
Another Look at Anonymous Communication
Security and Modular Constructions

Russell W.F. Lai, Henry K.F. Cheung, Sherman S.M. Chow?, and Anthony Man-Cho So

The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong

Abstract. Anonymous communication is desirable for personal, financial, and political reasons. De-
spite the abundance of frameworks and constructions, the anonymity definitions are usually either not
well-defined or too complicated to use. In between two extremes are ad-hoc definitions, but they only
work for specific protocols and sometimes only provide weakened anonymity guarantees. It is fair to
say that constructing and analyzing anonymous communication protocols is not an easy task.
This paper addresses this situation from the perspectives of syntax, security definition, and construc-
tion. We propose simple yet expressive syntax and security definition for anonymous communication.
Our syntax covers protocols with different operational characteristics. We give a hierarchy of anonymity
definitions, starting from the strongest possible one, to several relaxations. We also propose a modu-
lar construction of anonymous communication protocol, specifically, from any key-private public-key
encryption scheme, and a new primitive we formulate which is called oblivious forwarding protocols.
We then give two constructions of oblivious forwarding protocols. Our first design is a generic construc-
tion from any random walk algorithm over graphs, while the second design is optimized for probability of
successful delivery, with experimental validation for our optimization. Our protocols provide anonymity
even when the adversary can observe and control all traffic in the network and corrupt all but two nodes,
in contrast to some efficient yet not-so-anonymous communication protocols. We hope this work can
serve as an easier way to design and analyze efficient anonymous communication protocols in the future.

1 Introduction

Since the seminal work of Chaum [11], the notion of anonymous communication has been extensively
studied in the past decades. The goal of anonymous communication is to hide the correspondence
between senders and receivers of messages. In a stricter sense, the identities of the senders and/or
receivers may also need to be hidden. There are plentiful reasons for having anonymous communi-
cation, such as to act against censorship and mass surveillance, to protect the privacy of personal
preferences, and to express minority opinions. The use of anonymous communication has become
increasingly popular among the general public, as indicated by the success of the Tor network [17].

1.1 Anonymity against a Global Adversary

Very often, research on anonymous communication protocols focuses on achieving low latency, while
the anonymity guarantee is not well defined. Pfitzmann and Hansen [27] consolidated informally
a collection of terminologies (e.g., unlinkability, anonymity, unobservability) which are commonly
used in the literature. Hevia and Micciancio [20] formally gave indistinguishability-based definitions
of many of these terminologies, and showed that unobservability is the strongest notion against
passive eavesdroppers, yet all the definitions are actually equivalent under efficient transformations.
Gelernter and Herzberg [19] extended the work of Hevia and Micciancio [20] to the setting with
adaptive adversaries including malicious receivers. In particular, sender anonymity against malicious
? Corresponding author



receivers is considered the strongest anonymity possible in this setting. Unfortunately, not many
of the recent works used these formal definitions. These definitions can be too complicated, as
admitted by Gelernter and Herzberg [19], or not that well-known to the practical community.
It is desirable to have a more accessible security definition, as simple as the indistinguishability
definition (IND-CPA/CCA) for public-key encryption, yet expressive enough to capture the security
properties desired by anonymous communication protocols.

A particular class of anonymous communication systems aims to provide provable anonymity
(under corresponding ad-hoc definitions) with the presence of adversaries which globally observe
all traffic of the network. Perhaps the most basic protocol within this class is the buses protocol [7],
which circulates a large array of ciphertexts (the bus) along a fixed route covering all nodes in the
network. The reduced-seats buses protocol [21] and the taxis protocol [22] have improved efficiency
upon the buses protocol by reducing the size of the ciphertext carrier. At its extreme, Young and
Yung [32] recently proposed the Drunk Motorcyclist (DM) protocol where each ciphertext carrier
(the motorcycle) only carries a single ciphertext. The ciphertext only travels to a random neigh-
boring node upon arriving each node, hence the name Drunk Motorcyclist. Young and Yung [32]
also fixed a flaw in the previous buses, reduced-seats buses, and taxis protocols by pointing out
that key-private public-key encryption schemes should be used instead of ordinary ones.

In a nutshell, this class of protocols initiated by the buses protocol [7] works by routing packets
in a way that is independent to the intended receivers. Note that whether this routing strategy is
deterministic (e.g., buses) or probabilistic (e.g., DM) does not matter in terms of anonymity.

From this point on, for simplicity, we consider a communication network as a strongly connected
(i.e., each node is reachable from any other node) directed graph with N nodes, where packets can
only travel along the edges of the graph. For graphs that are not strongly connected, we can always
consider the subgraphs containing the nodes connected from each sender node1.

1.2 Our Results

In view of the existing complicated definitions of anonymity, we make mainly theoretical but also
technical contributions.

Theoretically, we present a simple algorithmic syntax which aims to capture a wide class of
anonymous communication protocols. We also propose a simple indistinguishability-based definition
which captures the strongest possible anonymity known in the literature, namely, unobservability
and sender anonymity against malicious receivers [19], simultaneously. The simple syntax and se-
curity definition can hopefully make analyzing anonymous communication protocols an easier job.
Furthermore, we provide several relaxation of the anonymity notion so that the level of anonymity
is still reasonably strong, yet finding efficient constructions is plausible.

Next, we show that the confidentiality of messages and the routing mechanisms can be decou-
pled, formalizing the idea of Young and Yung [32]. Specifically, we construct anonymous communi-
cation protocols generically from a key-private public-key encryption scheme and a new primitive
called oblivious forwarding protocol. With this generic approach, we can now focus on constructing
the conceptually simpler building block, namely, oblivious forwarding protocols. We then propose a
generic construction of oblivious forwarding protocols from any random walk algorithm over graphs.

Our main technical contribution lies in our second construction of oblivious forwarding proto-
cols, which is specially designed for optimizing the probability of successful delivery. This construc-
1 Also see Appendix A for a discussion on the network environment and deploying our protocols on the internet.

2



tion ensures that the most “unfortunate” nodes, such as the nodes located in the most isolated
areas of the network, receive packets intended for it with at least a fair probability.

We evaluate the optimality by testing our constructions over randomly generated strongly con-
nected graphs, and recording the probability of successful delivery, and number of hops traveled
for each sender-receiver pair. Our results show that our optimized protocol performs much better
in terms of the probability of successful delivery in realistic networks.

1.3 Technical Overview

We briefly introduce the design of our second construction. Consider a network represented by a
strongly connected directed graph, such that packets are routed deterministically according to the
routing table stored in each node. Each sender node in the network may not have the complete
view of the network. Instead, it only has knowledge of a partial list of intermediate nodes between
itself and each receiver node. These partial paths form a tree rooted at the sender node.

Suppose that node i has a packet for node j. Instead of the non-anonymous approach of always
sending this packet to the real receiver j directly, it picks a dummy receiver j′ according to a
distribution independent of the real receiver, and forwards the packet to the dummy according to
the routing table. The hope is that the real receiver j is located along the path to the node j′.

The question is then what the distribution of the dummy receivers should be. Intuitively, the
nodes that are the least likely to receive the packet are those located at the leaves of the tree. Thus,
it is natural to assign the uniform distribution over the set of leaf nodes. Indeed, we show that this
distribution is in some sense optimal using standard arguments in linear programming.

1.4 Paper Outline

We first propose in Section 2 (simple yet expressive) syntax and definitions of anonymous communi-
cation protocols (AC) and oblivious forwarding protocols (ObF). In Section 3 we then construct AC
generically from key-private public-key encryption and ObF. In Section 4, we propose two construc-
tions of ObF, whose performance is evaluated in Section 5. We also briefly discuss practical issues
in deploying our AC protocols in Appendix A, and the vast volume of related work in Appendix B.
Due to page limitation, preliminary of public-key encryption is deferred to Appendix C.

1.5 Notations

Let λ be the security parameter. All algorithms take 1λ as input implicitly. Let φ be the empty
set. Let [N ] be the set {1, 2, . . . , N}. P = (pkj)Nk,j=1 denotes an N -by-N matrix with the (k, j)-th
entry given by pkj . Similarly, x = (xi)Ni=1 denotes an N -dimensional (column) vector with the i-th
entry given by xi. If A is a probabilistic algorithm, x← A(·) denotes the computation of x output
from A. Let S be a set and X,Y ∼ S be distributions over S. Correspondingly, x← S denotes the
sampling of a uniformly random x ∈ S, and x← X denotes the sampling of x ∈ S according to the
distribution X. We denote by X ≈ Y that the distributions are identical. Finally, x := y denotes
assigning the value of y to the variable x.

3



2 Formulation of AC and ObF

2.1 Anonymous Communication Protocols

We present a simple yet expressive formulation of anonymous communication protocols. An anony-
mous communication protocol is run within a network of an arbitrary number of nodes. We consider
a dynamic environment where the network topology can change over time, i.e., both nodes and
edges may be added or removed. We assume that this network is equipped with a (most likely
non-anonymous) routing protocol, so that our anonymous protocol does not need to deal with the
changes to the network topology, yet will work regardless of the changes. We model this by letting
each participating node in the protocol possess some auxiliary information (e.g., routing tables)
maintained by external mechanisms such as the underlying routing protocol.

Informal Description. To participate in the anonymous communication protocol, a node runs
the key generation algorithm, without any coordination with any other node, to set up its public
and secret keys. It then publishes its public key. We assume that the nodes maintain their aux-
iliary information (e.g., routing table) and learn the public keys of each other through external
mechanisms. For example, they can obtain public keys while learning the network topology using
the underlying routing protocol. Alternatively, they might use private information retrieval (PIR)
along with a public-key infrastructure to retrieve public keys on-demand yet anonymously (similar
to using PIR to retrieve a few IP-addresses of onion-routers in the Tor network on-demand [25]).
The participating nodes form a graph G of N = poly(λ) nodes.

Each sender node in the network can encapsulate a message, using its auxiliary information and
the public key of the receiver, into a packet ready for forwarding. The creator of the packet or any
intermediate node receiving the packet forwards it by running a forwarding algorithm. It takes as
input a secret key and some auxiliary information, attempts to decrypt the packet and outputs an
outgoing packet and the index of the next hop regardless of whether the decryption is successful.
Hopefully, the intended receiver will be one of the intermediate nodes to receive the packet. For
anonymity, the packets and the forwarding pattern must not leak any information about the sender
and the receiver. It is important to forward the packet regardless of whether the intermediate node
happens to be the actual receiver or not. Otherwise, an adversary observing all traffic can notice
the disappearance of the packet and discover the real receiver.

Formal Syntax. An anonymous communication protocol AC = (Setup,KGen, Enc, Fwd) is a tuple
of PPT algorithms:

– PP ← Setup(1λ): The probabilistic key generation algorithm is run by a trusted party which
setups the network environment. It takes as input the security parameter 1λ, and outputs a
public parameter PP. We note that this is the only algorithm run by a trusted party, and is run
once only for setting up the system. Standard practices such as distributed parameter generation
can be adopted to reduce trust.

– (pk, sk) ← KGen(PP): The probabilistic key generation algorithm is run by each node which
joins the network individually. It takes as input the public parameter PP, and outputs a public
key pk and a secret key sk. The participating nodes form a graph G of N = poly(λ) nodes.

– p← Enc(j, pkj ,PK,m, auxk): The probabilistic encapsulation algorithm is run by a sender node
k. It takes as input a receiver j, its public key pkj along with some other public keys PK, a
message m, and some auxiliary information auxk of node k, and outputs a packet p.

4



– ({p′j , j}j ,M)← Fwd(skk,PK, P, auxk): The probabilistic forwarding algorithm is run by a sender
node or any intermediate node k. It takes as input a secret key sk of node k, a sequence of
public keys PK, a sequence of input packets P , and some auxiliary information auxk of node k.
It outputs a sequence of packets p′j with a next hop j (or ⊥), and a sequence of messages M
(or ⊥). Note that the packet p′j is always forwarded to next hop j (unless j = ⊥) regardless of
whether a valid message m ∈M is obtained.

In general, the packet-encapsulation algorithm takes multiple public keys as input, while the
packet-forwarding algorithm takes multiple public keys and multiple incoming packets as input. The
former captures onion routing protocol and its variants which encrypt messages to a pre-defined
route of intermediate routers in layers, while the latter captures for example Mixnets and its variants
which shuffle and forward packets in batches. Moreover, the algorithm generates different outgoing
packets to multiple next hops. This captures for example some anonymous communication protocols
based on broadcasting. Yet, for our purpose, the rest of this paper will stick to the setting where
the packet-encapsulation algorithm does not take any extra public keys PK as input, i.e.,

p← Enc(j, pkj ,m, auxk),

while the packet-forwarding algorithm does not take any public keys as input, but only a single
incoming packet, and outputs a single outgoing packet and a single next hop, i.e.,

(p′, j,m)← Fwd(skk, p, auxk).

We note that all the discussions and definitions in the rest of the paper naturally extend to the
more general syntax.

Correctness. Roughly speaking, AC is said to be correct, if for any packet generated under an
honest execution of the protocol, the packet reaches the intended destination after a reasonable
delay with a reasonably high probability. Furthermore, the Fwd algorithm always recovers the
message encapsulated in the packet when it reached the intended destination.

It is tricky to formally define correctness. An anonymous communication protocol could have low
probability of successful delivery but short expected delivery time when successful, while another
could have high probability of successful delivery but long expected delivery time. For the first case,
the sender can always re-transmit to make up for the low success probability. Another tricky part
is that a protocol might be efficient over some types of graphs but inapplicable to some others. For
instance, the buses protocol only works on graphs with a circular path connecting all nodes.

We model this formally by lower-bounding the probability of success delivery after T forwarding
by ρ. For any graph G with N = poly(λ) nodes, let {k, auxk}Nk=1 be a set of nodes and auxiliary
information. Formally, AC is said to be (T, ρ)-correct on G, if for security parameter λ ∈ N, all
sender i, all receiver j, all message m, all public parameter generated by PP ← Setup(1λ), all key
pairs generated by (pkk, skk)← KGen(PP), it holds that

Pr[CorrectAC(1λ, T, i, j,m, {k, auxk, pkk, skk}Nk=1) = 1] ≥ ρ > 0

where the probability is taken over the randomness of the experiment CorrectAC defined in Figure 1a.
Through simple observation, we can conclude that if AC is (T, ρ)-correct on G, then we must

have T ≥ l, where l is the longest of all shortest hop-length between any sender-receiver pair,
and that AC must be also (T ′, ρ′)-correct on G for any T ′ ≥ T and 0 < ρ′ ≤ ρ. As baselines for
comparison, the buses protocol is (N, 1)-correct while the broadcast protocol is (l, 1)-correct.

5



Exp. CorrectAC(1λ, T, i, j,m, {k, auxk, pkk, skk}Nk=1)

1 : t← 0, b← 0
2 : p← AC.Enc(j, pkj ,m, auxi)
3 : while t < T then
4 : t← t+ 1
5 : (p, i,m′)← AC.Fwd(ski, p, auxi)
6 : if i = j ∧ m = m′ then
7 : b← 1
8 : endif
9 : endwhile

10 : return b

(a) Experiment for (T, ρ)-correctness of AC

Exp. CorrectObF(1λ, T, i, j, {k, auxk}Nk=1)

1 : t← 0, b← 0
2 : h← ObF.Enc(j, auxi)
3 : while t < T then
4 : t← t+ 1
5 : (h, i)← ObF.Fwd(h, auxi)
6 : if i = j then
7 : b← 1
8 : endif
9 : endwhile

10 : return b

(b) Experiment for (T, ρ)-correctness of ObF

Fig. 1: Correctness experiments of anonymous communication (AC) and oblivious forwarding (ObF)

Anonymity. We aim to capture sender and receiver anonymity in the most hostile environment.
For receiver anonymity, we require that a packet leaks nothing about the receiver, neither from

the encapsulated message nor the traffic pattern. This implies that a packet encapsulating any
message is indistinguishable from each other, so that a sender can safely re-transmit a message or
switch to a different message for whatever reasons. Note that the indistinguishability should hold
even if the correspondence between messages and senders are known.

For sender anonymity, notice that an adversary observing all traffic must be able to tell the
original sender of any packet. Thus, we instead require that when multiple senders send out a set
of messages to multiple receivers, no one can tell which message originates from which sender, even
if the correspondence between messages and receivers are known.

In technical terms, we consider a security game played between a challenger and a powerful
adversary which is able to observe all traffic, corrupt at most all but two of the nodes, and obtain
decrypted messages even from non-corrupt nodes. The security game consists of three phases.

In the first phase, the adversary corrupts as many nodes as it wishes, controls and learns from
how packets are routed. These are modeled as the corruption and forwarding oracles respectively.

In the second phase, the adversary produces two distinct tuples (i.e., at least one component is
different) each consisting of a receiver, a message, and the auxiliary input of a sender. Eventually
the challenger is going to create packets according to some parts of the specifications (in the form of
sender-message-receiver pairs) of the adversary. So, we also require the adversary to produce a bit
to choose that either the sender-message correspondence or the message-receiver correspondence is
fixed. This can be thought of as a slot machine with two slots such that the adversary can control the
outcome of either one of the slots. If the adversary chooses to fix the sender-message correspondence,
an extra restriction is imposed that both of the challenged receivers are not corrupted.

The challenger then picks a random bit to determine the remaining slot of the slot machine:
To decide whether the challenge packets should be created according to the specification by the
adversary, or the remaining part of the sender-message-receiver pairs should be flipped. For example,
if the adversary chose to fix the sender-message correspondence, then the random bit picked by the
challenger decides whether the message-receiver correspondence should be flipped, as depicted in
Figure 2. The challenger then returns both challenge packets to the adversary.

6



Sender 0 Message 0 Receiver 0

Sender 1 Message 1 Receiver 1

Fixed by adversary Picked by challengerReceiver Anonymity

Sender 0 Message 0 Receiver 0

Sender 1 Message 1 Receiver 1

Fixed by adversaryPicked by challenger Sender Anonymity

Fig. 2: An illustration of the IND-ANONAAC game

In the third phase, the adversary is again given access to the corruption and forwarding oracles.
Naturally, if the adversary chose to fix the sender-message pairs, it is still not allowed to corrupt
the challenge receivers. Also, when the forwarding oracle is queried with the challenge packets and
receivers, no message will be decrypted (but the packet is still forwarded). These are to ensure that
the adversary cannot win trivially. Finally, the adversary outputs a bit as a guess of whether the
other part of the specification are flipped.

For any graph G with N = poly(λ) nodes, let {k, auxk}Nk=1 be a set of nodes and auxiliary
information. Formally, let CorrO be a corruption oracle which, on input j, returns skj . Let FwdO be
a forwarding oracle which, on input (k, p, aux), returns ((p′, j),m) produced by AC.Fwd(skk, p, aux).
AC is said to have indistinguishability of packets under anonymity attack (IND-ANON), if for any
security parameter λ ∈ N, any PPT adversary A it holds that

|2 Pr[IND-ANONAAC(1λ, {k, auxk}Nk=1) = 1]− 1| ≤ negl(λ)

where the probability is taken over the random coins of the experiment and the adversary, and the
experiment IND-ANONAAC is defined in Figure 3.

Remark. One can fit an onion routing protocol into our definition (by defining an Enc algorithm
which encrypts a message to the routers along a random path in layers, and a Fwd algorithm which
decrypts the outer-most layer and forwards the inner-layers to the next router). Yet, the routes
always terminate at the receiver. An IND-ANON adversary can use the forwarding oracle to figure
out the real receiver. So, an onion routing protocol would not satisfy our anonymity requirement.

Relaxations. The above definition takes away almost all quantitative information about the level
of anonymity achieved. In practical scenarios, a more efficient protocol with weaker anonymity
might be desirable. In this case, we need to know how weak the anonymity guaranteed actually is.
To this end, we consider the following reasonable relaxations to our anonymity definition:

– q-bounded Collusion: The above definition essentially bounds the number of corrupted users by
N−2. In general, we can consider an adversary which is only allowed to corrupt at most q users.
The level of anonymity may depend on q. For example, one might consider q as a fraction N .

– 1-out-of-n Anonymity: The above definition models anonymity as a decision problem. Alterna-
tively, we can model it as a search problem to capture anonymity of hiding within a group of
n(≤ N) users: In the second phase, the adversary chooses to break either the receiver anonymity

7



Experiment IND-ANONAAC(1λ, {k, auxk}Nk=1)

1 : Corrupt := φ,Challenge := φ

2 : PP← AC.Setup(1λ)

3 : {pkj , skj}
N
j=1 ← AC.KGen(PP)

4 : Input := {pkj , auxj}Nj=1

5 : (st, bfix, {j∗b ,m∗b , aux∗b}1b=0)← ACorrO,FwdO(1λ, Input)
6 : b′ ← {0, 1}
7 : if bfix = 0 then
8 : // Fixing sender-message pairs (Receiver Anonymity)

9 : for b = 0, 1 do
10 : p∗b ← AC.Enc(j∗b−b′ , pkj∗

b−b′
,m∗b , aux∗b)

11 : endfor
12 : Challenge := {(p∗0, j∗0 ), (p∗0, j∗1 ), (p∗1, j∗0 ), (p∗1, j∗1 )}
13 : else // Fixing message-receiver pairs (Sender Anonymity)

14 : for b = 0, 1 do
15 : p∗b ← AC.Enc(j∗b , pkj∗

b
,m∗b , aux∗b−b′)

16 : endfor
17 : endif

18 : b′′ ← ACorrO,FwdO(1λ, st, p∗0, p∗1)
19 : b0 := (b′ = b′′)
20 : b1 := (bfix = 1) ∨ (j∗0 6∈ Corrupt ∧ j∗1 6∈ Corrupt)
21 : return (b0 ∧ b1)

Oracle CorrO(j)

1 : Corrupt := Corrupt ∪ {j}
2 : return skj

Oracle FwdO(j, p, aux)

1 : (p′, j,m)← AC.Fwd(skj , p, aux)
2 : if (p′, j) ∈ Challenge
3 : return (p′, j,⊥)
4 : else
5 : return (p′, j,m)
6 : endif

Fig. 3: Experiment for IND-ANON security of anonymous communication protocols

or the sender anonymity. For receiver, it outputs a set of n potential receivers {j∗i }ni=1, a message
m∗, and some auxiliary information of a sender aux∗. For sender, it outputs a target receiver j∗,
a message m∗, and a set of auxiliary information for n potential senders {aux∗i }ni=1. The chal-
lenger then picks randomly one of the n senders or receivers and outputs a challenge packet.
The adversary wins if it guesses the choice of the challenger correctly.

– CPA-Anonymity: The above definition captures “CCA-anonymity” since the forwarding oracle
outputs the trial decryption of the queried packet. We can relax this by letting the forwarding
oracle always return (p′, j,⊥) (so as to hide the message m encapsulated in the packet).

– Secret Auxiliary Information: The above definition considers an adversary with knowledge of
the auxiliary information (e.g., routing table) of all users. In practical setting, one might assume
these auxiliary information to be hidden from the adversary.

Relations to Other Notions of Anonymity. We first recall the structure of the definitions by
Hevia and Micciancio [20], and those extended by Gelernter and Herzberg [19]. They define a hybrid
experiment consisting of a polynomial number of rounds. The experiment is indexed by the type of
anonymity attack and a bit b. In each round, the adversary produces two N -by-N matrices M (0)

and M (1) where the (i, j)-th entry of the matrices specifies the message sent from node i to node j.

8



The challenger then executes the anonymous communication protocol on messages contained in
M (b). The adversary can choose to continue the experiment, or terminate it by outputting a bit b′
as a guess of b. The types of anonymity attacks are captured by imposing different restrictions to
the matrices M (0) and M (1). For instance, the unobservability notion is captured by not imposing
any restriction on the matrices.

Although their definitions is rigorous and expressive, it is considerably more complex than
typical security definitions for other cryptographic primitives, such as IND-CPA/CCA security for
public-key encryption. The two major complicated aspects are the round-based nature and the
unnatural restrictions to the matrices.

Focusing on these two aspects, our definition uses oracles to replace their round-based structure.
Our definition also does not restrict the choice of senders, messages and receivers of the adversary.
This corresponds to the notion of unobservability. Moreover, we allow the adversary to corrupt
the challenged receivers if it chose to fix the message-receiver correspondence. This corresponds
to sender anonymity against malicious receivers. We are thus able to capture the two strongest
anonymity properties considered in the literature [19].

As our later constructions are inspired by the DM protocol, it is also worth comparing our
anonymity definition with that by Young and Yung [32]. Recall that Young and Yung [32] defined
(receiver) anonymity and a rather unusual “blocking anonymity”, for their Drunk Motorcyclist
protocol. While the adversary in the former model is passive, the latter is able to block an arbitrary
number of nodes in the network. Both types of adversaries can observe all traffic within the network.
However, they are unable to maliciously inject, remove, or modify packets. The goal of the adversary
against anonymity is to guess the identity of the real receiver out of all N possible choices, while
the goal of the adversary against blocking anonymity is to block any subset of the N nodes so that
the real receiver is in this subset.

We make the following observations. From the first glance, blocking anonymity appears to be
a generalization of the receiver anonymity. Yet, we observe that their two anonymity notions are
somewhat equivalent, up to the size of the blocking set. Suppose there exists an adversary against
blocking anonymity, who outputs a set of nodes covering the target receiver with non-negligible
probability, we can pick a random member of this set and break anonymity with non-negligible
probability as well. Next, we observe that their anonymity definition actually corresponds to our
1-out-of-n anonymity definition. Finally, we remark that Young and Yung [32] did not consider
sender anonymity.

2.2 Oblivious Forwarding Protocols
The forwarding pattern of a packet should not depend on the message content but rather the
intended receiver. It is natural to separate the routing part of anonymous communication protocols
as an independent primitive. We formulate this idea as (receiver-)oblivious forwarding protocols2.

Informal Overview. An oblivious forwarding protocol is similar to an anonymous communication
protocol, except that it only deals with the headers within the packets for routing. Given an intended
receiver and some auxiliary information, the Enc algorithm creates a header containing the routing
information. The Fwd algorithm creates headers for outgoing packets given an incoming header.

We emphasize again that, as in anonymous communication protocols, regardless of whether the
actual receiver is an intermediate node or not, it always forwards the packet to the next hop.
2 This is not to be confused with the packet-oblivious forwarding protocols in the network community.

9



Formal Syntax. An oblivious forwarding protocol ObF = (Enc,Fwd) is a tuple of probabilistic
polynomial-time (PPT) algorithms defined as follows:
– h← Enc(j, auxk): The probabilistic encapsulation algorithm is run by a sender node k. It takes

as input a receiver j and some auxiliary information auxk of node k, and outputs a header h.
– (h′, j) ← Fwd(h, auxk): The probabilistic forwarding algorithm is run by a sender node or any

intermediate node k. It takes as input an input header h and some auxiliary information auxk
of node k, and outputs a header h and a next hop j.

Correctness. The correctness requirement of oblivious forwarding protocols is essentially the same
as that of anonymous communication protocols, except that the former focuses only on the routing
aspect.

For any graph G with N = poly(λ) nodes, let {k, auxk}Nk=1 be a set of nodes and auxiliary
information. Formally, ObF is said to be (T, ρ)-correct on G, if for security parameter λ ∈ N, all
sender i, all receiver j, it holds that

Pr[CorrectObF(1λ, T, i, j, {k, auxk}Nk=1) = 1] ≥ ρ > 0

where the probability is taken over the random coins of the experiment CorrectObF defined in
Figure 1b.

Obliviousness. ObF is said to be oblivious if, for any security parameter λ ∈ N, any pair of
receivers j0 and j1, and any auxiliary information aux0 and aux1, the distributions of the created
headers from the Enc algorithm are identical, i.e., Enc(j0, aux0) ≈ Enc(j1, aux1).

Although we consider perfect obliviousness in this work, one can relax it to statistical or com-
putational obliviousness. We are however unaware of any possible construction, or the potential of
efficiency benefits of such constructions. Furthermore, one may also consider alternative definitions,
such as a game-based one similar to IND-ANON of anonymous communication protocols.

3 Generic Construction of AC

In this section, we show that anonymous communication protocols can be generically constructed
from key-private public-key encryption and oblivious forwarding protocols. Recall that Young and
Yung [32] pointed out the need of key-private public-key encryption in several existing anonymous
communication protocols, our work here can be seen as formalizing and extending their idea. We
also show that the Drunk Motorcyclist protocol is a special case of this generic construction.

Intuitively, our construction works as follows. It encrypts the message to be encapsulated by
key-private public-key encryption, and the precedes the ciphertext with the header produced by
the oblivious forwarding protocol. To forward a packet, a node attempts to decrypt the ciphertext,
and forward the packet using the oblivious forwarding protocol regardless of the decryption result.

3.1 Formal Description
Let PKE = (Setup,KGen,Enc,Dec) be a public-key encryption scheme as defined in Appendix C.
Let ObF = (Enc,Fwd) be an oblivious forwarding protocol as defined in Section 2. Figure 4 presents
a generic construction of anonymous communication protocols.

The correctness of this generic construction follows directly from the correctness of the under-
lying building blocks. The key-privacy of PKE and obliviousness of ObF provides anonymity.

10



AC.Setup(1λ)

1 : PP← PKE.Setup(1λ)
2 : return PP

AC.KGen(PP)

1 : (pk, sk)← PKE.KGen(PP)
2 : return (pk, sk)

AC.Enc(j, pkj ,m, auxk)

1 : h← ObF.Enc(j, auxk)
2 : c← PKE.Enc(pkj ,m)
3 : return p := (h, c)

AC.Fwd(skk, p = (h, c), auxk)

1 : (h′, j)← ObF.Fwd(h, auxk)
2 : m← PKE.Dec(sk, c)
3 : return (p′ := (h′, c), j,m)

Fig. 4: A generic construction of anonymous communication protocols

Theorem 1. Assume that PKE is correct, and ObF is (T, ρ)-correct. Then AC constructed in Fig-
ure 4 is (T, ρ)-correct.

Theorem 2. Assume that PKE is (IK-CCA2)-secure, and ObF is oblivious. Then AC constructed
in Figure 4 is (IND-ANON)-secure.

While Theorem 1 is trivial, Theorem 2 is intuitive: Key-private PKE hides the messages and
their receivers encapsulated in the packets, so that no adversary can deduce any information com-
promising anonymity from ciphertexts. Thus, the only way to break anonymity is to observe or
control the routing pattern. However, as the headers produced by ObF is independent to its senders
and receivers, the headers do not help the adversary in any way either. On the other hand, it is
interesting that the seemingly complicated anonymity requirement of AC can be met by the one-line
obliviousness requirement of ObF.

Proof. (Theorem 2) Suppose A is a PPT adversary against the IND-ANON-security of the anony-
mous communication protocol. We wish to construct a PPT adversary B against the key-privacy
of PKE. For this, we define the hybrids Hybb′ for b′ = 0 and 1 as follows.

Hybb′ :
– B setups the network environment as a graph G with N nodes. Let {k, auxk}Nk=1 be a

set of nodes and auxiliary information. It receives PP and pkj for j ∈ [N ] from the
key-privacy challenger. It sends {pkj , auxj}Nj=1 to A.

– B answers queries to the CorrO oracle of IND-ANON by redirecting the request to
the CorrO oracle of IK-CCA2. For queries (j′, p′, aux′) to FwdO, B parses p′ = (h′, c′),
redirects (j′, c′) to the DecO oracle of IK-CCA2 and obtains m. On the other hand, B
runs (h, j)← ObF.Fwd(h′, aux′) and returns ((h, c′), j,m) to A.

– Eventually, A outputs {(j∗b ,m∗b , aux∗b}1b=0 and bfix. B picks a bit η ← {0, 1}. We think of
b′ (index of the hybrid) and η as two factors to determine whether the specifications of
A should be flipped.

– B reacts differently for the cases bfix = 0 and bfix = 1:
• If bfix = 0, meaning that A chooses to challenge the receiver anonymity, B sends

(j0, j1,mη) to the key-privacy challenger and receives from it a ciphertext c∗η. Recall
that b′ is the index of the hybrid. To simulate the header, it runs h∗η ← ObF.Enc(j∗η−b′ , aux∗η).
To simulate the other packet, it runs c∗1−η ← PKE.Enc(pkj1−η−b′ ,m1−η) and h∗1−η ←
ObF.Enc(j∗1−η−b′ , aux∗1−η).

11



• If bfix = 1, meaning that A chooses to challenge the sender anonymity, B computes
c∗b ← PKE.Enc(pkj∗

b
,m∗b) for b = 0, 1. It runs h∗b ← ObF.Enc(j∗b , aux∗b−η−b′) for b = 0, 1.

– Finally, B sends (p∗0, p∗1) where p∗b = (h∗b , c∗b) to the adversary A. B answers queries to
CorrO and FwdO as before.

– The game terminates as the adversary A outputs a guess ξ. The adversary A wins if
ξ = η.

We differentiate the cases between bfix = 0 and bfix = 1.

Case 1: bfix = 0 There are two differences between Hyb0 and Hyb1.
The first difference is that, B computes h∗b−η from jb−η in Hyb0 and from j1−b−η in Hyb1. By

the obliviousness of ObF, the two methods of generating h∗b−η are indistinguishable in the view of
A.

The second difference is that, B computes c∗1−η from pkj1−η in Hyb0 and from pkjη in Hyb1.
Since η is chosen at random, the choice of mη which is directed to the encryption oracle of the key-
privacy challenger is random in the view of A. Suppose A can distinguish between the two methods
of generating c∗1−η with non-negligible advantage, then it has the same advantage in distinguishing
the two methods of generating c∗η, which breaks the IK-CCA2-security of PKE.

Case 2: bfix = 1 The only difference between Hyb0 and Hyb1 is that, B computes h∗b from aux∗b−η in
Hyb0 while it computes h∗b from aux∗1−b−η in Hyb1. By the obliviousness of ObF, the two methods
of generating h∗b are indistinguishable in the view of A.

Therefore, in either case, Hyb0 and Hyb1 are indistinguishable in the view of A. Moreover, in
case 2, the bit b′ is information theoretically hidden from A by the obliviousness of ObF. Thus
the advantage of A is zero. Suppose that A chooses bfix = 0. Denote the random bit chosen by
the key-privacy challenger by bPKE. When b′ = bPKE − η, which occurs with probability 1

2 , Hybb′
is a perfect simulation of the IND-ANON security game. Conditioned on the above, suppose A
breaks the IND-ANON security of AC with ε advantage, then B also has ε advantage in breaking
the key-privacy of PKE. ut

3.2 Recasting The DM Protocol

Recall that in the DM protocol [32], a node encrypts its message to the intended receiver using
a key-private public-key encryption scheme, and forwards the ciphertext to a random neighboring
node. Upon receipt of a packet, a node copies the packet to a decryption queue and forwards
the packet again to a random neighboring node. For each packet, this process is repeated until its
time-to-live (TTL) value vanishes. Straightforwardly, the DM protocol can be seen as an anonymous
communication protocol constructed from the above generic approach using an oblivious forwarding
protocol DM-ObF = (Enc,Fwd) defined in Figure 5a. The executions of the DM-ObF.Fwd represent
a simple random walk over a graph, at which a packet travels to each neighboring node with equal
probability.

We consider two important parameters for random walk algorithms — the hitting time, which
is the maximum of the expected time for traveling from any starting node to any destination), and
cover time, which is the maximum of the expected time for traveling from any starting node to
all other nodes at least once. It is well known that the hitting time and cover time of the simple
random walk algorithm on general graphs, without using any topological information of the graph,
are both O(N3) [10].

12



In the context of anonymous communication, there seems to be no reason to avoid using any
topological information of the graph. On the contrary, the sender node should exploit this informa-
tion as much as possible to improve the expected hitting time or probability of successful delivery
given a fixed TTL value, as long as its routing strategy remains oblivious.

Intuitively, using a simple random walk algorithm and a fixed TTL value, it is less likely for a
node in the more isolated area of a network to receive packets. This motivates us to design new
routing strategies that make use of the topological information to improve efficiency.

4 Constructions of ObF

With our generic construction, in this section we aim to construct oblivious forwarding protocols
which exploit the topological information to improve efficiency. We first state a generic construction
given any transition probability matrix and routing tables of the network. From this generic con-
struction, we can plug in the transition probability matrices of any random walk algorithms over
graphs to obtain a class of oblivious forwarding protocols. For demonstration, we use the simple
random walk algorithm and the β-random walk algorithm by Ikeda et al. [23] as examples.

Next, by introducing a convenient representation of the routing paths from a node as a “connec-
tivity matrix” which is computed using partial topological information, we present our construction
which maximizes the minimum probability of successful delivery over all potential receivers for each
fixed TTL value in one round, i.e., during the transmission from one dummy receiver to another.

4.1 Generic Construction

Consider a network represented by a strongly connected directed graph. Typically, routing in a
such a network is performed in a distributed manner: Each node k maintains its routing table T k
mapping each destination to a next hop. Our strategy works as follows. Regardless of the intended
destination, the sender node k chooses a dummy destination j̄ according to some distribution
independent of the intended destination. The sender node and all intermediate nodes then just
route the packet as a normal (non-anonymous) packet to the dummy destination j̄. When the
packet reaches the dummy destination j̄, node j̄ chooses another dummy destination as long as the
TTL value is still positive.

Formally, let P = (pkj)Nk,j=1 where pkj ≥ 0,
∑
j pkj = 1, k, j ∈ [N ] be any transition probability

matrix, and T = {T k}Nk=1. Figure 5b defines the oblivious forwarding protocol (P, T )-ObF =
(Enc,Fwd).

The construction in Figure 5b is clearly oblivious as the header h output by Enc and the routing
pattern (h, j) output by Fwd is independent to the receiver j. We defer the correctness analysis for
specific constructions.

4.2 Construction from any Random Walks

For a node k, deg(k) and N (k) are the out-degree and set of neighboring nodes of k respectively. It
is obvious that the Drunk Motorcyclist protocol is a special case of the above generic construction,
as stated in Lemma 1.

13



ObF.Enc(j, auxk = N (k))

1 : return L

ObF.Fwd(h = `, auxk = N (k))

1 : if ` = 0 then
2 : return ⊥
3 : endif
4 : j ← N (k)
5 : return (`− 1, j)

(a) DM-ObF: A construction from DM [32], where N (k)
denotes the set of neighboring nodes of node k

ObF.Enc(j, auxk = (k, (pkj)Nj=1, T
k))

1 : return h := (k, L)

ObF.Fwd(h = (j̄, `), auxk = (k, (pkj)Nj=1, T
k))

1 : if ` = 0 then
2 : return ⊥
3 : elseif j̄ = k then

4 : j̄ ← (pkj)Nj=1

5 : endif

6 : j := T k[j̄]
7 : return ((j̄, `− 1), j)

(b) (P, T )-ObF: Our generic construction, where
P = (pkj)Nk,j=1 denotes a transition probability matrix,
T = {T k}Nk=1 denotes a set of routing tables

Fig. 5: Constructions of oblivious forwarding protocols (L denotes a constant TTL value)

Lemma 1. Let Psim = (pkj)Nk,j=1 and Tsim = {T k}Nk=1 be defined as

pkj =
{

deg−1(k) if j ∈ N (k)
0 otherwise

and T k[j̄] = j̄ ∀j̄ respectively. Then DM-ObF = (Psim, Tsim)-ObF.

Alternatively, the transition probabilities may depend on the local topological information, in
particular, the degrees of the neighboring nodes. We consider the β-random walk algorithm designed
by Ikeda et al. [23].

Definition 1. The transition probability matrix Pβ = (pkj)Nk,j=1 of the β-random walk algorithm
is defined as follows:

pkj =


deg−β(j)∑

u∈N (k) deg−β(u) if j ∈ N (k)

0 otherwise

The β-random walk algorithm has hitting time and cover time equal to O(N2) and O(N2 logN)
respectively on general graphs when β = 1

2 [23]. Therefore, in theory β-ObF := (Pβ, Tsim)-ObF is
asymptotically more efficiency than DM-ObF.

For random walks with transition probability matrix P = (pkj)Nk,j=1, the (k, j)-th entry of P `

gives the probability of reaching j from k in exactly ` steps. Thus, the (k, j)-th entry of
∑T
`=1 P

`

gives the probability of reaching j from k in less than T steps. We therefore formulate the correctness
of oblivious forwarding protocols induced from random walks as follows.

Theorem 3. Let T > 0 be a positive integer. Let ρ := mink,j
∑T
`=1 P

` where P = (pkj)Nk,j=1 is
a transition probability matrix. Let T = {T k}Nk=1 where T k[j̄] = j̄ ∀j̄. Then (P, T )-ObF is (T, ρ)-
correct.

14



4.3 Construction with Optimized Probability of Successful Delivery

Representation of the Routing Paths. To facilitate our discussion, we consider a typical network in
which nodes route packets according to routing tables Topt built using some distributed shortest
path algorithm. Suppose the node k has a partial view of how packets to different destination will
be routed. More specifically, it has knowledge of some of the intermediate nodes along the path to
each destination. These paths form a tree rooted at node k connecting all other nodes. Using this
tree, we construct an N -by-N connectivity matrix Ak as follows: If node i is on the path from k to
j, set Ak(i, j) = 1; Otherwise, set Ak(i, j) = 0.

The connectivity matrix Ak features an interesting structure. First, since node j must be on
the path from k to j, Ak(j, j) = 1 for all j. Second, if node i is a leaf node of the tree, there is only
one path from node k to node i. Thus, row i of Ak has only a single ‘1’ which is Ak(i, i). In other
words, the 1-norm of row i is 1. Lastly, if node j is a neighbor of node k, there are no intermediate
nodes along the path from node k to node j. Thus, column j of Ak has only a single ‘1’ which is
Ak(j, j). In other words, the 1-norm of column j is 1.

For conciseness, we will drop the superscript k from Ak and simply write A when the context
is clear.

The Construction. We aim to design a routing strategy which is independent to the intended
receiver, and maximizes the probability that the most unfortunate node receiving its packets in one
round. A node is considered the most unfortunate if, given a routing strategy, the node receives the
packet with the lowest probability.

Formally, consider a sender node with transition probability x = (xi)Ni=1. Let A be the connec-
tivity matrix of the node defined in Section 4.3. Then the i-th entry of Ax indicates the probability
that node i belongs to the path from the sender to the dummy destination. Our task is to maximize
the minimum of these probabilities, or

max (mini(Ax)i)
s.t. x ≥ 0 ∧ ‖x‖1 = 1

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N ].
Intuitively, the optimal solution can be computed as follows. Consider the tree represented by A.

Let x̂ be the uniform distribution over the set of all leaf nodes. This can be computed by assigning
equal weights to the i-th entry of x̂ where the i-th row of A contains only a single 1, which is A(i, i)
(i.e., node i is a leaf node). This ensures that the most unfortunate nodes (i.e., the leaf nodes)
receive their packets with a fair chance. We claim that x̂ is an optimal solution to the problem.

Formally, the proposed solution x̂ is defined as

x̂i =
{ 1
|I| if i ∈ I
0 otherwise

where I = {i : ‖Ai‖1 = 1} and Ai is the i-th row of A.

Remark 1. Interestingly, simple random walk corresponds to assigning equal weights to x̂j where
the j-th column (instead of row) of A contains only a single 1, which is A(j, j) (i.e., node j is a
neighboring node).

15



Proof of Optimality. The optimality of x̂ is proven via standard arguments in linear optimization.
Instead of proving the optimality of x̂ directly, which is rather difficult, we construct a dual certifi-
cate for the primal solution x̂. Then, by the LP Strong Duality Theorem [9, Theorem 4.4], x̂ is an
optimal solution to (1).

Lemma 2. The optimal solution to

max (mini(Ax)i)
s.t. x ≥ 0 ∧ ‖x‖1 = 1 (1)

where x ≥ 0 means xi ≥ 0 ∀i ∈ [N ] is given by

x̂i =
{ 1
|I| if i ∈ I
0 otherwise

where I = {i : ‖Ai‖1 = 1} and Ai is the i-th row of A.

Proof. (Lemma 2) The equivalent model of (1) is

min −p
s.t. Ax ≥ pe ∧ eTx = 1 ∧ x ≥ 0 ∧ p ≥ 0 (2)

where e = (1, 1, . . . , 1)T ∈ RN .
To prove such x̂ is an optimal solution to (1), we need to find a dual certificate for (2). That is,

we need to find an optimal solution for the dual problem.
The dual of the primal problem (2) is

max d
s.t. AT y ≤ −de ∧ eT y ≥ 1 ∧ y ≥ 0 (3)

Since eTx = 1 ≥ 1 and x ≥ 0, let y = x̂, we have

AT x̂ =
N∑
i=1

ATi x̂i =
∑
xi 6=0

1
|I|
ATi +

∑
xi=0

0 ·ATi =
∑
xi 6=0

1
|I|
ei ≤

1
|I|
e

where Ai is the i-th row of A, ei is the i-th standard basis vector in RN .
From the calculation above, we can take d = − 1

|I| . It is trivial that Ax ≥ 1
|I|e and the objective

value of (2) is −p = − 1
|I| . Thus, we have found a feasible solution, y = x̂, for the dual problem

(3) such that the duality gap is zero, i.e., d = −p = − 1
|I| . Therefore, by the LP Strong Duality

Theorem [9, Theorem 4.4], x̂ is an optimal solution to (2), so is (1). ut

Finally, we define a transition probability matrix Popt = (pkj)Nk,j=1 where pkj = x̂kj ∀k, j, and
obtain our optimized scheme Opt-ObF = (Popt, Topt)-ObF.

It is not easy to formulate the correctness of this construction, at least not in a clean equation
form as in the construction induced from random walks. The difficulties arise from that the dummy
receiver chosen according to the transition probability matrix is not a neighbor of the sender. The
packet may be forwarded multiple times by intermediate nodes until it reaches the dummy receiver.
These intermediate nodes are not captured in the transition probability matrix. Moreover, the hop
length to each dummy receiver may be different. Thus, a packet might reach several dummy receivers
in an instance, while still not reaching the first dummy receiver in another. We would therefore
only give a loose bound about the correctness of this construction.

16



Theorem 4. Let l be the hop length of the longest shortest path in the graph G. Let I be the
set of leaf nodes in the shortest path tree containing the longest shortest path. Then Opt-ObF is
(l, 1
|I|)-correct.

4.4 Discussions

Optimality. We do not claim that the construction above is optimal over all possible oblivious
forwarding protocols. Rather, it optimizes the probability of successful delivery in one round, i.e.,
during the transmission from one dummy receiver to another. Indeed, the optimal construction is
arguably the one where a packet travels each of the nodes at least once with the minimal distance.
Unfortunately, finding such a path is an NP-hard problem known as the traveling salesman problem.

On the other hand, optimizing the probability of successful delivery during the entire life span
of a packet is undesirable for the following reasons: 1) The system to be optimized becomes too
complicated to analyze, as it involves tensor product of L transition probability matrices, where L
is the TTL value; 2) The sender might not trust the others to pick dummy receivers honestly. Thus
it has the motivation to do the best it can.

Auxiliary Information. As the sender might not have complete knowledge of the paths to all
destinations, some leaf nodes in the tree representing its routing paths may actually be intermediate
nodes lying on other paths. Thus, assigning positive weight on these nodes would be a waste of
effort. However, as the sender learns more about the paths, its strategy will only become better
regarding the probability of successful delivery. We remark that the sender should only use side-
channel information, which is independent to the real receivers, to update its auxiliary information.
Otherwise, an adversary may be able to infer information about the real receivers from the auxiliary
information. Note that the side-channel information can be tampered by the adversary without
losing anonymity. This is captured in the anonymity game in Figure 3 by allowing the adversary
to query with and submit for challenge any auxiliary information of its choice.

5 Experiments

We compare the efficiency of DM-ObF, β-ObF, and Opt-ObF over randomly generated strongly
connected directed graphs. For our generic construction, once a dummy receiver is chosen, the
packet is routed in the same way as an ordinary packet according to the routing tables. The traffic
generated by our protocol is thus the same as the underlying routing protocol defined by the routing
tables. We therefore only investigate the average probability of delivering a packet to the intended
receiver successfully, and the average number of hops traveled, without performing traffic analysis.

5.1 Graphs Generation

We repeated our experiments for three different types of strongly connected directed graphs, with
the number of nodes N set to 2048.

The first type is a simple straight line graph where only node i and i + 1 are linked to each
other. This serves as an extreme case to show the ineffectiveness of the constructions from some
random walk algorithms, in particular, the simple and β-random walks.

The second type is a class of randomly generated graphs according to the Barabási-Albert (BA)
scale-free model [6]. This model aims to capture the characteristics of real-world networks, which

17



(a) A straight line graph (b) A BA graph (n = 200, n0 = 16, q = 1) (c) A dense graph (n = 40, m = 400)

Fig. 6: Graphs used in our experiments

are often large and sparse. We use the following parameters to generate BA graphs: The initial
number of nodes n0 is set to 16, and the number of new edges q added in each round is 1. Rejection
sampling is performed to ensure the chosen BA graphs are strongly connected.

The third type is a class of dense randomly generated graphs, which we call dense graphs, using
the following method.

Given the number of nodes N and number of edges M , we first initiate a graph with the
N nodes and no edges. For each node k, we maintain a set of connected nodes and a set of
unconnected nodes. Initially, only node k is connected to node k itself.
Then, we perform the following procedures without loss of generality from node 1 to node
N : For node k, while there are still unconnected nodes, we pick a random node i in the
connected set and a random node j in the unconnected set, and add an edge from i to j.
This connects all the nodes (including node k) that are connected to node i to node j, and
connects node k to all nodes that node j is connected to. We update the connected and
unconnected sets of all the nodes correspondingly.
Finally, edges are added uniformly at random until the total number of edges reaches M .

We adopt the setting of Young and Yung [32] who set the number of edges M to 32768. This
type of graphs is much denser than the graphs representing real world networks, as shown in the
toy examples of the three types of graphs in Figures 6a, 6b and 6c respectively.

5.2 Experiment Procedures

We conducted our experiments on 1 straight line graph, 20 randomly generated BA graphs, and
20 randomly generated dense graphs, where each test is repeated for 5 different TTL values
(N/4, N/2, N, 2N, 4N). The TTL values are set to contrast with the buses protocol and the broad-
cast protocol. The former circulates 1 packet and deliver the message with probability 1 in N steps.
The latter sends N − 1 packets and delivers with probability 1 in l steps, where l is the longest
shortest hop length between any sender-receiver pair.

For each graph, 1000 sender-receiver pairs are chosen at random. The sender in each of the
pairs runs DM-ObF, β-ObF, and Opt-ObF each for 10 times independently, attempting to deliver

18



Fig. 7: Mean probability of successful delivery against TTL

a packet to the intended receiver in each instance. The average probability of successful delivery,
and number of hops traveled (until the packet is delivered successfully or the TTL reaches 0) are
calculated for each combination of graph, protocol, and TTL.

Recall that Opt-ObF requires each node to have partial knowledge about the routing path to
each of the other nodes. For simplicity, we assume each node knows the shortest paths to all the
other nodes, which are computed using the Floyd-Warshall algorithm.

5.3 Experiment Results

The average probability of successful delivery, and number of hops traveled against the TTL values
in each setting are shown in Figure 7, and 8 respectively.

As expected, our Opt-ObF design largely outperforms the other two protocols in terms of the
probability of successful delivery in both the straight line graph and BA graphs for all TTL values,
which reflects the optimality of our construction. In the dense graph, the differences in probability
of successful delivery among the protocols are almost negligible for all TTL values. Our design also
has slight advantages in terms of the number of hops traveled by the packets in most of the cases,
probably due to the use of shortest paths.

The experiments however did not reflect the theoretical advantage of β-ObF over DM-ObF. A
possible explanation is that the hitting time for simple random walks and β-random walks are
O(N3) and O(N2) respectively, while the TTL values in our experiments are set to O(N). In other
words, the packets did not live long enough to tell the tale.

Finally, we remark that in the experiment by Young and Yung [32] for their Drunk Motorcyclist
protocol, packets are created by all N nodes in the network constantly until the first packet reaches
its intended destination. Therefore, although the average number of hops traveled until successful

19



Fig. 8: Average number of hops traveled against TTL

delivery of their protocol in our dense graphs is measured to be 146 according to Young and
Yung [32], the number did not reflect the average performance of the protocol as the experiment
favored those sender-receiver pairs which are close to each other. Their experiment might have
neglected the performance of the protocol for the nodes located in the more isolated areas.

6 Concluding Remark

We have presented simple yet expressive syntax and security definitions of anonymous communi-
cation protocols and oblivious forwarding protocols. For the former, we have proposed a generic
construction from key-private public-key encryption and oblivious forwarding protocols. For the
latter, we have proposed a generic construction from any random walk algorithm over graphs. Our
work provides a modular way of constructing anonymous communication protocols and a simple
way to analyze their anonymity.

Furthermore, we have specially designed a construction of oblivious forwarding protocols which
optimizes the probability of successful delivery. Our experiment results suggest that our opti-
mized construction performs significantly better in terms of the probability of successful delivery in
graphs capturing the characteristics of real world networks. In contrast to some efficient yet not-so-
anonymous communication protocols, our constructions provide anonymity even in the presence of
a powerful adversary, which can observe and control all traffic in the network and corrupt all but
two nodes. The strong anonymity comes at an efficiency cost due to the obliviousness of the routing
strategy. We leave the study of the trade-off between anonymity and efficiency as a future work.

20



Acknowledgments

Sherman S.M. Chow is supported by the Early Career Scheme and the Early Career Award of the
Research Grants Council, Hong Kong SAR (CUHK 439713).

References

1. Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and Peter Druschel. Backref: Accountability
in anonymous communication networks. In Applied Cryptography and Network Security - 12th International
Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, pages 380–400, 2014.

2. Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar Mohammadi. Provably secure and practical onion
routing. In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June
25-27, 2012, pages 369–385, 2012.

3. Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfandiar Mohammadi. AnoA: A
framework for analyzing anonymous communication protocols. In 2013 IEEE 26th Computer Security Founda-
tions Symposium, New Orleans, LA, USA, June 26-28, 2013, pages 163–178, 2013.

4. Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfandiar Mohammadi. AnoA: A
framework for analyzing anonymous communication protocols. Cryptology ePrint Archive 2014/087, 2014.

5. Michael Backes, Aniket Kate, Sebastian Meiser, and Esfandiar Mohammadi. (nothing else) mator(s): Monitoring
the anonymity of tor’s path selection. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 513–524, 2014.

6. A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science, 286:509–512, October 1999.
7. Amos Beimel and Shlomi Dolev. Buses for anonymous message delivery. J. Cryptology, 16(1):25–39, 2003.
8. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption.

In Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory and Application of
Cryptology and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings, pages 566–582,
2001.

9. Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1st edition, 1997.
10. Graham Brightwell and Peter Winkler. Maximum hitting time for random walks on graphs. Random Struct.

Algorithms, 1(3):263–276, October 1990.
11. David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM, 24(2):84–

88, 1981.
12. David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryp-

tology, 1(1):65–75, 1988.
13. Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging system handling

millions of users. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015, pages 321–338, 2015.

14. Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messaging. In Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages 340–350, Chicago, Illinois, USA,
October 4–8, 2010. ACM Press.

15. Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messaging. In Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, pages 340–350, 2010.

16. Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively accountable anonymous messaging
in verdict. In Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013,
pages 147–162, 2013.

17. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion router. In Pro-
ceedings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages 303–320,
2004.

18. Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. Probabilistic analysis of onion routing in a black-box
model. ACM Trans. Inf. Syst. Secur., 15(3):14, 2012.

19. Nethanel Gelernter and Amir Herzberg. On the limits of provable anonymity. In Proceedings of the 12th annual
ACM Workshop on Privacy in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013, pages
225–236, 2013.

21



20. Alejandro Hevia and Daniele Micciancio. An indistinguishability-based characterization of anonymous channels.
In Privacy Enhancing Technologies, 8th International Symposium, PETS 2008, Leuven, Belgium, July 23-25,
2008, Proceedings, pages 24–43, 2008.

21. Andreas Hirt, Michael J. Jacobson Jr., and Carey L. Williamson. A practical buses protocol for anonymous
internet communication. In Third Annual Conference on Privacy, Security and Trust, October 12-14, 2005, The
Fairmont Algonquin, St. Andrews, New Brunswick, Canada, Proceedings, 2005.

22. Andreas Hirt, Michael J. Jacobson Jr., and Carey L. Williamson. Taxis: Scalable strong anonymous communi-
cation. In 16th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS 2008), Baltimore, Maryland, USA, September 8-10, 2008, pages 269–278, 2008.

23. Satoshi Ikeda, Izumi Kubo, and Masafumi Yamashita. The hitting and cover times of random walks on finite
graphs using local degree information. Theor. Comput. Sci., 410(1):94–100, January 2009.

24. Brian Neil Levine and Clay Shields. Hordes: a multicast-based protocol for anonymity. Journal of Computer
Security, 10(3):213–240, 2002.

25. Prateek Mittal, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
anonymous communication using private information retrieval. In 20th USENIX Security Symposium, San Fran-
cisco, CA, USA, August 8-12, 2011, Proceedings, 2011.

26. Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In Proceedings of the 10th annual ACM workshop on Privacy in the electronic
society, WPES 2011, Chicago, IL, USA, October 17, 2011, pages 103–114, 2011.

27. Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy by data minimization: Anonymity,
unlinkability, undetectability, unobservability, pseudonymity, and identity management. http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, August 2010. v0.34.

28. Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications, 16(4):482–494, 1998.

29. Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. ACM Trans. Inf. Syst. Secur.,
1(1):66–92, 1998.

30. Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky, Bryan Ford, and Aaron Johnson. Security
analysis of accountable anonymity in dissent. ACM Trans. Inf. Syst. Secur., 17(1):4:1–4:35, 2014.

31. David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood, CA, USA, October 8-10, 2012, pages 179–182, 2012.

32. Adam L. Young and Moti Yung. The drunk motorcyclist protocol for anonymous communication. In IEEE
Conference on Communications and Network Security, CNS 2014, San Francisco, CA, USA, October 29-31,
2014, pages 157–165, 2014.

A How to Use Our Anonymous Communication Protocols?

As a quick summary, we have proposed a new formulation of anonymous communication protocols
and provided several generic constructions. Note that the functionality of an anonymous com-
munication protocol itself is rather limited: It forwards packets randomly without guaranteeing
delivery. We thus provide in the following some guidelines about how to make the best use of these
anonymous communication protocols.

Network Environment In the previous sections, we focus our discussion on strongly connected
directed graphs, assuming each node in the graph to be both potential sender and receiver, and
is willing to forward packets according to the anonymous communication protocol. This setting
suffices for networks formed for specific uses (e.g., P2P networks).

In the case of the internet, end users are connected to their local autonomous systems (AS),
which are then interconnected to form the internet. While the end users are the potential senders and
receivers, they are not supposed to forward packets to neighboring nodes. Instead, the majority of
the routing tasks are performed between different ASes. Thus, it is reasonable to think of each AS as
a node in an anonymous communication protocol. In this setting, an end user simply sends ordinary

22



packets to its local AS, which then encapsulates the entire packet as a message using an anonymous
communication protocol. Anonymity of the two end users at either side of a communication channel
is guaranteed assuming only trusted local ASes of the senders and receivers. We think that this
minimal level of trust is acceptable as the end users pay the ASes to subscribe for internet services.

How to Guarantee Successful Delivery? Recall that a packet sent through an anonymous commu-
nication protocol is guaranteed to reach its intended destination only with a positive probability.
Moreover, since the anonymous communication protocol is sender-anonymous even against ma-
licious receivers, even the intended receiver itself does not know the sender. Thus, there is no
indication of success delivery such as the ACK response. The sender can at best send out the mes-
sage multiple times, using independent randomness for anonymity, so that hopefully the intended
receiver can receive the message.

For reliable communication, the sender needs to concatenate its identity to the message, and
send out the same message repeatedly, again using independent randomness for anonymity, until
receiving an ACK from the receiver. This ACK response is again concatenated by the identity
of the receiver, and is sent multiple times so that hopefully the sender can receive it. In short,
we can imagine an anonymized TCP connection where each message is sent using an anonymous
communication protocol.

Anonymity-Efficiency Trade-off It is of little doubt that anonymous communication protocols with
the strongest possible anonymity are inefficient, which is shown under a more complex defini-
tion [19]. To benefit from the strong anonymity guarantee, one can consider a hybrid approach
in practice: We still use low-latency anonymous communication protocols (e.g., Tor) to setup a
fixed route between the sender and the receiver. However, at somewhere in the middle of the route,
we use strong anonymous communication protocols within a small subgraph to “cut off” the link.
We note that it requires a careful analysis of this approach, perhaps under relaxed definitions, to
examine the actual gain of anonymity. We leave it as a future work.

B Related Work

B.1 Other Anonymous Communication Protocols

Anonymous communication protocols can be classified roughly into two categories: One class (which
is also our focus) provides strong anonymity. Another class features low latency and scalability,
which often rely on trusted participants, servers, or other third parties. Examples in this class
include the classical Crowds [29], mix networks (Mixnets) [11], and onion routing [28] (e.g., Tor [17]).

Crowds provides sender anonymity by having the sender randomly forward requests to crowd
members, until the request eventually reaches the receiver. Hordes [24] replaces the reply mechanism
of Crowds and onion routing by multi-cast to improve efficiency.

Mixnets collect packets from different sources, shuffle and forward them to the next hop in a
random order. Multiple layers of encryption is used. The message is in the inner-most layer.

The idea of layered encryption is also applied in onion-routing, where a sender randomly selects
a path of “somewhat trusted” routers and encrypts its packet to the routers along this path in
layers, so that the last router can send the inner-most content to the intended receiver. The Tor
network [17] is the most widely deployed anonymous communication network which uses onion
routing as its underlying routing mechanism.

23



A common problem in most of these schemes (in the case of Mixnets, we consider the efficient
variants which do not use zero-knowledge proofs) is that, anonymity is not guaranteed in a strong
adversarial model where the adversary is able to observe or even control the traffic. In particular,
the sender and receiver will be known to the first and last relay respectively for Tor.

While our work focuses on a highly distributed setting where each user in the network sends and
forwards packets individually, some recent work, such as Dissent [14,31] and Riposte [13], utilize
cooperation among users to achieve strong anonymity and efficiency at the same time.

Dissent [14,31] introduces semi-trusted servers to make dining cryptographers networks (DC-
nets) [12] practical in a decent scale. It provides anonymity if at least one of the servers is honest.
Dissent provides also accountability which is not considered in most anonymous communication
protocols. However, Dissent ideally assumes that all members remain connected and send correct
signed messages during one round. It takes a very long (O(N)) time to exclude a single disruptor.

Riposte [13] works on a slightly different setting where a huge number of users wish to post
on a shared bulletin board anonymously. Compared to Dissent, Riposte provides similar privacy
guarantee, and is able to identify malicious users faster.

B.2 Other Frameworks for Anonymity Analysis

While we focus on giving a simple definition for the strongest possible anonymity, where leakage
of anonymity is negligible, Backes et al. [3,5,4] formulated a framework AnoA to qualitatively and
quantitatively analyze abstract anonymous communication protocols. Their definition is similar to
ours in the sense that they also consider a security game played between a powerful adversary and
a challenger. Similar to our relaxations, they also introduce adversary classes as wrappers of the
powerful adversary to capture realistic attacks. There are several differences from our definitions.

– First, instead of a indistinguishability-style definition which quantifies anonymity leakage addi-
tively, they give a differential-privacy-style definition, which quantifies anonymity leakage both
multiplicatively and additively. This is helpful for analyzing imperfect anonymous communica-
tion protocols which provide weak anonymity. However, we remark that we can easily add the
multiplicative factor to our definition as well if desired.

– Second, the anonymous communication protocols in AnoA are modeled abstractly as general
interactive Turing machines, whereas in our work we give a simple syntax to capture a wide
range of anonymous protocols. We think this makes our anonymity definition easier to use.

– Lastly, AnoA considers static corruption, i.e., the set of corrupted entities is chosen at the
beginning of the anonymity game, while we consider adaptive corruption.

Besides the general framework, much effort has been made over the decades to analyze various
anonymous communication protocols under different anonymity definitions and adversarial capa-
bilities. Recent examples include a probabilistic analysis to onion routing [18], the analyze of Tor in
the UC framework [18,2], fingerprinting attacks on onion routing [26], and accountable anonymous
communication [15,31,16,30,1].

C Preliminary

A public-key encryption scheme is a tuple of PPT algorithms PKE = (Setup, KGen, Enc, Dec)
defined below.

24



Experiment IK-CCA2APKE(1λ)

1 : Corrupt := φ,Challenge := φ

2 : PP← PKE.Setup(1λ)
3 : (pkj , skj)← PKE.KGen(PP) ∀j ∈ [N ]

4 : (st, j0, j1,m∗)← ACorrO,DecO(1λ, {pkj}
N
j=1)

5 : b← {0, 1}
6 : c∗ ← PKE.Enc(pkjb

,m∗)
7 : Challenge := {(j0, c∗), (j1, c∗)}

8 : b′ ← ACorrO,DecO(1λ, st, c∗)
9 : return (b = b′ ∧ j0 6∈ Corrupt ∧ j1 6∈ Corrupt)

Oracle CorrO(j)

1 : Corrupt := Corrupt ∪ {j}
2 : return skj

Oracle DecO(j, c)

1 : if (j, c) ∈ Challenge
2 : return ⊥
3 : else
4 : return PKE.Dec(skj , c)
5 : endif

Fig. 9: Experiment for IK-CCA2 security of public-key encryption (modified from Bellare et al. [8])

– PP← Setup(1λ) is a probabilistic algorithm which takes as input the security parameter λ, and
outputs a public parameter PP.

– (pk, sk)← KGen(PP) is a probabilistic algorithm which takes as input the public parameter PP,
and outputs a public key pk and a secret key sk.

– c← Enc(pk,m) is a probabilistic algorithm which takes as input the public key pk and a message
m, and outputs a ciphertext c.

– m ← Dec(sk, c) is a deterministic algorithm which takes as input the secret key sk and a
ciphertext c, and outputs a message m.

We say PKE is correct if it holds that

Pr[m′ = m : PP← KGen(1λ); (pk, sk)← KGen(PP); c← Enc(pk,m);m′ ← Dec(sk, c)] ≥ 1− negl(λ) .

Key-privacy of PKE is introduced by Bellare et al. [8], which requires that no probabilistic
polynomial time (PPT) adversary can distinguish between ciphertexts produced from two public
keys chosen by the challenger. In this work, we consider a slightly modified definition, where the
adversary is given access to a corruption oracle which returns the secret key of the requested party.

Let N = poly(λ) be an integer. Let CorrO be a corruption oracle which, on input j, returns skj .
Let DecO be a decryption oracle which, on input j and c, returns m← Dec(skj , c). We say PKE is
key-private under adaptive chosen ciphertext attack (IK-CCA2) if, for any PPT adversary A,

|2 Pr[IK-CCA2APKE(1λ) = 1]− 1| ≤ negl(λ)

where the probability is taken over the random coins of the experiment and the adversary, and
the experiment IK-CCA2APKE is defined in Figure 9. One can also define a corresponding IK-CPA
notion for chosen plaintext attack security by removing the decryption oracle.

25


	Another Look at Anonymous Communication

