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Abstract—We consider the problem of single source local-
ization using time-difference-of-arrival (TDOA) measurements.
By analyzing the maximum-likelihood (ML) formulation of the
problem, we show that under certain mild assumptions on the
measurement noise, the estimation errors of both the closed-form
least-squares estimate proposed in [1] and the ML estimate, as
measured by their distances to the true source location, are of the
same order. We then use this to establish the curious result that
the objective function of the ML estimation problem is actually
locally strongly convex at an optimal solution. This implies that
some lightweight solution methods, such as the gradient descent
(GD) and Levenberg-Marquardt (LM) methods, will converge
to an optimal solution to the ML estimation problem when
properly initialized, and the convergence rates can be determined
by standard arguments. To the best of our knowledge, these
results are new and contribute to the growing literature on
the effectiveness of lightweight solution methods for structured
non-convex optimization problems. Lastly, we demonstrate via
simulations that the GD and LM methods can indeed produce
more accurate estimates of the source location than some existing
methods, including the widely used semidefinite relaxation-based
methods.

I. INTRODUCTION

Source localization has received considerable attention in
the signal processing community for its many applications
in everyday life, such as self-located map services, person
and asset tracking, wireless network security, and advanced
location-based services [2], [3]. In practice, time-difference-
of-arrival (TDOA) measurements are often used to estimate
the source localization, as they have less stringent synchro-
nization requirements on the sensors [3], [4]. Over the years,
many methods have been proposed to tackle the TDOA-based
source localization problem. For instance, an equation-error
formulation approach was proposed in [1], which involves
solving a certain system of linear equations to produce a
closed-form least-squares estimate of the source location. This
approach is simple but generally suffers from poor accuracy.
More recently, a popular approach to tackling the TDOA-
based source localization problem is to use the semidefinite
relaxation (SDR) technique [5]. Such an approach has been
studied in [6] and [7]. The SDR approach is computationally
demanding and its performance could sometimes be far from
the Cramér-Rao lower bound (CRLB); see, e.g., [7]. The above
discussion motivates us to ask whether there are lightweight
methods that can yield accurate estimates of the source location
using TDOA measurements. In this paper, we consider two
candidate methods, namely, the gradient descent (GD) method
and the Levenberg-Marquardt (LM) method. Both of these
methods have been used to tackle the ML formulation of the

TDOA-based source localization problem; see, e.g., [8] and
the references therein. However, since the ML formulation is
non-convex in general, it is not clear whether these methods
will get trapped at local minima of the objective function.
To address this issue, we conduct a theoretical analysis of
the ML formulation of the TDOA-based source localization
problem. Our contribution is twofold. First, we show that
under some mild assumptions on the measurement noise, the
estimation errors of both the least-squares estimate of [1]
and the ML estimate are of the same order; see Theorem 1
and Corollary 1. Then, we use this result to show that the
objective function of the ML estimation problem is locally
strongly convex at an optimal solution. This implies that
with a proper initialization, the GD (resp. LM) method will
converge linearly (resp. quadratically) to an optimal solution
to the ML estimation problem. To the best of our knowledge,
these results are new and contribute to the growing literature
(see, e.g., [9], [10], [11] and the references therein) on the
effectiveness of lightweight solution methods for structured
non-convex optimization problems.

The paper is organized as follows. In Section II, we
introduce the ML formulation of the TDOA-based source
localization problem. Then, in Section III, we review several
lightweight solution methods for tackling the ML formulation.
Next, we provide a theoretical analysis of the ML formulation
in Section IV and verify our theoretical results via simulations
in Section V. Lastly, we conclude in Section VI.

II. PROBLEM FORMULATION

We are interested in the n-dimensional TDOA-based single
source localization problem, in which the goal is to estimate
the source location x? ∈ Rn based on a given set of noisy
range-difference measurements of the form

di = ‖x? − ai‖2 − ‖x? − a1‖2 + ni for i = 2, . . . ,m, (1)

where a1, . . . ,am ∈ Rn are the known locations of m
given sensors and n2, . . . , nm are the measurement noise.
Here, the first sensor is designated as the reference sensor
and we assume that the measurement noise takes the form
ni = gi−g1, where g1, . . . , gm are independent and identically
distributed Gaussian random variables with mean zero and
variance σ2 > 0. Under this setting, the covariance matrix of
the noise vector n = [n2 n3 · · · nm]

T is given by σ2Q,
where Q = 1m−11

T
m−1 + Im−1 ∈ R(m−1)×(m−1) with 1m−1

and Im−1 being the (m−1)-dimensional all-one vector and the
(m−1)×(m−1) identity matrix, respectively. The maximum-



likelihood (ML) estimator x̂ of x? can then be found via

x̂ ∈ arg min
x∈Rn

{
f(x) := (d−Uh)TQ−1(d−Uh)

}
, (2)

where

τi = ‖x− ai‖2 for i = 1, . . . ,m,

h = [τ1 τ2 · · · τm]
T
, (3)

d = [d2 d3 · · · dm]
T
,

U = [−1m−1 Im−1] .

III. LIGHTWEIGHT SOLUTION METHODS

Although the ML estimation problem (2) is non-convex, it
can be tackled by the GD method and the LM method. Let us
now briefly review these two lightweight methods.

A. Gradient Descent Method

By defining

Φ(x) =


(

x−a1

‖x−a1‖2 −
x−a2

‖x−a2‖2

)T
...(

x−a1

‖x−a1‖2 −
x−am

‖x−am‖2

)T
 , (4)

d(x) =


‖x− a2‖2 − ‖x− a1‖2
‖x− a3‖2 − ‖x− a1‖2

...
‖x− am‖2 − ‖x− a1‖2

 ,
we can express the gradient of f as

∇f(x) = Φ(x)TQ−1(d− d(x)). (5)

The GD method proceeds by using the steepest descent direc-
tion to update the source location estimate; i.e.,

xk+1 = xk − αk∇f(xk),

where αk > 0 is the step size. One can either use a constant
step size or perform a line search to obtain the step size that
can yield the largest decrease in the objective value in each
iteration. In Section V, we will discuss the choice of the step
sizes in greater detail.

B. Levenberg-Marquardt Method

In [8], the authors proposed to use the Levenberg-
Marquardt (LM) method to tackle (2). The LM update is based
on a damped Gauss-Newton (GN) procedure and is given by

xk+1 = xk +
(
Ak + λkI

)−1∇f(xk),

where
Ak = Φ(xk)TQ−1Φ(xk) (6)

and λk is a damping parameter that can be set using, e.g.,
the line-search criterion in [8]. Although the per-iteration
complexity of the LM method is higher than that of the GD
method, it requires fewer iterations than the GD method to
converge, espcially when the source is outside the convex hull
of the fixed set of sensors.

C. Initialization

Since the ML estimation problem (2) is non-convex, it is
natural to expect that the quality of the solutions produced
by the GD and LM methods will depend on the initialization.
As it turns out, by using the initialization obtained from the
equation-error formulation approach in [1], it is possible to
analyze the performance of the GD and LM methods. Let us
now briefly describe the equation-error formulation approach.

Consider the auxiliary parameter R = ‖x‖2, which is un-
known at the beginning. Suppose that a1 = 0. Let Ri = ‖ai‖2.
Then, we can rewrite (1) as

δ − 2Rd− 2Sx = ε,

where

δ =


R2

2 − d22
R2

3 − d23
...

R2
m − d2m

 , S =


aT
2

aT
3
...
aT
m

 , (7)

and ε is the residue due to the measurement noise n. Given
R, the least-squares solution x = x(R) is given by

x(R) =
1

2
S̄Q−

1
2 (δ − 2Rd), (8)

where S̄ = (STQ−1S)−1STQ−
1
2 ; see [1]. Since R2 = xTx,

equation (8) leads to a quadratic equation in R, which we can
solve to get

R =
−b+

√
b2 − 4ac

2a
, (9)

where

a = 4− 4dT S̄T S̄d, b = 4dT S̄T S̄δ, c = −δT S̄T S̄δ (10)

(we take the positive root since R ≥ 0 by definition). We
then substitute R into (8) to obtain the initial source location
estimate x0 = x(R).

IV. THEORETICAL ANALYSIS

With the preparations in the previous section, we are
now ready to study two issues related to the ML estimation
problem (2). First, observe that the ML estimate x̂, which is
an optimal solution to (2), needs not equal to the true source
location x? in general. Thus, it is natural to ask whether we
can bound the estimation error ‖x̂ − x?‖2. Second, we are
interested in the local growth behavior of the objective function
of (2) around an optimal solution. This could then shed light
on the local convergence behavior of the GD and LM methods.

A. Estimation Error of an ML Estimator

Let us begin by addressing the first question. Observe that
if we replace the noisy range-difference vector d in (8) by the
true range-difference vector d? = d− n, then we have

x? =
1

2
S̄Q−

1
2 (δ? − 2R?d?) (11)



where δ? and R? are defined by (7), (9), and (10) with d
replaced by d?. Using (11) and the definition of x0, we get

‖x? − x0‖

=

∥∥∥∥1

2
S̄Q−

1
2 (δ? − δ)−R?S̄Q−

1
2 (d? − d)

− (R? −R)S̄Q−
1
2d

∥∥∥∥
2

≤
∥∥∥∥1

2
S̄Q−

1
2 (δ? − δ)

∥∥∥∥
2

+
∥∥∥R?S̄Q−

1
2n
∥∥∥
2

+ |R? −R| ·
∥∥∥S̄Q− 1

2d
∥∥∥
2

≤
∥∥∥∥1

2
S̄Q−

1
2 (2Diag(d?)n+ Diag(n)n)

∥∥∥∥
2

+R?‖S̄‖op
∥∥∥Q− 1

2n
∥∥∥
2

+ |R? −R| ·
∥∥∥S̄Q− 1

2d
∥∥∥
2

≤
∥∥∥S̄Q− 1

2 Diag(d?)Q
1
2

∥∥∥
op

∥∥∥Q− 1
2n
∥∥∥
2

+R?‖S̄‖op
∥∥∥Q− 1

2n
∥∥∥
2

+

∥∥∥∥1

2
S̄Q−

1
2 Diag(n)n

∥∥∥∥
2

+ |R? −R| ·
∥∥∥S̄Q− 1

2d
∥∥∥ . (12)

By assumption, the noise vector n is a Gaussian random vector
with mean zero and covariance matrix σ2Q. Hence, by stan-
dard concentration arguments, we have ‖Q− 1

2n‖2 ≤ 3
√
mσ

with high probability. This allows us to bound the first two
terms in (12). The third term is bounded by O(σ2). Now, it
remains to bound the term |R? − R|. Since R? and R are
defined using (9), it suffices to give upper bounds on the terms
|a − a?|, |b − b?|, and |c − c?|, which can be obtained by
mimicking the derivation of (12). Putting the pieces together,
we obtain the following result:

Theorem 1: Let x? be the true source location and x0 be
defined in Section III-C. Suppose that ‖Q− 1

2n‖2 ≤ 3
√
mσ.

Then, there exist a constant L > 0, which is determined by
a1, . . . ,am, x?, and Q, such that

‖x0 − x?‖2 ≤ Lσ.

Using Theorem 1, we can bound the estimation error ‖x?−
x̂‖2 of any ML estimator x̂.

Corollary 1: Under the same conditions as Theorem 1, we
have

‖x̂− x?‖2 ≤ 2Lσ.

Proof: Let n̂ = d−Uĥ and d̂ = d−n̂, where ĥ is defined
by (3) with the entries ‖x−ai‖2 replaced by ‖x̂−ai‖2. Then,
we have

x̂ =
1

2
S̄Q−

1
2 (δ̂ − 2R̂d̂),

where δ̂ and R̂ are defined by (7), (9), and (10) with d replaced
by d̂. Since x̂ is an optimal solution to (2), we have

f(x̂) = ‖Q− 1
2 n̂‖22 ≤ f(x?) = ‖Q− 1

2n‖22 ≤ 9mσ2

with high probability. Thus, by using the same argument in the
proof of Theorem 1, we get ‖x̂− x0‖2 ≤ Lσ, which implies
that ‖x̂− x?‖2 ≤ 2Lσ, as desired.

B. Local Strong Convexity of the Objective Function

Although the ML estimation problem (2) is non-convex,
under suitable assumptions on the noise vector n, it can be
shown that the objective function is strongly convex around a
neighborhood of an optimal solution. To establish this curious
result, recall that the gradient of the objective function f is
given in (5). Then, the Hessian of f can be computed as

∇2f(x) = Φ(x)
T
Q−1Φ(x) +E(x), (13)

where E(x) satisfies

‖E(x)‖op ≤M‖Q−1(d− d(x))‖2

for some M > 0 whenever x lies in a bounded set and
mini∈{1,...,m} ‖x−ai‖2 > 0. In particular, the second term in
(13) is small when the noise power σ2 is small and x close
to x?. This justifies the approximation of the Hessian matrix
∇2f(x) by the matrix in (6) in the LM method. Now, observe
that

∇2f(x̂) = Φ(x̂)TQ−1Φ(x̂) +E(x̂)

with ‖E(x̂)‖op ≤ M‖Q−1n̂‖2. Moreover, a simple compu-
tation shows that

‖Φ(x̂)−Φ(x?)‖F ≤ 2m‖x? − x̂‖2,

which implies that

‖Φ(x?)TQ−1Φ(x?)−Φ(x̂)TQ−1Φ(x̂)‖op ≤ N‖x? − x̂‖2

for some constant N > 0. Therefore, we have

‖∇2f(x̂)−Φ(x?)TQ−1Φ(x?)‖op
≤ M‖Q−1n̂‖2 +N‖x? − x̂‖2.

This, together with Corollary 1, gives the following theorem:

Theorem 2: Under the same condition as Theorem 1, we
have

‖∇2f(x̂)−Φ(x?)TQ−1Φ(x?)‖op ≤ (3M
√
m+ 2NL)σ.

In particular, we have ∇2f(x̂) � 0 whenever

σ <
1

3M
√
m+ 2NL

λmin(Φ(x?)TQ−1Φ(x?)). (14)

Theorem 2 shows that when the noise power is sufficiently
small, the Hessian of f at an optimal solution x̂ to (2)
is positive definite, which implies that f is locally strongly
convex at x̂. Thus, with proper initialization, the GD method
will converge linearly and the LM method will converge
quadratically to an optimal solution to (2). This explains in part
the numerical observations in [8]. We summarize the above
discussion in the following corollary:

Corollary 2: Under the same condition as Theorem 1, sup-
pose that the noise power σ2 satisfies (14) and the GD and LM
methods are initialized by the point x0 defined in Section III-C.
Then, the sequence of iterates {xk}k≥0 generated by the GD
(resp. LM) method will converge linearly (resp. quadratically)
to an optimal solution x̂ to the ML estimation problem (2).



V. SIMULATIONS

To verify our theoretical results, we examine in this section
the performance of closed-form least-squares estimation in [1]
before and after postprocessing by the GD and LM methods.
Our goal is to demonstrate that initializing the GD and LM
methods using the approach in [1] will yield a good estimate
of the source location.

In each simulation, we perform N = 1000 Monte Carlo
runs in each iteration and compute the mean-squared error
(MSE) (1/N)

∑N
i=1 ‖x? − x̂i‖22, where x? and x̂i denote the

true source position and estimated source position in the i-th
run, respectively. Sensors are set along the sides of the square
[−40, 40]× [−40, 40] with

a1 =

[
40
0

]
, a2 =

[
0
40

]
, a3 =

[
−40

0

]
, a4 =

[
0
−40

]
,

a5 =

[
40
40

]
, a6 =

[
40
−40

]
, a7 =

[
−40
40

]
, a8 =

[
−40
−40

]
.

In our experiments, we use the constant step size αk = α =
σ2/m for the GD method. For the LM method, we use the
parameters suggested in [8]. We terminate our methods when
the norm of the gradient at the current iterate is less than 10−4.

We compare our results with those produced by the SDR
method with penalty on the true range-difference matrix [7]
and the SDR method with tighter constraints on the geometric
structure inside the convex hull of the sensors [6]. The penalty
coefficient β in the former method is set to β = 10−5. We
also compare the performance of our method with the CRLB

CRLB(x) = trace(Φ(x)
T
Q−1Φ(x))−1,

which serves as a statistical lower bound on the performance
of any TDOA algorithm [12].

Example 1. We assess the performance of the algorithms
when the source lies inside the convex hull of the fixed set
of sensors, where the source is located at x? = [30 10]

T . In
our experiments, the GD and LM methods give similar results.
Thus, we shall only present the results for the GD method in
this example. Figure 1 shows the MSE performance versus
the noise power σ2, where σ varies from 10−1.9 to 1. It is
observed that the GD method can indeed improve the closed-
form least-squares estimator. Moreover, it outperforms the two
SDR methods. The performance of the GD method is also
close to the CRLB. This demonstrates the strength of the GD
method.

Example 2. We assess the performance of the algorithms
when the source lies outside the convex hull of the fixed set
of sensors, where the source is located at x? = [120 150]

T .
Figure 2 shows the MSE performance verses the noise power
σ2, where σ varies from 10−2.9 to 10−1. In this example,
we present the results for the LM method due to its faster
convergence. As can be seen from the figure, both the closed-
form least-squares estimator and the SDR estimators have large
MSEs, but the estimator produced by the LM method has a
good MSE performance.

Our choice of σ varies from 10−2.9 to 10−1, which is much
smaller than that in the previous example. This is owing to
the fact that outside-convex-hull measurements lead to poor
conditioning of the matrix Φ(x) in (4), which means that the
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Fig. 1. Performance of the GD method: Source inside the convex hull of
sensors

term λmin(Φ(x?)TQ−1Φ(x?)) becomes much smaller. Thus,
we need a smaller σ to guarantee convergence.
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VI. CONCLUSION

In the paper, we conducted a theoretical analysis of the
ML formulation of the TDOA-based source localization prob-
lem. Under certain assumptions on the measurement noise,
we showed that the GD (resp. LM) method will converge
linearly (resp. quadratically) to an optimal solution to the
ML estimation problem when properly initialized. We then
demonstrated via simulations that the GD and LM methods can
indeed produce more accurate estimates of the source location
than some existing methods.
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