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Abstract—Anonymous communication is desirable for personal, financial, and political reasons. Despite the abundance of frameworks
and constructions, anonymity definitions are usually either not well defined or too complicated to use. In between are ad-hoc
definitions for specific protocols which sometimes only provide weakened anonymity guarantees. This paper addresses this situation
from the perspectives of syntax, security definition, and construction. We propose simple yet expressive syntax and security definition
for anonymous communication. Our syntax covers protocols with different operational characteristics. We give a hierarchy of
anonymity definitions, starting from the strongest possible to several relaxations. We also propose a modular construction from any
key-private public-key encryption scheme, and a new primitive – oblivious forwarding protocols, of which we give two constructions.
The first is a generic construction from any random walk over graphs, while the second is optimized for the probability of successful
delivery, with experimental validation for our optimization. Anonymity is guaranteed even when the adversary can observe and control
all traffic in the network and corrupt most nodes, in contrast to some efficient yet not-so-anonymous protocols. We hope this work
suggests an easier way to design and analyze efficient anonymous communication protocols in the future.
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1 Introduction

S ince the seminal work of Chaum [1], the notion of
anonymous communication (AC) has been extensively

studied in the past decades. The goal of AC is to hide the
correspondence between senders and receivers of messages,
and/or perhaps also their identities. There are plentiful rea-
sons to communicate anonymously, such as to act against
censorship and mass surveillance, to protect the privacy of
personal preferences, and to express minority opinions. Many
cryptographic primitives or systems which provide some sort
of sender anonymity (e.g., [2], [3]) often implicitly assume
the users to run them on top of an AC network. Using AC
has become increasingly popular among the general public, as
indicated by the success of the Tor network [4].

1.1 Provable Anonymity against a Global Adversary
Very often, research on AC focuses on achieving low latency,
while the anonymity guarantee is not well defined. Pfitzmann
and Hansen [5] consolidated informally a collection of ter-
minologies (e.g., unlinkability, anonymity, unobservability)
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which are commonly used in the literature. Hevia and Mic-
ciancio [6] formally gave indistinguishability-based definitions
of many of these terminologies, and showed that unobserv-
ability is the strongest notion against passive eavesdroppers,
yet all the definitions are actually equivalent under efficient
transformations. Gelernter and Herzberg [7] extended the
work of Hevia and Micciancio [6] to the setting with adap-
tive adversaries including malicious receivers. In particular,
sender anonymity against malicious receivers is considered the
strongest anonymity possible in this setting. Unfortunately,
not many of the recent works used these formal definitions:
They are too complicated, as admitted by Gelernter and
Herzberg [7], or not that well known to the practical com-
munity. It is desirable to have a more accessible security def-
inition, as simple as the indistinguishability definition (IND-
CPA/CCA) for public-key encryption, yet expressive enough
to capture the security properties desired by AC protocols.

A particular class of AC protocols aims to provide provable
anonymity (under corresponding ad-hoc definitions) with the
presence of adversaries which globally observe all traffic of the
network. Perhaps the most basic protocol within this class is
the buses [8], which a large N -by-N matrix of ciphertexts (the
bus) circulates along a fixed route covering all N nodes in
the network. The reduced-seats buses [9] and the taxis [10]
have improved efficiency upon the buses by reducing the
size of the ciphertext carrier. At its extreme, Young and
Yung [11] recently proposed the Drunk Motorcyclist (DM)
where each ciphertext carrier (the motorcycle) only carries
a single ciphertext. The ciphertext only travels to a random
neighboring node upon arriving each node, hence the name
Drunk Motorcyclist. They proved that the DM protocol is
anonymous in the standard model based on the decisional
Diffie-Hellman (DDH) assumption. Young and Yung [11] also
pointed out the definitional issues of the buses protocol, crypt-
analyzed the reduced-seats buses protocol, and proposed a
distinguishing attack against the taxis protocol. These results
highlighted the importance of using key-private public-key



2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

encryption schemes [12]. In a nutshell, this class of protocols
initiated by the buses protocol [8] works by routing packets in
a way that is independent of the intended receivers.

For simplicity, we consider a communication network as
a strongly connected (i.e., each node is reachable from any
other node) directed graph with N nodes, where packets can
only travel along the edges. For other graphs, we can always
consider the subgraphs containing the nodes connected from
each sender node1.

1.2 Our Results

In view of the existing complicated definitions of anonymity,
we make mainly theoretical but also technical contributions.
Theoretically, we present a simple algorithmic syntax which
aims to capture a wide class of anonymous communication
(AC) protocols. We also propose simple indistinguishability-
based definitions which capture the strongest possible
anonymity known in the literature, namely, unobservability
and sender anonymity against malicious receivers [7]. The
simple formulation can hopefully make analyzing AC pro-
tocols easier. We further provide several relaxations of the
anonymity notion so that the level of anonymity is still rea-
sonably strong, yet finding efficient constructions is plausible.

Formalizing an idea of Young and Yung [11], we show that
the confidentiality of messages and the routing mechanisms
can be decoupled. Specifically, we construct AC protocols
from any key-private public-key encryption scheme and a
new primitive called oblivious forwarding (OF) protocol. With
this generic approach, now we can focus on constructing OF
protocols, a conceptually simpler building block.

We first propose a generic construction of OF protocols
from any random walk algorithm over graphs. To send a
message, the sender samples a dummy receiver according to
the random walk (independent of the real receiver), and for-
wards the encrypted message to the dummy receiver using an
underlying (non-anonymous) communication protocol. Our
main technical contribution lies in our specific instantiation of
the OF protocols, which is specially designed for optimizing
the probability of successful delivery (ps). We wish to ensure
that the most “unfortunate” nodes, i.e., those located in the
most isolated areas of the network, receive packets intended
for it with at least a fair probability. Intuitively, from a sender
perspective, the most “unfortunate” nodes are those located
at the leaves of the sender’s shortest paths tree. Thus, it is
natural to assign the uniform distribution over the set of leaf
nodes. Indeed, we show that this distribution is in some sense
optimal using standard arguments in linear programming.

We evaluate the optimality of our constructions over ran-
dom strongly connected graphs. We record ps and the number
of hops h traveled for each successfully delivered packet,
which are sufficient to calculate the expected time needed
for a successful delivery and the expected network capacity
consumed2. The results show that our optimized protocol
performs much better in terms of ps in realistic networks.

1. Also see the full version for a discussion on the network environ-
ment and deploying our protocols on the Internet.

2. See § 8.4 for details.

2 Anonymous Communication (AC)

We present two simple yet expressive formulations of AC
protocols – an ad-hoc and a persistent variant3, under the
following minimalistic setup assumptions. An AC protocol is
run within a network (a strongly connected directed graph)
of an arbitrary number of nodes. The network topology is
dynamic and can change over time, i.e., both nodes and edges
may be added or removed. The network is equipped with a
(most likely non-anonymous) routing protocol, so that our
AC protocol does not need to deal with the changes to the
network topology, yet will work regardless of the changes. We
model this by letting each participating node k in the pro-
tocol possess some auxiliary information auxk (e.g., routing
tables) maintained by some external mechanisms such as the
underlying routing protocol.

2.1 Overview

To participate in the AC protocol, a node runs the key genera-
tion algorithm, without any coordination with any other node,
to set up its public and secret keys. It then publishes its public
key. We assume that the nodes maintain their auxiliary infor-
mation (e.g., routing table) and learn the public keys of each
other through external mechanisms. For example, they can
obtain public keys while learning the network topology using
the underlying routing protocol. Alternatively, they might use
private information retrieval (PIR) along with a public-key
infrastructure to retrieve public keys on-demand yet anony-
mously (similar to using PIR to retrieve a few IP-addresses
of onion-routers in the Tor network on-demand [13]). The
participating nodes form a graph G of N nodes.

How a node encapsulates messages into packets varies in
the ad-hoc and persistent variants. In the former, each sender
node in the network can encapsulate a message directly, using
(optionally) its secret key, its auxiliary information and the
public key of the receiver, into a packet ready for forwarding.
We call this variant ad-hoc since a new packet is produced
for each new message to be sent. The creator of the packet
or any intermediate node receiving the packet forwards it by
running a forwarding algorithm. It takes as input a secret
key and some auxiliary information, attempts to decrypt the
packet, and outputs an outgoing packet and the index of
the next hop. This variant captures protocols such as onion
routing/mixnets [1] and DM [11].

In the persistent variant, any node (usually those which
just joined the network) can produce an empty packet which
is circulated within the network. Typically, once created, these
packets will never expire but persistently exist. To encapsulate
a message, a sender node must wait for a packet to arrive,
then run the forwarding algorithm with the message as an
additional input. Similar to the above, the algorithm first
attempts to decrypt the packet, yet it merges the new message
into the outgoing packet which is then forwarded to the next
hop. This captures protocols such as buses [8].

In either case, hopefully, the intended receiver will be one
of the intermediate nodes to receive the packet.

3. While it is possible to unify the syntax and anonymity notions to
capture both variants, unifying correctness seems to be cumbersome.
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2.2 Correctness
Informally, we say that an AC protocol is correct if, for any
packet generated under an honest execution of the protocol,
the packet reaches the intended destination after a reasonable
delay with a reasonably high probability. Furthermore, the
forwarding algorithm always recovers the message encapsu-
lated in the packet when it reached the intended destination.

This intuitive idea is tricky to formalize. An AC protocol
could have a low probability of successful delivery (ps) but a
short expected delivery time when successful, while another
could have a high ps but a long expected delivery time. For
the first case, the sender can always retransmit using AC as
a black box4 to make up for the low ps. Another tricky part
is that a protocol might be efficient over some types of graphs
but inapplicable to some others. For instance, the buses pro-
tocol only works on graphs with a circular path connecting all
nodes. Finally, having two variants of AC protocols adds extra
complication. Our approach is to model correctness formally
by lower-bounding ps after T rounds of forwarding by ρ.

2.3 Privacy
It is a reasonable expectation that only the intended receiver
is able to extract from a packet messages that are encrypted
for it. Any third party other than the sender and the receiver
should not be able to learn any information about the message
from the packet. We formally define privacy similar to the
indistinguishability of encryptions for public-key encryption.

2.4 Anonymity
We aim to capture sender and receiver anonymity in the
most hostile environment. For receiver anonymity, we require
that a packet leaks nothing about the receiver, neither from
the encapsulated message nor the traffic pattern, even if the
correspondence between messages and senders are known.
This implies that a packet encapsulating any message is
indistinguishable from each other, so that a sender can safely
re-transmit a message or switch to a different message for
whatever reasons. As long as an AC protocol is used as
a black box, no external mechanisms (e.g., retransmission,
error-catching) can compromise the anonymity of the users.

For sender anonymity, notice that an adversary observing
all traffic must be able to tell the original sender of any
packet. Thus, we instead require that when multiple senders
send out a set of messages to multiple receivers, no one can
tell which message originates from which sender, even if the
correspondence between messages and receivers are known.

In technical terms, we consider two security games, for
sender and receiver anonymity respectively, played between
a challenger and a powerful adversary, both consisting of
three phases. In the first phase, the adversary is given the
security parameter and, in the case of the receiver anonymity
game, two honestly generated public keys and access to the
forwarding oracle.

In the second phase, the adversary produces the public
keys of the other (corrupted) nodes, and two sender-message-
receiver tuples which are distinct (i.e., at least one component
is different). Eventually, the challenger is going to create

4. Re-transmission triggered by events depending on the protocol
in a non-black-box way might compromise anonymity.

snd0 m0 rcv0

snd1 m1 rcv1

Fixed by A Picked by CRCV-
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Fig. 1: An illustration of the anonymity games

packets according to some parts of the specifications of the
adversary. Specifically, in the sender anonymity game the
message-receiver correspondence is fixed, while in the receiver
anonymity game the sender-message correspondence is fixed.
This can be thought of as a slot machine with two slots such
that the adversary can control the outcome of either one of the
slots. The challenger then picks a random bit to determine the
remaining slot of the slot machine: To decide whether the chal-
lenge packets should be created according to the specification
by the adversary, or the remaining part of the sender-message-
receiver pairs should be flipped. For example, in the receiver
anonymity game, the random bit picked by the challenger
decides whether the message-receiver correspondence should
be flipped, as depicted in Fig. 1. The challenger then returns
both challenge packets to the adversary.

Lastly, the adversary outputs a bit as a guess of whether
the other part of the specification is flipped.

2.5 Ad-Hoc AC (aAC)
We proceed with the formal definitions of ad-hoc AC proto-
cols. The persistent variant will be defined in the full version.

2.5.1 Syntax.
An ad-hoc AC protocol aAC = (Setup,KGen,Enc,Fwd) is a
tuple of PPT algorithms:
pp ← Setup(1λ): The probabilistic setup algorithm is run by
a trusted party which initiates the network environment. It
takes as input the security parameter 1λ, and outputs a public
parameter pp. We note that this is the only algorithm run by
a trusted party, and is run once only for setting up the system.
Standard practices such as distributed parameter generation
can be adopted to reduce the trust reliance.
(pk, sk)← KGen(pp): Each node joining the network runs the
probabilistic key generation algorithm individually. It takes
as input the public parameter pp, and outputs a public key pk
and a secret key sk. The participating nodes form a graph G
of N nodes.
{pk, intk}k ← Enc(sksnd,PK, {mj , rcvj}j , auxsnd): The proba-
bilistic encapsulation algorithm is run by a sender node snd
to encapsulate messages into packets. It takes as input an
(optional) secret key sksnd of node snd, the sequence of all
public keys PK, a sequence of messagesmj with their intended
receiver rcvj , and some auxiliary information auxsnd of node
snd. It outputs a sequence of outgoing packets pk with next
hops intk. The packet pk is forwarded to next hop intk.
({pk, intk}k,M) ← Fwd(skint,PK, P, auxint): The probabilistic
forwarding algorithm is run by an intermediate node int to
forward packets and to decapsulate packets destined to itself.
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It takes as input a secret key skint of node int, the sequence
of all public keys PK, a sequence of incoming packets P , and
some auxiliary information auxint of node int. It outputs a
sequence of outgoing packets pk with next hops intk, and
a sequence of decapsulated incoming messages M if any (φ
otherwise). If pk 6= ⊥, it is forwarded to next hop intk
regardless of whether any valid messages M are obtained. If
the node declines to forward the packet, it outputs (⊥,M).
Remark 1. One can fit an onion routing protocol into our

definition. Specifically, we can define an Enc algorithm
which encrypts a message to the routers along a random
path in layers, and a Fwd algorithm which decrypts the
outer-most layer and forwards the inner-layers to the next
router. Yet, the routes always terminate at the receiver. An
adversary against the anonymity can use the forwarding
oracle to figure out the real receiver. So, an onion routing
protocol would not satisfy our anonymity requirement.

Remark 2. The forwarding algorithm takes multiple public
keys (instead of just that of the receiver) and multiple
incoming packets as input. The former captures protocols
which employ onion routing which encrypts messages to a
pre-defined route of intermediate routers in layers, while
the latter captures, for example, Mixnets and its variants
which shuffle and forward packets in batches. Moreover,
the algorithm generates different outgoing packets to mul-
tiple next hops. This captures, for example, some AC
protocols based on broadcasting.

2.5.2 Correctness.
For simplicity, we only define correctness for protocols in
which the encapsulation algorithm takes as input a single
message-receiver pair (m, j) and outputs a single packet pwith
next hop k. Similarly, we restrict the forwarding algorithm to
only take as input one packet and outputs one packet. It is
straightforward (but cumbersome) to extend the definition for
general protocols.

For any graph G with any N nodes, let {auxk}Nk=1 be their
auxiliary information. aAC is said to be (T, ρ)-correct on G if,
for all security parameters λ ∈ N, all senders i, all receivers j,
all messages m, all public parameters pp ∈ Setup(1λ), all key
pairs (pkk, skk) ∈ KGen(pp),

ps := Pr[CorrTaAC(1λ, snd, rcv,m, {auxk, pkk, skk}Nk=1) = 1] ≥ ρ

where the probability is taken over the randomness of the
experiment CorrTaAC, which is defined in Fig. 2.

We can observe that if aAC is (T, ρ)-correct on G, then we
must have T ≥ l, where l is the longest of all shortest hop-
length between any sender-receiver pair, and that aAC must
be also (T ′, ρ′)-correct onG for any T ′ ≥ T and 0 < ρ′ ≤ ρ. As
baselines for comparison, the buses protocol is (N, 1)-correct
while the broadcast protocol is (l, 1)-correct.

2.5.3 Privacy and Anonymity.
aAC is said to be {private, sender-anonymous, receiver-
anonymous} if, for any security parameter λ ∈ N, any PPT
adversary A it holds that

|Pr[Exp0
aAC,A(1λ) = 1]− Pr[Exp1

aAC,A(1λ) = 1]| ≤ negl(λ)

with probability taken over the random coins of ExpbaAC,A for
Exp ∈ {Priv,Snd-Anon,Rcv-Anon} which is defined in Fig. 3, 4,
and 5, respectively.

3 Oblivious Forwarding (OF)
How a packet is routed should not depend on the message
but rather the intended receiver. It is natural to separate the
routing part of AC as an independent primitive. We formulate
this idea as (receiver-)oblivious forwarding (OF) protocols5.

3.1 Overview.
An OF protocol is similar to an AC protocol, except that
it only deals with the headers of the packets for routing.
It consists of the header encapsulation algorithm Enc which
creates a header h containing the routing information, and the
forwarding algorithm Fwd which creates headers for outgoing
packets given an incoming header. Naturally, as AC, we define
an ad-hoc variant (here) and a persistent variant (in the full
version), which differ in whether Enc or Fwd requires the
receiver information as input.

3.2 Ad-Hoc OF (aOF)
3.2.1 Syntax.
An ad-hoc OF protocol aOF = (Enc,Fwd) is a tuple of PPT
algorithms defined as follows:
{hk, intk}k ← Enc({rcvj}j , auxsnd): The probabilistic encap-
sulation algorithm is run by a sender node snd. It inputs a set
of receivers {rcvj}j and some auxiliary information auxsnd of
node snd. It outputs a set of headers hk with a next hop intk.
{hk, intk}k ← Fwd(H, auxint): The probabilistic forwarding
algorithm is run by a sender node or any intermediate node
int. It takes as input a set of incoming headers H and some
auxiliary information auxint of node int. It outputs a set of
headers hk with a next hop intk. If the node declines to forward
the header, it outputs ⊥.

3.2.2 Correctness.
The correctness requirement of OF protocols is essentially the
same as that of AC protocols, except that the former focuses
only on the routing aspect.

For any graph G with any N nodes, let {auxk}Nk=1 be their
auxiliary information. aOF is said to be (T, ρ)-correct on G if,
for all security parameters λ ∈ N, all senders snd, all receivers
rcv, it holds that

Pr[CorrTaOF(1λ, snd, rcv, {auxk}Nk=1) = 1] ≥ ρ

where the probability is taken over the random coins of the
experiment CorrTaOF, which is defined in Fig. 2.

3.2.3 Obliviousness.
OF is said to be oblivious if, for any security parameter
λ ∈ N, any sequences of receivers {rcv0,j}j and {rcv1,j}j ,
and any auxiliary information aux, such that |{rcv0,j}j | =
|{rcv1,j}j |, the distributions of the created headers from
the Enc algorithm are identical, i.e., Enc({rcv0,j}j , aux) ≈
Enc({rcv1,j}j , aux).

Although we consider perfect obliviousness in this work,
one can relax it to statistical or computational obliviousness.
We are however unaware of any possible construction, or the
potential of efficiency benefits of such constructions. Alter-
native definitions, such as a game-based one similar to the
anonymity definitions of AC protocols, are also possible.

5. Not to be confused with packet-oblivious forwarding in the
network community.
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CorrTaAC(1λ, snd, rcv,m, {auxk, pkk, skk}Nk=1)
t← 0, b← 0
(p, int)← aAC.Enc(sksnd,PK,m, rcv, auxsnd)
while t < T then
t← t+ 1
(p, int,m′)← aAC.Fwd(skint,PK, p, auxint)
if int = rcv ∧ m = m′ then b← 1

endwhile
return b

CorrTaOF(1λ, snd, rcv, {auxk}Nk=1)
t← 0, b← 0
(h, int)← aOF.Enc(rcv, auxsnd)
while t < T then
t← t+ 1
(h, int)← aOF.Fwd(h, auxint)
if int = rcv then b← 1

endwhile
return b

Fig. 2: Correctness experiments of aAC and aOF

PrivbaAC,A(1λ)
Ch← 0, pp← aAC.Setup(1λ)
(pkrcv, skrcv)← aAC.KGen(pp)
(st, sksnd, P̂K,m0,m1, aux)← AEncO,FwdO(pp, pkrcv)
Ch← 1, PK := P̂K ∪ {pkrcv}
(p, int)← aAC.Enc(sksnd,PK,mb, rcv, aux)
b′ ← AEncO,FwdO(st, (p, int))
return b′

EncO(PK, {mj , rcvj}j , aux) // secret-key schemes only

{pk, intk}k ← aAC.Enc(skrcv,PK, {mj , rcvj}j , aux)
return ({pk, intk}k)

FwdO(PK, P, aux)
({pk, intk}k,M)← aAC.Fwd(skrcv,PK, P, aux)
if Ch = 1 then M ← ⊥
return ({pk, intk}k,M)

Fig. 3: Experiments for privacy of aAC protocols

Snd-AnonbaAC,A(1λ)
(st,PK, {ski, {mi,j , rcvi,j}j , auxi}1

i=0)← A(1λ)
if |{m0,j , rcv0,j}j | 6= |{m1,j , rcv1,j}j | then return 0
{pi,k, inti,k}k ← aAC.Enc(ski⊕b,PK, {mi,j , rcvi,j}j , auxi⊕b), i ∈ {0, 1}
b′ ← A(st, {{pi,k, inti,k}k}1

i=0)
return b′

Fig. 4: Experiments for Snd-Anon security of aAC protocols

4 Remarks on Mixnets and Its Variants
For efficiency and reliability, Mixnets [1] and its variants are
great choices of AC, as they feature low latency and guarantee
successful delivery. Their anonymity is unfortunately limited.

Consider the following simple Mixnet-like protocol: When
a sender node wishes to send a message, it picks ` Mixnet
relays at random, encrypts its message to the receiver, then
further encrypts the ciphertext in layers with the public keys
of the relays. It then forwards the ciphertext to the first relay.
Each intermediate relay waits until it collects a large enough
set of ciphertexts, rerandomizes them, and forwards them to
the next relays in random order. Eventually, the last relay
forwards the innermost ciphertext to the intended receiver.

This type of protocol is neither sender nor receiver anony-
mous, even in a weak collusion model where the adversary
can corrupt only one node of the network, due to the fol-
lowing injection attack: Recall that in both the sender and
receiver anonymity games, the adversary would specify two
sender-message-receiver pairs. The challenger flips a coin to
decide whether it would interchange the senders in the sender
anonymity game, or the receivers in the receiver anonymity
game, then outputs two packets partially according to the

specification given by the adversary. Each of these packets is
forwarded to the respective first relay picked by the challenger,
which the adversary can observe. The later thus inject enough
dummy packets to the first relay to force it to forward packets
to the next relay. Since all packets forwarded by this first relay
except for the challenge packet are dummy packets created
by the adversary, it learns the second relay intended for the
challenge packet. Repeating the above, the adversary can link
the senders to the receivers of the challenge packets, hence
breaking both sender and receiver anonymity.

An idea of augmenting a Mixnet-like protocol so that
it satisfies our strong anonymity definitions is as follows:
Consider a bounded corruption model where the adversary
is only allowed to corrupt q nodes. In the augmented protocol,
each intermediate relay collects (q+2) incoming packets, with
a catch: They come from different senders. This can be done
without compromising sender anonymity by using a variant
of linkable ring signatures [2], [14]: The sender signs the t-
th layer ciphertext (counting from outer to inner), the value t
which is also used to denote the time-step, and the index of the
intermediate relay at which the packet arrives at time t. We
require that two signatures are linkable if they are issued by
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Rcv-AnonbaAC,A(1λ)
Ch← 0, pp← aAC.Setup(1λ)
(pki, ski)← aAC.KGen(pp), i ∈ {0, 1}
(st, P̂K, {{mi,j , rcvi,j}j , auxi}1

i=0)← AEncO,FwdO(pp, pk0, pk1)
if |{m0,j , rcv0,j}j | 6= |{m1,j , rcv1,j}j | then return 0
Ch← 1, PK := {pk0, pk1, P̂K}
{pi,k, inti,k}k ← aAC.Enc(ski,PK, {mi,j , rcvi⊕b,j}j , auxi), i ∈ {0, 1}
b′ ← AEncO,FwdO(st, {{pi,k, inti,k}k}1

i=0)
return b′

EncO(i,PK, {mj , rcvj}j , aux)
// secret-key schemes only

{pk, intk}k ← aAC.Enc(ski,PK, {mj , rcvj}j , aux)
return ({pk, intk}k)

FwdO(i,PK, P, aux)
({pk, intk}k,M)← aAC.Fwd(ski,PK, P, aux)
if Ch = 1 then M ← ⊥
return ({pk, intk}k,M)

Fig. 5: Experiment for Rcv-Anon security of aAC protocols

the same signer and are certifying the same time and index of
the intermediate relay. Intuitively, since the adversary is only
able to inject at most q packets from unique senders, at least
2 packets out of the (q + 2) are honestly generated and look
random in the view of the adversary. However, for the formal
security proof to go through, the two challenge packets have
to be simultaneously forwarded to the same relay at one of
the time-steps, which is unlikely. We thus leave constructing a
strongly anonymous Mixnet-like protocol as an open problem.

5 Generic Constructions of Ad-Hoc AC
We show that ad-hoc AC protocols can be generically con-
structed from key-private public-key encryption (PKE) and
ad-hoc OF protocols. For the construction of the persistent
variant, see the full version. Recall that Young and Yung [11]
pointed out the need of key-private PKE in several existing
AC protocols, our work here can be seen as formalizing and
extending their idea. We also show that the DM protocol is
a special case of our generic ad-hoc construction. Since the
obliviousness of the OF protocols is information-theoretic, by
plugging in an existing key-private PKE secure under some
intractability assumption into the generic construction, we
obtain an AC protocol secure under the same assumption.

We first focus on protocols which send messages one at
a time, i.e., the algorithms take as input a message and a
receiver (m, rcv) instead of a sequence of them. The construc-
tions can be extended to support multiple messages easily, yet
with little performance gain. In § 7, we will discuss a non-
blackbox construction of AC protocols which exploit multi-
casting to gain efficiency.

5.1 Overview
Intuitively, our ad-hoc construction works as follows. It en-
crypts the message by key-private PKE, and then precedes the
ciphertext with the header produced by the OF protocol. To
forward a packet, a node attempts to decrypt the ciphertext,
and forward the packet using the OF protocol regardless of
the decryption result.

While there are plenty of PKE with fairly efficient decryp-
tion (e.g., consisting of several exponentiations), it may still
be considered expensive for every node to attempt decryption
for every received packet. To alleviate the cost, one may
choose specific instantiations of the encryption scheme, e.g.,
Cramer-Shoup [15] or its variants, in which the decryption
algorithm first tests the “validity tag” of the ciphertext, and
only performs the final decryption if the test is passed.

5.2 Formal Description
Let PKE = (Setup,KGen,Enc,Dec) be a PKE scheme. Let
aOF = (Enc,Fwd) be an ad-hoc OF protocol as defined in § 3.
Fig. 6 presents a generic construction of ad-hoc AC protocols.

The correctness of this generic construction follows di-
rectly from the correctness of the underlying building blocks.
The privacy follows immediately from the message-privacy
of PKE. The key-privacy of PKE and obliviousness of aOF
provides anonymity.
Theorem 5.1. Assume that PKE is correct and aOF is (T, ρ)-

correct (§ 3.2.2). Then aAC constructed in Fig. 6 is (T, ρ)-
correct (§ 2.5.2).

Theorem 5.2. If PKE is IND-CCA1-secure then aAC in Fig. 6
is private (§ 2.5.3).

We omit the proofs of the above trivial theorems.
Theorem 5.3. Assume that aOF is oblivious (§ 3.2.3). Then

aAC in Fig. 6 is sender-anonymous (§ 2.5.3).

Intuitively, the only information about the sender from
the output of the encapsulation algorithm is the header and
the next hop, which are produced by the OF protocol. Sender
anonymity then follows from the fact that the sender-receiver
correspondence is hidden by obliviousness.

Formally, we argue that for any PPT adversary A, we
have |Pr[Snd-Anon0

aAC,A(1λ) = 1] − Pr[Snd-Anon1
aAC,A(1λ) =

1]| = 0. In the experiment Snd-AnonbaAC,A, A outputs a set of
public keys PK, two secret keys ski, two message-receiver pairs
(mi, rcvi), and two auxiliary information auxi, for i = 0, 1.
The challenger computes (hi, inti)← aOF.Enc(rcvi, auxsndi⊕b

).
It then computes ci ← PKE.Enc(pkrcvi

,mi) and returns
pi := (hi, ci) to A. Let χi,j be the distribution of
aOF.Enc(rcvj , auxi). By the obliviousness of aOF, χ0,0 has the
same distribution as χ1,0, while χ0,1 has the same distribution
as χ1,1. Combining both, we have that (χ0,0, χ1,1) (for case
b = 0) has the same distribution as (χ0,1, χ1,0) (for case
b = 1). The bit b is thus information-theoretically hidden from
the view of A. Therefore, we conclude that A cannot perform
better than randomly guessing.
Theorem 5.4. If PKE is IK-CCA1-secure and aOF is oblivious

(§ 3.2.3), then aAC constructed in Fig. 6 is receiver-
anonymous (§ 2.5.3).

Intuitively, while sender anonymity follows from oblivi-
ousness, receiver anonymity additionally requires key privacy



ANOTHER LOOK AT ANONYMOUS COMMUNICATION 7

aAC.Setup(1λ)
return pp← PKE.Setup(1λ)

aAC.KGen(pp)
return (pk, sk)← PKE.KGen(pp)

aAC.Enc(sksnd,PK,m, rcv, auxsnd)
parse PK as (. . . , pkrcv, . . .)
(h, int)← aOF.Enc(rcv, auxsnd)
c← PKE.Enc(pkrcv,m)
p := (h, c)
return (p, int)

aAC.Fwd(skint,PK, p, auxint)
parse p as (h, c)
(h′, int′)← aOF.Fwd(h, auxint)
m← PKE.Dec(skint, c)
if (h′, int′) = (⊥,⊥) then c← ⊥
return ((h′, c), int′,m)

Fig. 6: A generic construction of ad-hoc anonymous communication protocols, aAC

B(pp, pk0, pk1)
Ch← 0, (st, P̂K, {ski,mi, rcvi, auxi}1

i=0)← AFwdO(pp, pk0, pk1)
Ch← 1, bB ← {0, 1}
cbB ← PKE.ChO(mbB) // i.e., cbB ← PKE.Enc(pkbC

,mbB )

c1⊕bB ← PKE.Enc(pk1⊕bB⊕b,m1⊕bB)
(hi, inti)← aOF.Enc(rcvi⊕b′ , auxi), i ∈ {0, 1}
pi := (hi, ci), i ∈ {0, 1}
b′ ← AFwdO(st, {(pi, inti)}1

i=0)
return b′

FwdO(i,PK, P, aux)
parse p as (h, c)
if Ch = 1 then
m← ⊥

else
m← PKE.DecO(i, c)

endif
(h′, int′)← aOF.Fwd(h, aux)
return ((h′, c), int′,m)

Fig. 7: Reduction B in the proof of Theorem 5.4

since the information of the receiver might be present in both
the header and the ciphertext.

Formally, suppose A is a PPT adversary against the
receiver-anonymity of aAC. We wish to construct a PPT ad-
versary B who interacts in the experiment IK-CCA1bC with the
key-privacy challenger C of PKE. B simulates the Rcv-Anonb
experiments for A as shown in Fig. 7.
B receives pp, pk0, and pk1 from the key-privacy chal-

lenger, and is given access to the PKE decryption and
challenge oracles DecO and ChObC respectively. It forwards
(pp, pk0, pk1) to A, and simulates the forwarding oracle FwdO
for A. The encapsulation oracle is omitted since the encapsu-
lation algorithm is public. To answer the queries (i,PK, p, aux)
to FwdO, B parses p = (h, c), redirects (i, c) to the PKE
decryption oracle DecO oracle to obtain m. B also runs
(h′, int′)← aOF.Fwd(h, aux) and returns ((h′, c), int′,m) to A.
Eventually, A outputs P̂K and {mi, rcvi, auxi}1

i=0.
Since bC is unknown to B, the latter samples a random

bit bB as a guess of bC ⊕ b. In other words, bB is a guess
of which key-privacy game it is playing. B then queries the
PKE challenge oracle ChObC on mbB . In return, it receives
from the challenge oracle a ciphertext cbB encrypting mbB to
pkbC . B simulates the remaining of the packets as follows.
First, it simulates the remaining ciphertext by c1⊕bB ←
PKE.Enc(pk1⊕bB⊕b,m1⊕bB). Next, it simulates the headers by
(hi, inti) ← aOF.Enc(rcvi⊕b, auxi) for i ∈ {0, 1}. Finally, B
sends {(pi := (hi, ci), inti)}1

i=0 to A.
B answers the queries to FwdO as before except that it no

longer redirects the ciphertext to the PKE decryption oracle
DecO, but instead set m := ⊥. The game terminates as the
adversary A outputs a guess b′.

Suppose bB 6= bC ⊕ b′, then the simulation is considered
failed, and we do not further analyze. Fortunately, since bB is
uniformly random, we have bB = bC ⊕ b with probability 1

2 .
In this case, B has simulated the Rcv-Anonb experiment faith-

fully. (mi is encrypted under pki⊕b for i ∈ {0, 1}.)
We analyze the differences between the cases b ∈ {0, 1}.

Let χi,j be the distribution of aOF.Enc(rcvj , auxi). The first
difference is that, (h0, h1) is drawn from (χ0,0, χ1,1) when b =
0, and from (χ1,0, χ0,1) when b = 1. By the obliviousness of
aOF, (χ0,0, χ1,1) is identical to (χ1,0, χ0,1). The two methods
of generating hb are thus identical in the view of A.

The second difference is that, for i ∈ {0, 1}, ci is a
ciphertext encrypting mi to receiver i when b = 0, and
to receiver 1 ⊕ i when b = 1. Suppose A can distinguish
between the two methods of generating ci with a non-
negligible advantage ε, that is ε := |Pr[Rcv-Anon0

aAC,A(1λ) =
1] − Pr[Rcv-Anon1

aAC,A(1λ) = 1]| > negl(λ), then we have
|Pr[IK-CCA10

PKE,B(1λ) = 1] − Pr[IK-CCA11
PKE,B(1λ) = 1]| ≥

ε
2 > negl(λ), breaking the IK-CCA1-security of PKE.
Remark 3. The generic construction can be instantiated,

for example, with the (unconditionally) oblivious ad-hoc
OF protocols to be constructed in Section 6, and the
Cramer-Shoup [15] public-key encryption scheme. Since
the latter can be proven IND-CCA1- and IK-CCA1-secure,
the instantiated AC protocol can also be proven private,
sender- and receiver-anonymous, both under the random
self-reducible DDH assumption in the standard model.

5.3 Recasting The DM Protocol
Recall that in the DM protocol [11], a node encrypts its
message to the intended receiver using a key-private PKE
scheme, and forwards the ciphertext to a random neighboring
node. Upon receiving a packet, a node copies the packet to a
decryption queue and forwards the packet again to a random
neighboring node. For each packet, this process is repeated
until its time-to-live (TTL) value vanishes. Straightforwardly,
the DM protocol can be seen as an ad-hoc AC protocol
constructed from the above generic approach using an ad-hoc
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OF protocol DM-aOF = (Enc,Fwd) defined in Fig. 8a. The ex-
ecutions of the DM-aOF.Fwd represent a simple random walk
over a graph, at which a packet travels to each neighboring
node with equal probability.

Two important parameters for random walk algorithms
are hitting time and cover time. Hitting time is the maximum
of the expected time for traveling from any starting node to
any destination). Cover time is the maximum of the expected
time for traveling from any starting node to all other nodes
at least once. It is well known that the hitting time and cover
time of the simple random walk on general graphs, without
using any topological information, are both O(N3) [16].

In the context of AC, there seems to be no reason to avoid
using any topological information of the graph, as long as
its routing strategy remains oblivious. Contrarily, the sender
node should exploit this information as much as possible to
improve the expected hitting time and hence the probability
of successful delivery given a fixed TTL.

Intuitively, using a simple random walk algorithm and a
fixed TTL value, it is less likely for a node in a more isolated
area of a network to receive packets. This motivates us to
design new routing strategies that make use of the topological
information to improve efficiency.

6 Generic Construction of Ad-Hoc OF
In this section, we aim to construct OF protocols which ex-
ploit the topological information to improve efficiency. Despite
the slight difference in the ad-hoc and persistent variants, we
state a unified generic construction for both variants defined
upon any transition probability matrix and routing tables of
the network. When the context is clear, we use OF to denote
both aOF and pOF. From this generic construction, we can
plug in the transition probability matrices of any random walk
algorithms over graphs to obtain a class of OF protocols. For
demonstration, we use the simple random walk algorithm and
the β-random walk algorithm by Ikeda et al. [17] as examples.

We then introduce a convenient representation of the
routing paths from a node as a “connectivity matrix” which
is computed using partial topological information. Base on
the representation, our construction maximizes the minimum
probability of successful delivery (ps) over all potential re-
ceivers for each fixed TTL value in one round, i.e., during the
transmission from one dummy receiver to another.

6.1 The Idea
Consider a network represented by a strongly connected di-
rected graph. Typically, routing in such a network is per-
formed in a distributed manner: Each node k maintains its
routing table T k mapping each destination to a next hop.
Our strategy works as follows. Regardless of the intended
destination, the sender node i chooses a dummy destination j′
according to some distribution independent of the intended
destination. The sender node and all intermediate nodes then
just route the packet as a normal (non-anonymous) packet
to the dummy destination j′. When the packet reaches the
dummy destination j′, node j′ chooses another dummy desti-
nation as long as the TTL value is still positive.

Formally, let P = (pkj)Nk,j=1 where pkj ≥ 0,
∑

j pkj = 1,
k, j ∈ [N ] be any transition probability matrix, and T =
{T k}Nk=1. Fig. 8b defines the OF protocols (P, T )-(aOF/pOF)

(sharing the same code), which is clearly oblivious as the
outputs of Enc and Fwd are independent of the receiver rcv.

6.2 Instantiating with Random Walks
For a node k, deg(k) and N (k) are the out-degree and set of
neighboring nodes of k respectively. It is obvious that the DM
protocol is a special case of the above generic construction, as
stated in Lemma 1.
Lemma 1. Let Psim = (pkj)Nk,j=1 and Tsim = {T k}Nk=1 be

defined as pkj = deg−1(k) if j ∈ N (k), and pkj = 0
otherwise, and T k[j] = j ∀j respectively. Then DM-aOF =
(Psim, Tsim)-aOF.
Similarly, we can define a persistent variant of DM as

DM-pOF := (Psim, Tsim)-pOF. Alternatively, the transition
probabilities may depend on the local topological information,
e.g., the degrees of the neighboring nodes. We consider the β-
random walk algorithm designed by Ikeda et al. [17].
Definition 6.1. The transition probability matrix Pβ =

(pkj)Nk,j=1 of the β-random walk algorithm is defined as
pkj = deg−β(j)(

∑
u∈N (k) deg−β(u))−1 if j ∈ N (k), and

pkj = 0 otherwise.
The β-random walk has hitting time and cover time equal

to O(N2) and O(N2 logN) respectively on general graphs
when β = 1

2 [17]. Thus, β-OF := (Pβ , Tsim)-OF should be
asymptotically more efficient than DM-OF.

For transition probability matrix P = (pkj)Nk,j=1, the
(k, j)-th entry of P ` gives the probability of reaching j from
k in exactly ` steps. Thus, the (k, j)-th entry of

∑T
`=1 P

`

gives the probability of reaching j from k in no more than
T steps. Therefore, we formulate the correctness of (P, T )-OF
as follows.
Theorem 6.2. Let T > 0 be a positive integer. Let

ρ := mink,j
∑T

`=1 P
` where P = (pkj)Nk,j=1 is a transition

probability matrix. Let T = {T k}Nk=1 where T k[j] = j ∀j.
Then (P, T )-OF is (T, ρ)-correct.

6.3 Optimizing ps

6.3.1 Representation of the Routing Paths
To facilitate our discussion, we consider a typical network in
which nodes route packets according to routing tables Topt
built using some distributed shortest path algorithm. Suppose
the node k has a partial view of how packets will be routed
to different destinations. More specifically, it has knowledge
of some of the intermediate nodes along the path to each
destination. These paths form a tree rooted at node k connect-
ing all other nodes. Using this tree, we construct an N -by-N
connectivity matrix Ak as follows: If node i is on the path from
k to j, set Ak(i, j) = 1; Otherwise, set Ak(i, j) = 0.

The connectivity matrix Ak features an interesting struc-
ture. First, since node j must be on the path from k to j,
Ak(j, j) = 1 for all j. Second, if node i is a leaf node of the
tree, there is only one path from node k to node i. Thus, row i
of Ak has only a single ‘1’ which is Ak(i, i). In other words, the
1-norm of row i is 1. Lastly, if node j is a neighbor of node k,
there are no intermediate nodes along the path from node k
to node j. Thus, column j of Ak has only a single ‘1’ which is
Ak(j, j). In other words, the 1-norm of column j is 1.

For conciseness, we will drop the superscript k from Ak

and simply write A when the context is clear.
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aOF.Enc(rcv, auxsnd)
parse auxsnd as N (snd)
int← N (snd)
return (L, int)

aOF.Fwd(h, auxint)
parse h as `, auxint as N (int)
if ` = 0 then return (⊥,⊥)
int′ ← N (int)
return (`− 1, int′)

(a) DM-aOF: A construction from
DM [11], where N (k) denotes the set
of neighboring nodes of node k

aOF.Enc(rcv, auxsnd) / pOF.Enc(auxsnd)
parse auxsnd as (snd, (psnd,j)Nj=1, T

snd)
rcv′ ← χsnd, int := T snd[rcv′]
return (h := (rcv′, L), int)

aOF.Fwd(h, auxint) / pOF.Fwd(h, rcv, auxint)
parse h as (rcv′, `), auxint as (int, (pint,j)Nj=1, T

int)
if ` = 0 then return (⊥,⊥)
if rcv′ = int then rcv′ ← χint

return ((rcv′, `− 1), int′ := T int[rcv′])

(b) (P, T )-OF: Our generic constructions (sharing the same code) for transition
probability matrix P = (pkj)Nk,j=1, routing tables T = {T k}Nk=1, and distribution
χk over [N ] defined by (pkj)Nj=1

Fig. 8: Constructions of OF protocols (L denotes a constant TTL value, which is typically∞ for (P, T )-pOF)

6.3.2 The Construction
We design a routing strategy which is independent of the in-
tended receiver, and maximizes the probability that the most
unfortunate node receiving its packets in one round. A node is
considered the most unfortunate if, given a routing strategy,
the node receives the packet with the lowest probability.

Formally, consider a sender with transition probability x =
(xi)Ni=1. Let A be the connectivity matrix of the node defined
in § 6.3.1. Then the i-th entry of Ax indicates the probability
that node i belongs to the path from the sender to the dummy
destination. Our task is to maximize the minimum of these
probabilities, or

max (min
i

(Ax)i) s.t. x ≥ 0 ∧ ‖x‖1 = 1

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N ].
Intuitively, the optimal solution can be computed as

follows. Consider the tree represented by A. Let x̂ be the
uniform distribution over the set of all leaf nodes. This can
be computed by assigning equal weights to the i-th entry of
x̂ where the i-th row of A contains only a single 1, which
is A(i, i) (i.e., node i is a leaf node). This ensures that the
most unfortunate nodes (i.e., the leaf nodes) receive their
packets with a fair chance. We claim that x̂ is an optimal
solution to the problem. Formally, the proposed solution x̂
is given by x̂i = 1

|I| if i ∈ I, and x̂i = 0 otherwise, where
I = {i : ‖Ai‖1 = 1} and Ai is the i-th row of A.
Remark 4. Interestingly, simple random walk corresponds

to assigning equal weights to x̂j where the j-th column
(instead of row) of A contains only one 1, which is A(j, j)
(i.e., node j is a neighboring node).

6.3.3 Proof of Optimality
The optimality of x̂ is proven via standard arguments in linear
optimization. Instead of proving the optimality of x̂ directly,
which is rather difficult, we construct a dual certificate for
the primal solution x̂. Then, by the LP Strong Duality Theo-
rem [18, Theorem 4.4], x̂ is an optimal solution to (1).
Lemma 2. The optimal solution to

max (min
i

(Ax)i) s.t. x ≥ 0 ∧ ‖x‖1 = 1 (1)

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N ], is given by x̂i = 1
|I|

if i ∈ I, and x̂i = 0 otherwise, where I = {i : ‖Ai‖1 = 1}
and Ai is the i-th row of A.
To prove Lemma 2, let e = (1, 1, . . . , 1)T ∈ RN and

consider the equivalent model of (1) given by

min−p s.t. (Ax ≥ pe) ∧ (eTx = 1) ∧ (x ≥ 0) ∧ (p ≥ 0). (2)

The dual of the primal problem (2) is

max d s.t. (AT y ≤ −de) ∧ (eT y ≥ 1) ∧ (y ≥ 0) (3)

Since eTx = 1 ≥ 1 and x ≥ 0, let y = x̂, we have

AT x̂ =
N∑
i=1

ATi x̂i =
∑
xi 6=0

ATi
|I|

=
∑
xi 6=0

ei
|I|
≤ e

|I|

where ei is the i-th standard basis vector in RN .
From above, we can take d = − 1

|I| . It is trivial that Ax ≥
1
|I|e and the objective value of (2) is −p = − 1

|I| . Thus, we have
found a feasible solution, y = x̂, for the dual problem (3) such
that the duality gap is zero, i.e., d = −p = − 1

|I| . By the LP
Strong Duality Theorem [18, Theorem 4.4], x̂ is an optimal
solution to (2) and to (1).

6.3.4 The Optimized Scheme
Finally, we obtain our optimized schemes Opt-OF =
(Popt, Topt)-OF, where Popt = (pkj)Nk,j=1, pkj = x̂kj ∀k, j.

It is not easy to formulate the correctness of this con-
struction, at least not in a clean equation form as in the
generic construction. The difficulties arise from that the
dummy receiver which was chosen according to the transition
probability matrix is not a neighbor of the sender. The packet
may be forwarded multiple times by intermediate nodes until
it reaches the dummy receiver. These intermediate nodes are
not captured in the transition probability matrix. Moreover,
the hop length to each dummy receiver may be different.
Thus, a packet might reach several dummy receivers in an
instance, while still not reaching the first dummy receiver in
another. We would therefore only give a loose bound about
the correctness of this construction.
Theorem 6.3. Let l be the hop length of the longest shortest

path in the graph G. Let I be the set of leaf nodes in the
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shortest path tree containing the longest shortest path.
Then Opt-OF is (l, 1

|I| )-correct.

7 Non-Black-Box Multi-Casting aAC
In § 5, we have constructed aAC generically from key-private
PKE and aOF, which send messages one at a time. Plugging
in the generic construction of aOF in § 6, we obtain an
aAC protocol which works as follows: The sender encrypts
its message using the PKE, assign a fixed TTL value to the
header, then forward the packet to a neighbor according to
the underlying random walk algorithm. Naively, this can be
extended so that multiple messages are encrypted and then
forwarded to multiple neighbors. No efficiency is gained by
using this approach, as it is equivalent to calling the encapsu-
lation algorithm multiple times independently.

Consider the following extension of our optimized
Opt-aOF. Instead of taking one receiver as input, suppose
there are multiple receivers {rcvj}Jj=1 to which the sender
wishes to encapsulate headers. Naturally, the sender picks
J paths to J leaf nodes independently (with or without
replacement). To maximize the number of receivers who can
successfully receive their messages, the sender rearranges the
ordering of the paths, so as to maximize the number of
receivers who are located in the assigned paths. In this way,
those receivers are guaranteed to receive their messages in the
first round, while the others may still have a chance when the
second-round dummy receivers are chosen.

Unfortunately, the above extension cannot be used as a
black-box to construct the multi-casting aAC since it is not
oblivious! This is because the ordering of the output paths
depends on the input receivers. A workaround is to construct
the multi-casting aAC directly: The encapsulation algorithm
encrypts the J messages to their respective receivers using
key-private PKE, and assigns them to the J paths as described
above. Then, the important step is to forward the packets to
their next hops in a random order. This cancels the undesir-
able effect of the input-dependent ordering of the paths, yet
still maintain the assignments of receivers to paths.

8 Experiments
We are interested in measuring the probability ps of deliv-
ering a packet to the intended receiver successfully, and the
expected number of hops h traveled by a successfully delivered
packet before reaching the receiver. We conduct experiments
to investigate ps and h of {DM, β,Opt}-OF, over randomly
generated strongly connected directed graphs, with different
TTL L. Our experiment covers both aOF and pOF since their
constructions (which are shown in Figure 8b) are quite similar.
We thus simply use OF to denote both variants. While it is
out of the scope of this paper, in § 8.4, we show how one can
calculate the expected time needed for a successful delivery,
and the expected network capacity consumed, using the values
L, ps, and h. In other words, measuring only ps and h is
sufficiently meaningful.

In our generic construction, packets are routed in the
same way as ordinary (non-anonymous) packets according to
the routing tables. We therefore do not perform any traffic
analysis, for firstly it is out of scope, and secondly the traf-
fic pattern is identical to that generated by the underlying
routing protocol according to the routing tables.
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Fig. 9: ps against TTL
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8.1 Graphs Generation
We repeated our experiments for three types of strongly
connected directed graphs with N = 2048 nodes.

The first type is a simple (straight) line graph where only
node i and (i + 1) are linked to each other. This serves as an
extreme case to show the ineffectiveness of the constructions
from some random walk algorithms, in particular, the simple
and β-random walks.

The second type is a class of randomly generated graphs
according to the Barabási-Albert (BA) scale-free model [19].
This model aims to capture the characteristics of real-world
networks, which are often large and sparse. We use the follow-
ing parameters to generate BA graphs: The initial number of
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nodes n0 is set to 16, and the number of new edges q added
in each round is 1. Rejection sampling is performed to ensure
the chosen BA graphs are strongly connected.

The third type is a class of dense randomly generated
graphs, which we call dense graphs, generated as follows.
Given the number of nodes N and number of edges M , we
first initiate a graph with the N nodes and no edges. For each
node k, we maintain a set of connected nodes and a set of un-
connected nodes. Initially, only node k is connected to node k
itself. Then, we perform the following procedures without loss
of generality from node 1 to node N : For node k, while there
are still unconnected nodes, we pick a random node i in the
connected set and a random node j in the unconnected set,
and add an edge from i to j. This connects all the nodes
(including node k) that are connected to node i to node j,
and connects node k to all nodes that node j is connected
to. We update the connected and unconnected sets of all the
nodes correspondingly. Finally, edges are added uniformly at
random until the total number of edges reaches M .

We adopt the setting of Young and Yung [11] who set the
number of edges M to 32768. This type of graphs is much
denser than the graphs representing real world networks.

8.2 Procedures
We conducted our experiments on 1 straight line graph, 20
randomly generated BA graphs, and 20 randomly generated
dense graphs, where each test is repeated for 5 different TTL
values (N/4, N/2, N, 2N, 4N). The TTL values are set to
contrast with the buses protocol and the broadcast protocol.
The former circulates 1 packet and deliver the message with
probability 1 in N steps. The latter sends (N −1) packets and
delivers with probability 1 in l steps, where l is the longest
shortest hop length between any sender-receiver pair.

For each graph, 1000 sender-receiver pairs are chosen at
random. The sender in each of the pairs runs DM-OF, β-OF,
and Opt-OF each for 10 times independently, attempting to
deliver a packet to the intended receiver in each instance. The
average of ps and h are calculated for each combination of the
graph, protocol, and TTL.

Recall that Opt-OF requires each node to have partial
knowledge about the routing path to each of the other nodes.
For simplicity, we assume each node knows the shortest paths
to all the other nodes, which are computed using the Floyd-
Warshall algorithm.

8.3 Results
Fig. 9 and 10 respectively show the estimates of ps and h for
different TTL values in each setting. As expected, our Opt-OF
design largely outperforms the other two protocols in terms of
ps in both the straight line graph and BA graphs for all TTL
values, which reflects the optimality of our construction. In
the dense graph, the differences in ps among the protocols are
almost negligible for all TTL values, as the three schemes are
almost equivalent in this setting. Our design also has slight
disadvantage in terms of the number of hops traveled by the
successful packets in most of the cases. This is probably due
to the fact that a packet must first travel to a leaf node of a
shortest path tree, before the next leaf node is chosen. It is
also interesting to see that β-OF has higher hop count than

DM-OF in BA graphs, which may be because the former tends
to forward packets to less connected neighbors.

It is surprising to see that β-OF performs worse than
DM-OF in BA graphs in terms of success probability. A
possible explanation is that the hitting time for simple random
walks and β-random walks areO(N3) andO(N2) respectively,
while the TTL values in our experiments are set to O(N). The
packets may not live long enough to tell the tale.

Finally, we remark that in the experiment by Young and
Yung [11] for their DM protocol, packets are created by all N
nodes constantly until the first packet reaches its intended
receiver. Therefore, although the average number of hops
traveled until successful delivery of their protocol in our dense
graphs was measured to be 146 [11], the number did not reflect
the average performance of the protocol as the experiment
favored those sender-receiver pairs which are close to each
other. The performance for the nodes located in the more
isolated areas might have been neglected.

8.4 Interpretation
For a more reliable communication, suppose that our pro-
posed AC protocol is used with the following simple retrans-
mission strategy. First, the sender includes its identity into the
message, so that the receiver knows to whom it should send
an acknowledgment (ACK). Next, to raise the probability of
successful delivery, the sender sends out packets encapsulating
the same message repeatedly at a frequency of f packets
per time-step. That is, the sender retransmits every f−1

time-steps. For simplicity, we assume that a packet can be
forwarded to the next hop in 1 time-step, and all computations
can be performed instantly in 0 time-step. Once the message
reaches the receiver, the latter sends out acknowledge by
encapsulating it in packets of the AC protocol. Same as the
sender, the receiver repeatedly sends out packets encapsulat-
ing the acknowledgment at a frequency f . The sender stops
sending packets encapsulating its message once it receives the
acknowledgment from the receiver.

We analyze the efficiency of the above transmission strat-
egy, when the TTL of the packets is set to L. First, we examine
the expected delay d = d(f, L) of delivery of a message, i.e.,
the expected number of time-steps it takes for a message to
reach the intended receiver. Since the message takes expected
time d to reach the receiver, and the acknowledgment takes
another expected time d to reach the sender, the expected
time that the sender confirms the successful delivery of the
message is 2d. We now work out the formula for d. Let
ps = ps(L) be the probability of successful delivery of a
packet, and h = h(L) be the expected number of hops traveled
by a packet before it is successfully delivered. Note that the
delay if the i-th packet is the first to reach the intended
receiver is i+1

f + h. Thus, denoting p̄s = 1− ps, we have

d = psh+ p̄s(ps(
1
f

+ h) + p̄s(ps(
2
f

+ h) + p̄s(. . .)))

= ps
f

∞∑
i=0

p̄s
ii+ psh

∞∑
i=0

p̄s
i = ps

f

(
1− ps
p2
s

)
+ psh

(
1
ps

)
= (1− ps)/(fps) + h.

Next, we wish to understand, for a single sender-message-
receiver tuple, the expected consumed capacity c = c(f, L),
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measured in the maximum expected number of message pack-
ets and acknowledgment packets co-existing in the network
over the duration of the communication. There are two cases
for the expected number of message packets. When L ≤ 2d,
the expected number of message packets increases at a rate
of f during time t ∈ [0, L], stays at a maximum of fL during
time t ∈ [L, 2d], and decreases at a rate of f during time
t ∈ [2d, 2d + L] until it reaches zero. In the second case
where L > 2d, the expected number increases at a rate of f
during time t ∈ [0, 2d], where at t = 2d the number reaches a
maximum of 2fd, and immediately decreases at a rate of f at
time t ∈ [2d, 4d] until it reaches zero. At time t = d, the mes-
sage is expected to reach the receiver, who starts sending out
acknowledgment packets. Thus, during time t ∈ [d, d+L], the
expected number of acknowledgment packets thus increases
at a rate of f , until t = d + L, where the expected number is
capped at fL. To summarize, the expected consumed capacity
c is given by c = f(L+ min(L, 2d)).

Table 1 shows the efficiency of our schemes in selective
settings calculated from the measurements reported in § 8.
Specifically, we are interested in the efficiency of the most
competitive schemes (Opt-OF and DM-OF) in BA graphs
which best reflect real network topologies. We choose to report
results for L = 512 and L = 2048. The former is chosen since
the hop count h increases roughly linearly with L, and the
expected delay d largely depends on h. The latter is chosen
since the distance between any two out of 2048 nodes must
be less than 2048. For a meaningful comparison, we tune
the frequency f such that the expected consumed capacity
per sender-receiver pair per message is either around 100
or around 300. The column Retry shows fd, the expected
number of retransmission required for at least one successful
delivery. The column 1/f shows the time interval that the
sender waits until the next retransmission. To summarize,
when TTL is small, e.g., L = 512, Opt-OF generally out-
performs DM-OF. When TTL is large, e.g., L = 2048, their
efficiencies are comparable.

L Scheme Retry 1
f

ps h d c

512 DM 42 10 0.06 256 424 102
512 Opt 37 10 0.08 249 370 102
512 DM 102 3 0.06 256 306 341
512 Opt 95 3 0.08 249 285 341
2048 DM 27 41 0.14 851 1105 100
2048 Opt 27 41 0.22 963 1108 100
2048 DM 72 13 0.14 851 932 301
2048 Opt 72 14 0.22 963 1013 291

TABLE 1: Efficiency of Retransmission Strategy
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