate330

ML formulation similar to Formulation 2. We applied an approximation similar to Heuristic 1,331

but we did not use the quasi latent prior in (3.8). As a result, our previous approximate ML332

formulation is still not as similar to SISAL as Formulation 2.333

Remark 2. We return to the question of how we can make sense of Heuristic 1. Here is our334

intuition: By the probability result Prob
(
∩N+1
i=1 Ei

)
≤ Prob(Ei) for any i, we have335

Prob
(
∩N+1
i=1 Ei

)
≤

(
N+1∏
i=1

Prob(Ei)

)1/(N+1)

.336

From the above inequality, we can show that337

(3.15) − 1

T

T∑
t=1

log p(y;A) ≥ − log(|det(B)|) + 1

N + 1

[
g(B)− 1

T

T∑
t=1

N∑
i=1

log Φ

(
b⊤i yt

σ∥bi∥

)]
,338

which is a lower-bound approximation and sounds better in terms of being equipped with339

a rationale. Empirically, we however found that (3.15) tends to underestimate the negative340

log likelihood value − 1
T

∑T
t=1 log p(y;A) quite significantly. Instead, removing the scaling341

1/(N + 1) from (3.15) would give better results. As future work, it would be interesting to342

analyze the approximation accuracy of Heuristic 1 or to study better approximations under343

the genre of Heuristic 1.344

3.4. Bringing SISAL and ML Closer. We start with an assumption that does not seem345

to make sense at first. Let346

p = A−⊤
0 1,347

and suppose that we know p. Consider the following modified ML problem348

(3.16)
max

A∈RN×N

1

T

T∑
t=1

log p(yt;A)

s.t. A−⊤1 = p, A is invertible,

349

wherein we include our prior information of p to better guide the estimation. By applying the350

preceding likelihood approximation to problem (3.16) (or by adding the constraint A−⊤1 = p351

to Formulation 2), we have the following formulation.352

Formulation 3, An Approximate Formulation of the modified ML Problem
(3.16), Principally by Heuristic 1:

min
B∈RN×N

− log(| det(B)|)− 1

T

T∑
t=1

N∑
i=1

log Φ

(
b⊤i yt

σ∥bi∥

)
s.t. B⊤1 = p.

353
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Formulation 3 is very similar to the SISAL formulation (Formulation 1) if p = (Y ⊤)†1.354

In fact, we have this surprising result.355

Fact 1 ( [20]). Suppose that the data points yt’s follow the noiseless model yt = A0st356

(with M = N); that A0 has full column rank; and that S = [ s1, . . . , sT ] has full row rank.357

Then,358

(Y ⊤)†1 = A−⊤
0 1.359

Fact 1 was shown in [20], and we shall not repeat the proof. Rather, we are interested in its360

extension to the noisy case.361

Fact 2. Suppose that the data points yt’s follow the model in (3.1) and the accompanying362

assumptions. Let µy = E[yt] and Ryy = E[yty
⊤
t ] be the mean and correlation matrix of yt,363

respectively. Then,364

(Ryy − σ2I)−1µy = A−⊤
0 1.365

Proof of Fact 2: Let Rss = E[sts⊤t ], µs = E[st]. It can be verified that Rss is positive366

definite. Also, from the data model (3.1), we can show that367

Ryy = A0RssA
⊤
0 + σ2I, µy = A0µs.368

It follows that369

(Ryy − σ2I)−1µy = (A0RssA
⊤
0 )

−1A0µs = A−⊤
0 R−1

ss µs.370

It can be shown that R−1
ss µs = 1. Specifically,371

Rss1 = E[st s⊤t 1︸︷︷︸
=1

] = E[st] = µs.372

The proof is complete. Note that this result also applies to a more general case wherein st373

follows a (and possibly non-uniform) ∆-supported distribution with positive definite Rss. ■374

Fact 2 provides us with an implication that, in practice, we can estimate p by375

(3.17) p̂ = (R̂yy − σ2I)−1µ̂y, R̂yy =
1

T

T∑
t=1

yty
⊤
t , µ̂y =

1

T

T∑
t=1

yt.376

Our final touch is to explain how the negative penalty terms in Formulation 3 and the SISAL377

formulation are related. We start from the direction of Formulation 3. Consider the following378

result.379

Fact 3. ( [33], [27, footnote 1]) It holds that Φ(x) ≤ 1
2e

√
2
π
x
. Also, as a direct conse-380

quence,381

− log Φ(x) ≥ − log

(
max

{
1

2
e

√
2
π
x
, 1

})
= max

{
log(2)−

√
2

π
x, 0

}
.382
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Using Fact 3, the penalty terms of Formulation 3 can be approximated by383

− log Φ

(
b⊤i yt

σ∥bi∥

)
≥ max

{
log(2)−

√
2

π

b⊤i yt

σ∥bi∥
, 0

}
384

≥ max

{
−
√

2

π

b⊤i yt

σ∥bi∥
, 0

}
385

=

√
2

π

1

σ∥bi∥
hinge(b⊤i yt).(3.18)386

387

The normalizing term ∥bi∥ is hard to deal with. By pretending as if ∥bi∥ were a constant,388

and by setting
√

2
π

1
σ∥bi∥T = λ for some pre-selected λ > 0, we have389

(3.19) − 1

T
log Φ

(
b⊤i yt

σ∥bi∥

)
≈ λ · hinge(b⊤i yt).390

Now, we are ready to draw our main conclusion: SISAL can be explained as an approximation391

of the ML estimator (3.16). In particular, the connection is made by applying Fact 1 and392

(3.19) to Formulation 3.393

3.5. A Hinge-Square Variant of SISAL. The explanation of SISAL as an approximate394

ML estimator in the preceding subsection gives us a new insight, namely, that the hinge395

function serves as a surrogate of the penalty function − log Φ(x) from the ML viewpoint. In396

that regard, we can choose a different surrogate of − log Φ(x). From Fig. 1 we see that, as x397

becomes more negative, the hinge function is a poor approximation of − log Φ(x). Consider398

the following result.399

Fact 4. (Chernoff bound; see, e.g., [33]) It holds that, for x ≤ 0, Φ(x) ≤ 1
2e

−x2/2.400

Also, as a direct consequence, we may approximate401

− log Φ(x) ≈ − log

(
1

2
e−max{−x,0}2/2

)
= log(2) +

1

2
hinge(x)2.402

Fig. 2 compares the above surrogate and − log Φ(x). We see that this new surrogate approx-403

imates − log Φ(x) better for negative x. By approximating404

(3.20) − 1

T
log Φ

(
b⊤i yt

σ∥bi∥

)
≈ λ · hinge(b⊤i yt)

2 + constant,405

as before, we have the following variant of SISAL.406
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Formulation 4, H2-SISAL; a Chernoff bound-based heuristic of the approximate
ML problem in Formulation 3, or a hinge-square variant of SISAL in Formula-
tion 1:

min
B∈RN×N

− log(|det(B)|) + λ
T∑
t=1

N∑
i=1

hinge(b⊤i yt)
2

s.t. B⊤1 = p,

where λ > 0 is a pre-selected penalty parameter.

407

Figure 2. Comparison of − log Φ(x) and a hinge-square based function.

Observe that the difference between Formulation 4 and the SISAL formulation (Formula-408

tion 1) is that the former puts a square on the hinge function. From an optimization viewpoint,409

this H2-SISAL formulation has the advantage that the hinge-square penalty terms, as well as410

the whole objective function, are continuously differentiable.411

4. SISAL as an Algorithm, and More. Having explored the formulation aspects with412

SISAL, we turn to the algorithmic aspects. To facilitate our subsequent development, let us413

introduce some notations. Let f : Rn → R ∪ {+∞} be an extended real-valued function. We414

denote dom f = {x ∈ Rn | f(x) < +∞} as the domain of f ; ∇f(x) as the gradient of f (when415

f is differentiable at x);416

proxf (x) ∈ arg min
z∈Rn

1

2
∥z − x∥2 + f(x)417

as a proximal operator associated with f . We also denote ⟨·, ·⟩ as the inner product;418

ΠX (x) ∈ argmin
z∈X

∥z − x∥2419

as a projection of x onto a closed set X ⊆ Rn;420

IX (x) =
{

+∞ if x /∈ X
0 if x ∈ X421
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as the indicator function associated with X . Furthermore, we call f to have Lipschitz con-422

tinuous gradient on X if ∇f is Lipschitz continuous on X ; i.e., there exists α > 0 such that423

∥∇f(x)−∇f(y)∥ ≤ α∥x− y∥ for all x,y ∈ X .424

4.1. The SISAL Algorithm. To describe the algorithm used in SISAL, we start with425

describing the basic natures of the SISAL problem. Recall from Formulation 1 the SISAL426

problem:427

(4.1) min
B∈RN×N ,B⊤1=p

f(B) = − log |det(B)|︸ ︷︷ ︸
:=f0(B)

+λ
∑T

t=1

∑N
i=1 hinge(b

⊤
i yt),428

where p = (Y ⊤)†1. The problem is non-convex and non-smooth: the second term of f ,429

which has the hinge function involved, is convex and non-differentiable; f0 is non-convex and430

continuously differentiable on its domain dom f0; dom f0 is the set of all invertible matrices431

on RN×N ; f0 does not have Lipschitz continuous gradient on dom f0. If one wants to find an432

off-the-shelf optimization method that offers some form of guarantee of finding a stationary433

point of problem (4.1), that will not be immediately obvious. The non-triviality comes in two434

ways:435

1. Implementation: One can actually apply an off-the-shelf method from the recent ad-436

vances of optimization, particularly, first-order optimization. Take the proximal gra-437

dient method as an example. One needs to choose the step size, which is typically438

guided by the Lipschitz constant of ∇f0. The absence of Lipschitz continuous ∇f0439

in our problem necessitates a different strategy to deal with the problem. Also, the440

problem domain, the set of all invertible matrices, is non-standard at first sight.441

2. Theory: The Lipschitz continuity of ∇f0 is needed in most convergence proofs. Again,442

we do not have Lipschitz continuous ∇f0.443

Back to 2009, Bioucas-Dias dealt with the problem by successive convex approximation.444

The ideas are to form a quadratic approximation of f0 at a given point B̃ ∈ dom f0445

f(B) ≈ f0(B̃) + ⟨∇f0(B̃),B − B̃⟩+ µ

2
∥B − B̃∥2 := gµ(B, B̃),446

for some µ > 0; and to solve, iteratively,447

(4.2) Bk+1 = arg min
B∈RN×N ,B⊤1=p

gµk
(B,Bk) + λ

∑T
t=1

∑N
i=1 hinge(b

⊤
i yt), k = 0, 1, 2, · · ·448

for some µk > 0 for all k. The problems encountered in (4.2) are convex (in fact, strictly449

convex). Bioucas-Dias solved these problems by a variable splitting augmented Lagrangian450

algorithm, which is now more popularly known as the alternating direction method of multi-451

pliers (ADMM). That ADMM algorithm exploits the problem structure of (4.2) and is com-452

putationally efficient. But (4.2) has a caveat: depending on how µk is chosen, a new iterate453

Bk+1 may not be invertible; and when that happens, the successive convex optimization in454

(4.2) will crash.455

Algorithm 4.1 is the actual form of the SISAL algorithm. Intuitively, we expect that there456

should exist a θk ∈ (0, 1], no matter how small it may be, such that Bk+1 = Bk+θk(B̄
k−Bk)457

remains invertible. As mentioned, empirical studies suggest that SISAL works. This leads458

to an intriguing, and previously unanswered, basic question: Does Algorithm 4.1 have any459

guarantee of finding a stationary point of problem (4.1)?460
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Algorithm 4.1 SISAL by Bioucas-Dias [4], successive convex optimization for Formulation 1

1: given: an invertible starting point B0 and a constant µ > 0
2: k = 0
3: repeat
4: B̄k = arg min

B∈RN×N ,B⊤1=p
gµ(B,Bk) + λ

∑T
t=1

∑N
i=1 hinge(b

⊤
i yt), by ADMM (see [4])

5: find a θk ∈ (0, 1] such that f(Bk + θk(B̄
k −Bk)) ≤ f(Bk), by line search

6: Bk+1 = Bk + θk(B̄
k −Bk)

7: k = k + 1
8: until a stopping rule is satisfied
9: output: Bk

4.2. Line Search-Based Proximal Gradient Method. Our study found that the opti-461

mization framework by Bonettini et al. [6] can be used to answer the question. To put into462

context, consider a problem463

(4.3) min
x∈Rn

f(x) := f0(x) + f1(x),464

where f0 is continuously differentiable on its domain dom f0; dom f0 is open; f1 is convex,465

proper, lower semicontinuous, and bounded from below; dom f1 is closed and nonempty. For466

this problem, a point x̄ ∈ dom f is called a stationary point of problem (4.3) if the directional467

derivative of f , defined as f ′(x;d) = limt↓0(f(x+ td)− f(x))/t, satisfies f ′(x̄;d) ≥ 0 for all468

d ∈ Rn. To describe the method, let469

hµ(z,x) = ⟨∇f0(x), z − x⟩+ µ

2
∥z − x∥2 + f1(z)− f1(x), µ > 0.470

Consider the following line search-based proximal gradient (LSB-PG) method: given β ∈471

(0, 1), x0 ∈ dom f , recursively compute472

yk = arg min
z∈Rn

hµk
(z,xk) = proxµ−1

k f1
(xk − µ−1

k ∇f0(x
k)), for some µk > 0,(4.4)473

xk+1 = xk + θk(y
k − xk),(4.5)474475

for k = 0, 1, 2, · · · , where θk ∈ (0, 1] is chosen such that476

(4.6) f(xk + θk(y
k − xk)) ≤ f(xk) + βθkhµk

(yk,xk).477

To be precise, we use an Armijo line search rule to find θk: find the smallest non-negative478

integer j such that479

(4.7) f(xk + δj(yk − xk)) ≤ f(xk) + βδjhµk
(yk,xk).480

for some given δ ∈ (0, 1), and then choose θk = δj . It is worth noting that (4.6) is a sufficient481

decrease condition with the objective value, since hµk
(yk,xk) ≤ 0. Also, the framework in [6]482

is much more general than the LSB-PG, and here we reduce the framework to the above483

minimal form which is enough to answer our question.484

The LSB-PG method is equipped with the following stationarity guarantee.485
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Proposition 2 (a rephrased, simplified, version of Corollary 3.1 in [6]). Consider problem (4.3)486

and its associated LSB-PG method in (4.4)–(4.7). Suppose dom f0 ⊇ dom f1. Also, assume487

that {µk} ⊂ [µmin, µmax] for some 0 < µmin ≤ µmax < +∞, and that {xk} has a limit point.488

Then any limit point of {xk} is a stationary point of problem (4.3).489

As we will discuss in the next subsection, the application of the LSB-PG method to the490

SISAL problem does not have dom f0 ⊇ dom f1 satisfied. This led us to rework the whole491

proof to see if the above assumption can be relaxed. The answer, fortunately, is yes.492

Corollary 1. The same stationarity result in Proposition 2 holds if we replace dom f0 ⊇493

dom f1 by dom f0∩dom f1 ̸= ∅. As a comment, the assumption of open dom f0 plays a crucial494

role.495

The proof of Corollary 1 is a meticulous re-examination of the whole proof of Corollary 3.1496

in [6], including the proof of the theorems and propositions that precede it. We shall omit497

the proof. The following remark describes the unique aspect of proving Corollary 1, and the498

reader may choose to skip it and jump to the next subsection for the application of Corollary499

1 to the SISAL problem.500

Remark 3. We discuss the key proof differences of Proposition 2 and Corollary 1. In the501

proof, an important issue is to show that there exists a θk ∈ (0, 1] such that the sufficient502

decrease condition (4.6) holds. To achieve the latter, a prerequisite is to ensure xk+1 ∈ dom f0.503

One can readily see from (4.4)–(4.5) that yk ∈ dom f1, and then xk+1 ∈ dom f1 (due to the504

convexity of dom f1). For the case of dom f0 ⊇ dom f1, or Proposition 2, we automatically505

get xk+1 ∈ dom f0. For the case of dom f0 ⊉ dom f1, or Corollary 1, we need to leverage on506

the assumption of open dom f0. Since dom f0 is open, there exists ϵk > 0 such that, for any507

u ∈ Rn with ∥u∥ ≤ ϵ, we have xk + u ∈ dom f0. This implies that there must exist a θk > 0,508

no matter how small it is, such that xk + θk(y
k − xk) ∈ dom f0. The above is the distinct509

part of the proof of Corollary 1.510

4.3. Stationarity Guarantee of SISAL. Now we apply the framework in the preceding511

subsection to the SISAL problem. Let512

f0(B) = − log | det(B)|,
f1(B) = λ

∑T
t=1

∑N
i=1 hinge(b

⊤
i yt) + IB(B), B = {B ∈ RN×N | B⊤1 = p},

513

and let µk = µ for some pre-selected constant µ > 0. We observe that the SISAL algorithm514

in Algorithm 4.1 is very similar to the LSB-PG method in (4.4)–(4.7), with β being nearly515

zero. Or, more specifically, if we modify Algorithm 4.1 by changing the line search in Step 5516

to the Armijo rule in (4.7), the algorithm is, faithfully, an instance of the LSB-PG method.517

To answer the question of stationarity guarantees, note that dom f0 is the set of all invertible518

matrices on RN×N , while dom f1 = B. Clearly, we have dom f0 ⊉ dom f1, and Proposition 2519

is not applicable. Corollary 1 is applicable if dom f0 is open. In fact, it is known in topology520

that the set of invertible matrices is open.2 Let us conclude. By Corollary 1, the SISAL521

2For the reader’s interest, here is a simple proof by matrix analysis. Let S be the set of invertible matrices
on RN×N . Let X ∈ S, and let σ1 ≥ · · · ≥ σN > 0 be its singular values. Let ϵ > 0. Let Y be any matrix
such that ∥X − Y ∥ ≤ ϵ, and let d1 ≥ · · · ≥ dN ≥ 0 be its singular values. By the singular value inequality
∥X − Y ∥2 ≥

∑N
i=1 |σi − di|2, and letting ϵ = σN/2, one can verify that dN ≥ σN/2 > 0.
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algorithm, upon a minor modification with its line search rule, is equipped with a stationarity522

guarantee.523

4.4. Application to H2-SISAL and Formulation 3. It is exciting to point out that we can524

also use the LSB-PG method in Section 4.2 to deal with the H2-SISAL problem in Formulation525

4. Specifically we choose526

(4.8) f0(B) = − log(|det(B)|) + λ
∑T

t=1

∑N
i=1 hinge(b

⊤
i yt)

2, f1(B) = IB(B);527

note that we put the (continuously differentiable) hinge-square penalty term to f0, which is528

different compared to SISAL. The resulting LSB-PG method has the proximal operation (4.4)529

reduced to530

B̄k = proxµ−1
k f1

(Bk − µ−1
k ∇f0(B

k)) = ΠB(B
k − µ−1

k ∇f0(B
k)),531

which has a simple closed form and is cheap to compute. We should recall that the proximal532

operation in SISAL has no closed form and requires us to call a solver (ADMM). We take ad-533

vantage of the computational efficiency of the proximal operation by considering the following534

rule of choosing µk: find the smallest non-negative integer j such that535

f(B̄k,j) ≤ f(Bk) + βhνcj (B̄
k,j ,Bk),(4.9a)536

B̄k,j = ΠB(B
k − (νcj)−1∇f0(B

k)),(4.9b)537538

for some given ν > 0, c > 1, and then choose µk = νcj . Consequently, the sufficient decrease539

condition (4.6) will be satisfied for θk = 1, and we can simply set θk = 1, Bk+1 = B̄k,j . Note540

that this is a typical scheme in proximal gradient methods (see, e.g., [2]), and (4.9) is popularly541

called the backtracking line search. We should also mention that the above LSB-PG scheme542

is identical to the projected gradient method, with a suitably chosen step size. By Corollary543

1, this LSB-PG scheme is equipped with a stationarity guarantee under the assumption that544

the µk’s found by the backtracking line search are bounded.545

Our actual algorithm, shown in Algorithm 4.2, is an extrapolated variant of the above546

scheme. Note that, by choosing αk = 0, Algorithm 4.2 reduces to the previous LSB-PG

Algorithm 4.2 H2-SISAL, an extrapolated proximal gradient scheme for Formulation 4

1: given: an invertible starting point B0; a constant β ∈ (0, 1); and an extrapolation
sequence {αk}, typically the FISTA sequence [2]

2: k = 0, B−1 = B0

3: repeat
4: Bk

ex = Bk + αk(B
k −Bk−1)

5: Bk+1 = ΠB(B
k
ex − µ−1

k ∇f0(B
k
ex)), where µk is chosen such that f(Bk+1) ≤ f(Bk

ex)+
6: βhµk

(Bk+1,Bk
ex), done by the backtracking line search (4.9); f0 is given in (4.8)

7: k = k + 1
8: until a stopping rule is satisfied
9: output: Bk

547

This manuscript is for review purposes only.



SISAL REVISITED 19

scheme. Our consideration is more from the practical side. The LSB-PG framework does not548

cover the extrapolated variant, and hence it is not known if Algorithm 4.2 is equipped with549

stationarity guarantees. On the other hand, we want to leverage on the merits of extrapolation550

demonstrated in prior works. It is known that, when f0 is convex and has Lipschitz continuous551

gradient, the extrapolated proximal gradient method can lead to faster convergence rates than552

the proximal gradient method, both provably and empirically [3]; and that, when f0 is non-553

convex and has Lipschitz continuous gradient, the extrapolated proximal gradient method554

is shown to yield some stationarity guarantee [14, 37], and similar methods were empirically555

found to lead to faster convergence speeds in some applications [12,27,35,36]. Our empirical556

experience with Algorithm 4.2 is good in terms of runtime speed and stability.557

We should further note that all the developments in this subsection apply to the approx-558

imate ML problem in Formulation 3; change559

f0(B) = − log(|det(B)|)− 1

T

T∑
t=1

N∑
i=1

log Φ

(
b⊤i yt

σ∥bi∥

)
560

(this f0 can be shown to be continuously differentiable on the set of all invertible matrices).561

Unfortunately, by our numerical experience, the adaptation of Algorithm 4.2 (with or without562

extrapolation) to Formulation 3 is not promising: its convergence tends to be slow; and563

numerical instability could happen, if not careful enough. The culprit is most likely the564

normalizing terms ∥bi∥: the term 1/∥bi∥ becomes very large for small ∥bi∥, and the occurrence565

of such event can cause numerical instability. These setbacks drove us to rethink our strategy566

for dealing with Formulation 3.567

5. Probabilistic SISAL via Inexact Block Coordinate Descent. In this section we devise568

an algorithm for tackling the approximate ML problem in Formulation 3, with a focus on569

practicality and efficiency in our design.570

5.1. Reformulation and Inexact Block Coordinate Descent. As mentioned previously,571

the normalizing terms ∥bi∥ in the objective function are troublesome. We deal with them by572

considering the change of variable573

B = DC, C =

c
⊤
1
...
c⊤N

 , D =

d1 . . .

dN

 , di > 0, ci ∈ U := {c ∈ RN | ∥c∥ = 1}, ∀i.574

Applying the above transformation to Formulation 3 leads to the following reformulation575

(5.1)
min

C∈RN×N ,d∈RN
− log |det(C)| −

N∑
i=1

log di −
1

T

T∑
t=1

N∑
i=1

log Φ(c⊤i ȳt)

s.t. C⊤d = p, C ∈ UN ,

576

where, for convenience, we denote ȳt = yt/σ, UN = {C = [ c1, . . . , cN ]⊤ | ci ∈ U ∀i},577

and d = (d1, . . . , dN ); note dom (− log) = R++. The upshot of the reformulation in (5.1) is578

that the normalizing terms disappear. The new challenges are that we are now faced with579
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unit modulus constraints, and handling both the equality constraint C⊤d = p and the unit580

modulus constraints is difficult. We make a compromise by considering a penalized alternation581

of problem (5.1)582

(5.2)

min
C∈UN ,d∈RN

Fη(C,d) := − log |det(C)| −
N∑
i=1

log di −
1

T

T∑
t=1

N∑
i=1

log Φ(c⊤i ȳt) + η∥C⊤d− p∥2583

for a given penalty parameter η > 0 that is presumably large. Observe that Fη is convex in584

d, and non-convex in C.585

We employ a block coordinate descent (BCD) strategy to handle problem (5.2). The first586

layer of our algorithm is shown in Algorithm 5.1. We minimize Fη over C and d in an alter-587

nating fashion. To be more precise, the minimization Fη over C ∈ UN is only approximate588

since the problem is non-convex. Moreover, we gradually increase η. By experience, graduat-589

ing increasing η is better than applying a large fixed η. The second layer of our design deals590

with the computations of the coordinate minimizers in Steps 5–6 of Algorithm 5.1, which is591

detailed next.592

Algorithm 5.1 Pr-SISAL, an inexact BCD algorithm for the altered problem (5.2) of For-
mulation 3
1: given: an invertible starting point B0, a starting penalty value η > 0, c > 1, and a rule

for increasing η
2: k = 0, d0 = (∥b01∥, . . . , ∥b0N∥), C0 = [ b01/d

0
1, . . . , b

0
N/d0N ]⊤

3: repeat
4: repeat
5: dk+1 = argmind∈RN Fη(C

k,d) by Algorithm 5.2 with dk as the starting point
6: Ck+1 ≈ argminC∈UN Fη(C,dk+1) by Algorithm 5.3 with Ck as the starting point
7: k = k + 1
8: until a stopping rule is satisfied
9: η = η c

10: until a stopping rule is satisfied
11: output: Bk = DkCk, where Dk = Diag(dk)

5.2. Coordinate Minimization Over d. Let us first consider the coordinate minimization593

over d in Step 5 of Algorithm 5.1. The problem amounts to solving594

(5.3) min
d∈RN

f(d) := η∥C⊤d− p∥2︸ ︷︷ ︸
:=f0(d)

−
∑N

i=1 log(di)︸ ︷︷ ︸
:=f1(d)

.595

The above problem is convex. It also falls into the scope of proximal gradient methods596

(cf. Section 4.2), with Lipschitz continuous ∇f0. We employ the (standard) extrapolated597

proximal gradient method to compute the solution to problem (5.3). The algorithm is shown598

in Algorithm 5.2. Note that599

(5.4) proxµ−1f1(d) =

(
d1+

√
d21+4/µ

2 , · · · , dN+
√

d2N+4/µ

2

)
.600
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Algorithm 5.2 an extrapolated proximal gradient algorithm for mind∈RN Fη(C,d)

1: given: a starting point d0; and an extrapolation sequence {αk}, typically the FISTA
sequence [2]

2: k = 0, d−1 = d0,
3: µ = 2ησmax(C)2, where σmax(C) is the largest singular value of C
4: repeat
5: dk

ex = dk + αk(d
k − dk−1)

6: dk+1 = proxµ−1f1(d
k
ex − µ−1∇f0(d

k
ex)); f0 is given in (5.3); proxµ−1f1 is given in (5.4)

7: k = k + 1
8: until a stopping rule is satisfied
9: output: dk

5.3. Coordinate Minimization Over C. Next, consider the coordinate minimization over601

C. The problem can be presented as602

(5.5) min
C∈RN×N

f(C) := − log |det(C)| − 1

T

T∑
t=1

N∑
i=1

log Φ(c⊤i ȳt) + η∥C⊤d− p∥2︸ ︷︷ ︸
:=f0(C)

+ IUN (C)︸ ︷︷ ︸
:=f1(C)

603

We begin by considering the proximal gradient method:604

(5.6) Ck+1 = proxµ−1
k f1

(Ck − µ−1
k ∇f0(C

k)) = ΠUN (Ck − µ−1
k ∇f0(C

k)),605

where µk > 0 is chosen such that the sufficient decrease condition is satisfied, and it is done606

by the backtracking line search (cf. (4.9)); we have607

ΠUN (C) = [ ΠU (c1), . . . ,ΠU (cN ) ]⊤, ΠU (c) =

{
c/∥c∥ if c ̸= 0
any u ∈ U if c = 0

608

The method, by operations, is the same as the standard proximal gradient method. But the609

problem does not fall within the scope of the stationarity-guaranteed LSB-PG framework,610

because UN is non-convex. We adopt this method mostly based on practicality: It is simple,611

and the same method or similar methods have been used in practice [7, 26, 31], with rea-612

sonable results demonstrated. Moreover, as a supporting argument, the method is shown to613

be equipped with some stationarity guarantee under the assumption of Lipschitz continuous614

∇f0 [31].615

The above method is just a vanilla version of our actual algorithm. There is a practical616

issue: the computation of∇f0 is expensive, and the direct use of the proximal gradient method617

can be slow in terms of the runtimes. To give an idea, let us show ∇f0:618

∇f0(C) = −C−⊤ − 1

T

T∑
t=1


1

Φ(c⊤1 ȳt)
1√
2π
e−(c⊤1 ȳt)2/2ȳ⊤

t

...
1

Φ(c⊤N ȳt)
1√
2π
e−(c⊤N ȳt)2/2ȳ⊤

t

+ 2η d(C⊤d− p)⊤.619
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We see that computing ∇f0 requires evaluating Φ for a number of NT times (recall that T is620

large in practice). The function Φ does not have a closed form and is evaluated by a numerical621

method. While this should not be an issue when we are required to call Φ a few times, the622

problem here requires us to evaluate Φ numerous times (and at every iteration).623

To reduce the number of times Φ is called, and thereby alleviate the computational burden,624

we consider a combination of the majorization-minimization (MM) and proximal gradient625

method. Recall the idea of MM: i) build a surrogate of f by finding a majorant g(C, C̃) of626

f at C̃, i.e., f(C) ≤ g(C, C̃) for all C, C̃, and f(C) = g(C,C); ii) handle the problem by627

recursively solving Ck+1 = minC g(C,Ck). Consider the following fact.628

Fact 5 ( [28] and the references therein). It holds that, for any x̃ ∈ R,629

− log Φ(x) ≤ g(x, x̃) :=
1

2
|x+ w(x̃)|2 + r(x̃),630

where r(x̃) does not depend on x;631

w(x̃) = −x̃− 1

Φ(x̃)

1√
2π

e−x̃2/2.632

Also, we have g(x, x) = − log Φ(x).633

Let us apply Fact 5 to build a majorant of f0:634

(5.7) g0(C, C̃) = − log |det(C)|+ 1

2T

T∑
t=1

N∑
i=1

∣∣∣c⊤i ȳt − w(c̃⊤i ȳt)
∣∣∣2 + η∥C⊤d− p∥2 + r(C̃),635

for some r that does not depend on C. Also, let g(C, C̃) = g0(C, C̃)+f1(C), which is a majo-636

rant of f . We carry out MM, in an inexact sense, by approximatingCk+1 = argminC g(C,Ck)637

via the proximal gradient method. By doing so, we hope that the number of times Φ is called638

can be reduced: the evaluations of Φ happen in the majorant construction step (5.7), but639

not in the (more intensively operating) proximal gradient iterations. Our high-level algorithm640

description is complete, and the algorithm is shown below. Note that the actual proximal641

gradient method we employ is extrapolated.642

6. Numerical Results. Now we proceed to numerical results. While we focused on giving643

a novel explanation of SISAL, the study itself showed new possibilities which we would like to644

examine by numerical experiments. The most interesting one is the approximate ML estimator645

in Formulation 3, which resembles a SISAL variant that adopts a probabilistic penalty term.646

This probabilistic SISAL does not have the regularization parameter λ, and we want to see647

how well it works compared to SISAL (which requires tuning λ). Also we are interested in648

the hinge-square SISAL variant in Formulation 4, in terms of runtimes.649

6.1. Settings of the Algorithms. The implementations of the hinge-square and prob-650

abilistic SISAL formulations in Formulations 4 and 3 are accomplished by Algorithms 4.2651

and 5.1, respectively. For convenience, Algorithms 4.2 and 5.1 will be called H2-SISAL and652

Pr-SISAL, respectively, in the sequel. We first specify the dimensionality reduction (DR) pre-653

processing, which is required by the SISAL algorithms. The standard PCA is used to perform654
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Algorithm 5.3 a combined MM and extrapolated proximal gradient algorithm for
minC∈UN Fη(C,d)

1: given: an invertible starting point C0; and an extrapolation sequence {αk}, typically the
FISTA sequence [2]

2: k = 0,
3: repeat % MM iterations
4: compute w((cki )

⊤ȳt) for all i, t
5: l = 0, Ck,−1 = Ck,0 = Ck

6: repeat % extrapolated proximal gradient iterations
7: Ck,l

ex = Ck,l + αl(C
k,l −Ck,l−1)

8: Ck,l+1 = ΠUN (C
k,l
ex − µ−1

k,l∇g0(C
k,l
ex ,Ck)), where µk,l is chosen such that

g0(C
k,l+1,Ck) ≤ g0(C

k,l
ex ,C

k) + ⟨∇g0(C
k,l
ex ,C

k),Ck,l+1 −Ck,l
ex ⟩+

µk,l

2 ∥Ck,l+1 −Ck,l
ex ∥2

(i.e., sufficient decrease) is satisfied, and it is done by the backtracking line search;
g0 is given in (5.7)

9: l = l + 1
10: until a stopping rule is satisfied
11: Ck+1 = Ck,l

12: k = k + 1
13: until a stopping rule is satisfied
14: output: Ck

DR. To be specific, let y1, . . . ,yT ∈ RM be the data points. We compute R̂yy = 1
T

∑T
t=1 yty

⊤
t ,655

compute the N -principal eigenvector matrix U ∈ RM×N of R̂yy, and take ỹt = U⊤yt ∈ RN656

as the dimension-reduced data points. Pr-SISAL or H2-SISAL is then applied to ỹ1, . . . , ỹT657

to get an estimate of Ã0 = U⊤A0, and we use the relation A0 = UÃ0 to form the estimate of658

A0. In this connection, it is worth noting that, for the case of M ≥ N+1, we can also estimate659

the noise power σ2 from R̂yy, specifically, by taking the (N + 1)th eigenvalue of R̂yy as the660

estimate of σ2; this is a commonly-used trick in statistical signal processing [29, Chapter 4.5].661

The settings of Pr-SISAL in Algorithm 5.1 are as follows. The vector p is estimated by662

(3.17). The starting point is generated by expanded vertex component analysis (VCA), a663

built-in function of SISAL and a slight modification of the output by the VCA algorithm [22].664

We set the initial value of η to 1 and set c = 5. We stop the inner loop (Steps 4–8) if665

rc(Bk+1,Bk) := ∥Bk+1−Bk∥/∥Bk∥ ≤ 10−7 ( rc stands for relative change) or if the number666

of inner loops exceeds 4×105. We stop the outer loop if the number of outer loops exceeds 10.667

For the sub-algorithm Algorithm 5.2, we stop if rc(dk+1,dk) ≤ 10−5. For the sub-algorithm668

Algorithm 5.3, we stop the MM loop and the proximal gradient loop if rc(Ck+1,Ck) ≤ 10−5669

and rc(Ck,l+1,Ck,l) ≤ 10−3, respectively. The extrapolation sequence {αk} in Algorithms 5.2670

and 5.3 is chosen as the (standard) FISTA sequence [2].671

The settings of H2-SISAL in Algorithm 4.2 are as follows. We choose p = (Y ⊤)†1. The672

starting point is generated by expanded VCA. The FISTA extrapolation sequence is used. We673

stop Algorithm 4.2 if rc(Bk+1,Bk) ≤ 10−6.674
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We will benchmark Pr-SISAL and H2-SISAL against SISAL itself, VCA [22], ISA-PRISM675

and VIA-PRISM [34]. SISAL and VCA have open source codes, and we use them directly.676

The stopping rule of SISAL is that the number of iterations exceeds 250. ISA-PRISM is an677

importance sampling scheme for implementing the ML estimator (3.2), and VIA-PRISM is a678

variational inference approximation scheme for the ML estimator (3.2). We run ISA-PRISM679

only for small N , due to its demanding computational cost to achieve reasonable performance680

for large N . We stop ISA-PRISM when the number of iterations exceeds 100, and we use681

rejection sampling, with 500 initial samples, to implement ISA-PRISM. We stop VIA-PRISM682

when the number of iterations exceeds 500. Also, our VIA-PRISM implementation has some683

differences from that in the original work [34]; we replace the optimization algorithm for the684

variational variables, Algorithm 1 in [34], with a projected gradient algorithm, which was685

found to be more efficient.686

6.2. Comparisons of SISAL, H2-SISAL and Pr-SISAL By Simulations. We conduct our687

simulations by the following way. We generate the data points y1, . . . ,yT by the model in688

(3.1), i.e., yt = A0st+vt, where the st’s are i.i.d. uniform distributed on the unit simplex; the689

vt’s are i.i.d. Gaussian with mean zero and covariance σ2I. In addition, for each simulation690

trial, A0 is drawn from an element-wise i.i.d. [0, 1] distribution; we also restrict the condition691

number of the admitted A0 to be no greater than 100. We use a number of 100 simulation692

trials to evaluate the mean square error (MSE)693

MSE(A0, Â) = min
P∈P

1

MN
∥A0 − ÂP ∥2,694

where Â denotes an estimate of A0 by some algorithm; P is the set of all permutation matrices695

on RN×N . We should also note that the signal-to-noise ratio (SNR) is defined as696

SNR =
1
T

∑T
t=1 ∥A0st∥2

Mσ2
697

Fig. 3 compares Pr-SISAL and SISAL for various values of (M,N) and for T = 1, 000.698

Our observations are as follows. First, the recovery performance behaviors of SISAL vary from699

one choice of λ to another. There is no single λ that works best for all SNRs, which suggests700

the need for parameter tuning in practice. Second, Pr-SISAL performs unsatisfactorily for701

low SNRs, particularly when compared to VIA-PRISM. But we also see that the performance702

of Pr-SISAL improves drastically as the SNRs are greater than certain thresholds. Also, for703

(M,N) = (10, 5), Pr-SISAL achieves performance close to the ML estimator by ISA-PRISM704

when the SNR is high enough. These results indicate that Pr-SISAL is a good estimator for705

the high SNR regime.706

Fig. 4 compares H2-SISAL and SISAL under the same settings as above. We see that707

H2-SISAL works reasonably and is comparable to SISAL. Also, H2-SISAL behaves differently708

for different regularization parameters λ, which suggests that H2-SISAL requires parameter709

tuning in practice (just like SISAL).710

We move on to the comparison of computational efficiency. Tables 1–2 illustrate some711

runtime results. The runtimes were measured on a small server with the Intel Core i7-5820K712
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Figure 3. Comparison of Pr-SISAL, SISAL and VIA-PRISM. The lines are the average MSEs, while the
shaded areas show the standard deviations of the MSEs.
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Figure 4. Comparison of H2-SISAL and SISAL.
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CPU processor and 64GB memory, and with implementations using MATLAB 2019a. H2-713

SISAL is seen to run faster than SISAL. Pr-SISAL, in comparison, is slow, although this is714

so far the best algorithm we can build for the difficult formulation of probabilistic SISAL.715

The reader will see in the extra simulation results in Appendix A that the proximal gradient716

method for tackling SISAL and H2-SISAL is even slower for probabilistic SISAL.717

Table 1
Average runtimes (in sec.) of SISAL, H2-SISAL, Pr-SISAL and VIA-PRISM. T = 1, 000, SNR = 30dB.

(M,N) (10, 5) (20, 10) (30, 15)

SISAL, λ = 0.1 0.078 0.129 0.162

H2-SISAL, λ = 10.0 0.033 0.066 0.132

Pr-SISAL 8.336 21.854 42.785

VIA-PRISM 0.632 0.974 1.212

Table 2
Average runtimes (in sec.) of SISAL, H2-SISAL, Pr-SISAL and VIA-PRISM. (M,N) = (20, 10), SNR =

30dB.

T 1000 2000 3000 4000 5000 6000 7000 8000

SISAL, λ = 0.1 0.119 0.201 0.295 0.353 0.401 0.455 0.539 0.587

H2-SISAL, λ = 10.0 0.064 0096 0.139 0.192 0.230 0.246 0.281 0.325

Pr-SISAL 23.145 24.656 50.609 56.395 75.753 75.278 100.100 100.917

VIA-PRISM 0.986 1.600 2.276 2.860 3.349 3.928 4.746 4.961

6.3. A Semi-Real Data Experiment. We further test Pr-SISAL by using real data. The718

application of interest is hyperspectral unmixing (HU). The real data set used to perform our719

experiment is the Cuprite hyperspectral image [32]; we will simply call it Cuprite for con-720

venience. Cuprite is interesting in the sense that, among the popular and publicly available721

data sets in hyperspectral remote sensing, Cuprite is the only one that has more than 10 ma-722

terials (to our best knowledge). Cuprite has been used to demonstrate many HU algorithms,723

e.g., [8, 18,22,34], and real data experiments by Cuprite have almost become a standard. An724

illustration of the Cuprite image is shown in Fig. 5(a).725

The settings of our experiment are as follows. We largely follow the standard procedure726

in the literature [8, 18, 22, 34], particularly, the one in [34]. Some additional details are as727

follows. We adopt the band selection in [18]. It was argued that Cuprite is composed of728

12 materials, namely, those shown in Table 3; we refer the reader to [38] and the references729

therein for details. The ground-truth A0 corresponds to the reference spectral responses of730

those materials, taken from the USGS library [9]. We test VCA, VIA-PRISM, SISAL, H2-731

SISAL and Pr-SISAL. For all the tested algorithms, we additionally do the following: we apply732

the data normalization preprocessing, described in Section 2.1, to the data points before DR;733

also, for Pr-SISAL and VIA-PRISM, we estimate the noise variance σ2 by the eigenvalue734

method described in Section 6.1. Moreover, some of the stopping rules are modified: We735
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(a) Cuprite image (b) Cuprite image with artificially
added outliers; red circles represent

outlying pixels.

Figure 5. Cuprite image; constructed by RGB bands.

stop SISAL if the number of iterations exceeds 1, 000; we stop the inner loop of Pr-SISAL if736

rc(Bk+1,Bk) ≤ 2× 10−7 or if the number of iterations exceeds 107. We evaluate the recovery737

performance by the spectral angle distance (SAD)738

SAD(a0,i, âπi) = cos−1

(
a⊤
0,iâπi

∥a0,i∥∥âπi∥

)
,739

where a0,i and âi denote the ith column of A0 and Â, respectively; π = (π1, . . . , πN ) is a set740

of permutation indices for {1, . . . , N} (i.e. πi ∈ {1, . . . , N} and πi ̸= πj for all i ̸= j), obtained741

by minimizing
∑N

i=1 SAD(a0,i, âπi) over all possible permutations.742

Table 3 shows the SADs of the tested algorithms. We see that all the algorithms give743

reasonable SAD performance, with VCA achieving the best average SAD. We also see that744

SISAL and H2-SISAL, with the regularization parameter tuned to λ = 0.001 and λ = 0.01,745

respectively, provide comparable performance to Pr-SISAL. But note that Pr-SISAL has no746

parameter to manually tune.747

We also consider an experiment that puts some twist on the Cuprite data experiment.748

Specifically, we randomly pick some pixels and replace them with outliers; see Fig. 5(b) for an749

illustration. Our aim is to examine how robust the algorithms are. The experimental settings750

are the same as above, and additionally we randomly select 100 pixels and replace them with751

randomly selected spectral responses from the USGS library [9].752

Table 4 displays the SAD performance of the tested algorithms for 10 trials (The locations753

and spectral responses of the outliers are changed at each trial). It is seen that VCA gives the754

worst average SAD, which suggests that VCA is sensitive to outliers. The other algorithms,755

including the new possibility of H2-SISAL and Pr-SISAL, are more robust as indicated by their756

SAD performance. Fig. 6 shows the estimated spectral signatures âi of the various materials757
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Table 3
SAD performances on the Cuprite dataset. The best SADs among all the tested algorithms are marked in

bold.

Endmember

Alg.
VCA

SISAL H2-SISAL
Pr-SISAL VIA-PRISM

λ = 0.001 λ = 0.01 λ = 0.01 λ = 0.1

Alunite 2.07 4.55 6.82 1.65 3.83 3.27 4.54

Andradite 2.07 2.35 5.66 2.37 3.69 1.89 3.10

Buddingtonite 2.11 5.20 3.68 2.92 3.19 3.43 3.88

Dumortierite 2.66 3.25 8.07 3.32 6.49 3.51 3.39

Kaolinite1 2.51 2.22 2.78 2.16 3.06 2.67 3.90

Kaolinite2 1.99 2.48 7.77 2.29 6.20 1.99 2.79

Muscovite 2.12 2.80 3.15 6.07 4.30 3.64 2.67

Montmorillonite 1.74 2.53 3.88 1.99 2.77 1.27 3.22

Nontronite 1.97 3.81 2.84 3.03 3.72 2.75 3.14

Pyrope 2.10 1.45 3.93 1.94 2.76 1.70 1.32

Sphene 1.49 3.19 7.85 3.47 6.95 4.49 1.83

Chalcedony 2.86 3.82 3.85 3.09 3.38 1.59 4.35

Average SAD 2.14 3.14 5.02 2.86 4.19 3.13 3.07

from one random trial. We observe that SISAL, H2-SISAL and Pr-SISAL yield good recovery;758

VCA and VIA-PRISM are not as promising in comparison.759

Table 4
SAD performances on the Cuprite dataset with outliers. The best SADs averaged over 10 trials among all

the tested algorithms are marked in bold.

Endmember

Alg.
VCA

SISAL H2-SISAL
Pr-SISAL VIA-PRISM

λ = 0.001 λ = 0.01 λ = 0.01 λ = 0.1

Alunite 9.64±4.59 4.74±0.26 6.72±1.21 2.82±1.30 5.84±1.50 3.91±0.77 11.65±2.72

Andradite 8.38±5.21 3.45±0.48 7.50±1.97 2.95±0.61 6.16±0.96 2.27 ±0.31 3.31±0.41

Buddingtonite 13.42±4.14 4.07±1.12 3.93±0.56 3.23±0.69 5.49±0.90 3.47±0.31 3.85±1.02

Dumortierite 12.43±3.74 2.93±0.83 6.51±1.31 3.17±0.52 5.38±0.79 3.17±0.54 6.85±2.87

Kaolinite1 9.00±4.05 2.33±0.43 4.42±1.48 3.18±0.72 5.41±1.01 2.39±0.28 4.38±1.47

Kaolinite2 7.33±4.86 2.53±0.75 5.39±2.09 2.59±0.56 5.52±1.57 2.34 ±0.59 3.36±1.06

Muscovite 15.40±5.50 3.11 ±0.59 5.14±2.25 3.66±1.24 5.30±1.32 3.25±0.58 4.57±0.64

Montmorillonite 10.31±3.65 3.47±0.57 3.29±0.24 2.31±0.91 3.42±0.53 2.11 ±0.48 2.79±0.28

Nontronite 5.92±2.96 3.66±0.57 3.75±0.64 3.33±0.98 4.46±1.03 2.58 ±0.42 3.36±0.73

Pyrope 12.59±3.87 2.72±1.00 5.79±2.17 3.44±0.89 5.15±1.45 2.62 ±0.53 3.11±0.65

Sphene 11.96±1.34 2.35±0.91 5.91±1.37 2.99±0.62 6.30±2.09 3.69±0.66 9.85±1.39

Chalcedony 14.61±4.89 2.68±0.40 4.96±2.06 2.98±0.86 5.78±1.11 2.58 ±0.78 6.27±4.76

Average SAD 10.91 3.17 5.28 3.05 5.35 2.86 5.28

7. Conclusions. In this article we showed that the famous SISAL algorithm, developed by760

Bioucas-Dias in hyperspectral unmixing in 2009, can be explained as a probabilistic method761

for SCA. In particular, SISAL was derived from the noiseless case, and our study provides an762

explanation of why SISAL can be robust to noise. Moreover, we gave a positive answer to the763

question of whether the SISAL algorithm can lead to provable convergence to a stationary764

point. This was done by casting SISAL as an instance of a proximal gradient framework in non-765

convex first-order optimization. Furthermore, through connecting SISAL and probabilistic766
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Figure 6. Estimated spectrums of Cuprite. Algorithms: VCA, SISAL with λ = 0.001, H2-SISAL with
λ = 0.01, Pr-SISAL, and VIA-PRISM.

SCA, we also found new SCA formulations that resemble SISAL. To allow us to numerically767

study the new SCA formulations, we built customized algorithms for them. The potential of768
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the new algorithms was demonstrated by numerical experiments.769

Appendix A. Additional Simulation Results.770

We display two more numerical results for Pr-SISAL. The first is with Heuristic 1, which771

is used to build the approximate ML formulation in Formulation 3. To put into context, let772

us write down a slightly more general form of Formulation 3:773

(A.1) min
B⊤1=p

− log(| det(B)|)− τ

T

T∑
t=1

N∑
i=1

log Φ

(
b⊤i yt

σ∥bi∥

)
,774

where τ > 0, and Formulation 3 is the special case of τ = 1. In Remark 2, we argue that775

τ = 1/(N + 1) is arguably equipped with a better rationale (lower-bound approximation of776

the ML objective), but eventually the heuristic (and, intuitively, more progressive) choice of777

τ = 1 prevails in terms of approximating the ML problem better in practice. We want to778

illustrate that. Fig. 7 shows the performance of formulation in (A.1) for different values of τ779

and for (M,N) = (10, 5), T = 1, 000; the simulation is done by exactly the same way as in780

Section 6.2. We see that τ = 1/(N + 1) does not work well, except for very high SNRs. We781

also try τ = N + 1 (more progressive than τ = 1), and the result is not as good as τ = 1.782

SNR(dB)

M
S

E
(d

B
)

Figure 7. Performance of the formulation in (A.1) for different values of τ .

The second result is about the implementations of Formulation 3. It was mentioned that783

the proximal gradient method can be used to handle Formulation 3, but the results are not784

promising. Here we show the results. We implement Formulation 3 using the same proximal785

gradient algorithm in Algorithm 4.2, with or without extrapolation. We stop the algorithm786

if rc(Bk+1,Bk) ≤ 10−8 or if the number of iterations exceeds 4 × 105. Fig. 8 and Table 5787

show the MSE and runtime performance, respectively, for (M,N, T ) = (20, 10), T = 1, 000;788

the simulation settings are the same as the previous. There, “Pr-SISAL”, “Pr-SISAL, PG”789

and “Pr-SISAL, EPG” refer to the inexact BCD algorithm in Algorithm 5.1, the proximal790

gradient algorithm and the extrapolated proximal gradient algorithm, all for Formulation 3.791

We see that all the implementations yield similar MSE performance, but the proximal gradient792

implementations are very slow.793
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SNR(dB)

M
S

E
(d

B
)

Figure 8. Performance comparison of several Pr-SISAL im-
plementations.

Table 5
Average runtime (in sec.) for several

Pr-SISAL implementations.

Algorithms Runtimes

Pr-SISAL, PG 198.814

Pr-SISAL, EPG 243.307

Pr-SISAL 21.542
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