
A Communication-Efficient Decentralized Newton’s
Method with Provably Faster Convergence

Huikang Liu, Jiaojiao Zhang, Anthony Man-Cho So, and Qing Ling

Abstract—In this paper, we consider a strongly convex finite-
sum minimization problem over a decentralized network and pro-
pose a communication-efficient decentralized Newton’s method
for solving it. The main challenges in designing such an algorithm
come from three aspects: (i) mismatch between local gradi-
ents/Hessians and the global ones; (ii) cost of sharing second-
order information; (iii) tradeoff among computation and com-
munication. To handle these challenges, we first apply dynamic
average consensus (DAC) so that each node is able to use a local
gradient approximation and a local Hessian approximation to
track the global gradient and Hessian, respectively. Second, since
exchanging Hessian approximations is far from communication-
efficient, we require the nodes to exchange the compressed
ones instead and then apply an error compensation mecha-
nism to correct for the compression noise. Third, we introduce
multi-step consensus for exchanging local variables and local
gradient approximations to balance between computation and
communication. With novel analysis, we establish the globally
linear (resp., asymptotically super-linear) convergence rate of
the proposed algorithm when m is constant (resp., tends to
infinity), where m ≥ 1 is the number of consensus inner steps.
To the best of our knowledge, this is the first super-linear
convergence result for a communication-efficient decentralized
Newton’s method. Moreover, the rate we establish is provably
faster than those of first-order methods. Our numerical results
on various applications corroborate the theoretical findings.

Index Terms—Decentralized optimization, convergence rate,
Newton’s method, compressed communication

I. INTRODUCTION

In this paper, we consider solving a finite-sum optimization
problem defined over an undirected, connected network with
n nodes:

x∗ = arg min
x∈Rd

F (x) ≜
1

n

n∑
i=1

fi(x). (1)

Here, x ∈ Rd is the decision variable and fi : Rd → R is
a twice-continuously differentiable function privately owned

Huikang Liu is with the Research Institute for Interdisciplinary Sci-
ences, Shanghai University of Finance and Economics (e-mail: li-
uhuikang@sufe.edu.cn). Jiaojiao Zhang is with the Division of Decision and
Control Systems, KTH Royal Institute of Technology (e-mail: jiaoz@kth.se).
Anthony Man-Cho So is with the Department of Systems Engineering and
Engineering Management, The Chinese University of Hong Kong (e-mail:
manchoso@se.cuhk.edu.hk). Qing Ling is with the School of Computer
Science and Engineering and Guangdong Provincial Key Laboratory of
Computational Science, Sun Yat-Sen University, and also with the Pazhou
Lab (e-mail: lingqing556@mail.sysu.edu.cn).

Huikang Liu is supported by National Natural Science Foundation of China
grant 72192832. Qing Ling is supported by National Natural Science Founda-
tion of China grants 61973324 and 12126610, Guangdong Basic and Applied
Basic Research Foundation grant 2021B1515020094, and Guangdong Provin-
cial Key Laboratory of Computational Science grant 2020B1212060032.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
additional mathematical derivations.

by node i. The entire objective function F is assumed to be
strongly convex. Each node is allowed to exchange limited
information with its neighbors during the optimization process.
To make (1) separable across the nodes, one common way is
to introduce a local copy xi ∈ Rd of x for node i and then
force all the local copies to be equal by adding consensus
constraints. This leads to the following alternative formulation
of Problem (1):

x∗ = argmin
{xi}n

i=1

1

n

n∑
i=1

fi (xi) (2)

s.t. xi = xj , ∀j ∈ Ni, ∀i.

Here, x∗ ≜ [x∗; . . . ;x∗] ∈ Rnd and Ni is the set of neighbors
of node i. The equivalence between (1) and (2) holds when the
network is connected. Decentralized optimization problems in
the form of (2) appear in various applications, such as fed-
erated learning [1], sensor networking [2], statistical learning
[3], etc.

Decentralized algorithms for solving (2) are well studied.
All nodes cooperatively obtain the common optimal solu-
tion x∗, simultaneously minimizing the objective function
and reaching consensus. Generally speaking, minimization is
realized by inexact descent on local objective functions and
consensus is realized by variable averaging with a mixing
matrix [4]. Below, we briefly review the existing first-order
and second-order decentralized algorithms for solving (2).

A. Decentralized First-order Methods

First-order methods enjoy low per-iteration computational
complexity and thus are popular. Decentralized gradient de-
scent (DGD) is studied in [5], [6], where each node updates
its local copy by a weighted average step on local copies from
its neighbors, followed by a minimization step along its local
gradient descent direction. With a fixed step size, DGD only
converges to a neighborhood of x∗. This disadvantage can in
part be explained by the observation that the local gradient is
generally not a satisfactory estimate of the global one, even
though the local copies are all equal to the optimal solution x∗.
To construct a better local direction, various works with bias-
correction techniques are proposed, such as primal-dual [7]–
[10], exact diffusion [11], and gradient tracking [12]–[14]. For
example, gradient tracking replaces the local gradient in DGD
with a local gradient approximation obtained by the dynamic
average consensus (DAC) technique, which leads to exact
convergence with a fixed step size. A general decentralized
heavy-ball method, which includes several accelerated first-
order methods as special cases, is presented in [15]. Unified



frameworks for first-order algorithms are investigated in [16],
[17].

In the centralized setting, it is well-known that the conver-
gence of first-order algorithms suffers from dependence on
κF , the condition number of the objective function F . In the
decentralized setting, the dependence is not only on κF but
also on the network. Specifically, let σ be the second largest
singular value of the mixing matrix used in decentralized
optimization and 1

1−σ be the condition number of the under-
lying communication graph. A network with larger 1

1−σ has a
weaker information diffusion ability. For strongly convex and
smooth problems, the work [18] establishes the lower bounds
O
(√

κF log 1
ϵ

)
and O

(√
κF

1−σ log 1
ϵ

)
on the computation and

communication costs for decentralized first-order algorithms
to reach an ϵ-optimal solution, respectively. The lower bounds
are achieved or nearly achieved in [19], [20], where multi-
step consensus is introduced to balance the computation and
communication costs.

B. Decentralized Second-order Methods

In the centralized setting, Newton’s method is proved to
have a locally quadratic convergence rate that is indepen-
dent of κF . However, whether there is a communication-
efficient decentralized variant of Newton’s method with κF -
independent super-linear convergence rate under mild as-
sumptions is still an open question. On the one hand, some
decentralized second-order methods have provably faster rates
but suffer from inexact convergence, high communication cost,
or requiring strict assumptions. The work [21] extends the
network Newton’s method in [22] for minimizing a penalized
approximation of (1) and shows that the convergence rate is
super-linear in a specific neighborhood near the optimal solu-
tion of the penalized problem. Beyond this neighborhood, the
rate becomes linear. The work [23] proposes an approximate
Newton’s method for the dual problem of (2) and establishes
a super-linear convergence rate within a neighborhood of the
primal-dual optimal solution. However, in each iteration, it
needs to solve the primal problem exactly to obtain the dual
gradient and call a solver to obtain the local Newton direction.
The work [24] proposes a decentralized adaptive Newton’s
method, which uses the communication-inefficient flooding
technique to make the global gradient and Hessian available
to each node. In this way, each node conducts exactly the
same update so that the global super-linear convergence rate
of the centralized Newton’s method with Polyak’s adaptive
step size still holds. The work [25] proposes a decentralized
Newton-type method with cubic regularization and proves
faster convergence up to statistical error under the assumption
that each local Hessian is close enough to the global Hessian.
The work [26] studies quadratic local objective functions and
shows that for a distributed Newton’s method, the computation
complexity depends only logarithmically on κF with the help
of exchanging the entire Hessian matrices. The algorithm in
[26] is close to that in [27], but the latter has no convergence
rate guarantee.

On the other hand, some works are devoted to developing
efficient decentralized second-order algorithms with similar

computation and communication costs per iteration to first-
order algorithms. However, these methods only have globally
linear convergence rate, which is no better than that of first-
order methods [28]–[34]. Here we summarize several reasons
for the lack of provably faster rates: (i) The information fusion
over the network is realized by averaging consensus, whose
convergence rate is at most linear [4]. (ii) The global Hessian is
estimated just from local Hessians [28]–[32] or from Hessian
inverse approximations constructed with local gradient approx-
imations [33], [34]. The purpose is to avoid the communication
of entire Hessian matrices, but a downside is that the nodes
are unable to fully utilize the global second-order information.
(iii) The global Hessian matrices are typically assumed to be
uniformly bounded, which simplifies the analysis but leads to
under-utilization of the curvature information [28]–[34]. (iv)
For the centralized Newton’s method, backtracking line search
is vital for convergence analysis. It adaptively gives a small
step size at the early stage to guarantee global convergence
with arbitrary initialization and always gives a unit step
size after reaching a neighborhood of the optimal solution
to guarantee locally quadratic convergence rate. However,
backtracking line search is not affordable in the decentralized
setting since it is expensive for all the nodes to jointly calculate
the global objective function value.

To the best of our knowledge, there is no decentralized
Newton’s method that, under mild assumptions, is not only
communication-efficient but also inherits the κF -independent
super-linear convergence rate of the centralized Newton’s
method. Therefore, in this paper we aim to address the follow-
ing question: Can we design a communication-efficient decen-
tralized Newton’s method that has a provably κF -independent
super-linear convergence rate?

C. Major Contributions
To answer these questions, we propose a decentralized New-

ton’s method with multi-step consensus and compression and
establish its convergence rate. Roughly speaking, our method
proceeds as follows. In each iteration, each node moves one
step along a local approximated Newton direction, followed by
variable averaging to improve consensus. To construct the local
approximated Newton direction, we use the DAC technique to
obtain a gradient approximation and a Hessian approximation,
which track the global gradient and global Hessian, respec-
tively. To avoid having each node to transmit the entire local
Hessian approximation, we design a compression procedure
with error compensation to estimate the global Hessian in
a communication-efficient way. In other words, each node
is able to obtain more accurate curvature information by
exchanging the compressed local Hessian approximations with
its neighbors, without incurring a high communication cost. In
addition, to balance between computation and communication
costs, we use multi-step consensus for communicating the
local copies of the decision variable and the local gradient
approximations. Multi-step consensus helps to obtain not only
a globally linear rate that is independent of the graph but also
a faster local convergence rate.

Theoretically, we show, with novel analysis, that our pro-
posed method enjoys a provably faster convergence rate than



those of decentralized first-order methods. The convergence
process is split into two stages. In Stage I, we use a small step
size and get globally linear convergence at the contraction rate
of 1−O

(
1
κF

)
min

{
(1−σ2)3

σm−1 , 1
2

}
with arbitrary initialization.

Here, 1
1−σ is the condition number of the graph, κF is the con-

dition number of the objective function, and m is the number
of consensus inner steps. This globally linear rate holds for
any m ≥ 1. As a special case, when m ≥ log 2(1−σ2)3

log σ + 1,

the contraction rate in Stage I becomes 1 − O
(

1
κF

)
, which

is independent of the graph. When the local copies are close
enough to the optimal solution, the algorithm enters Stage II,
where we use a unit step size and get the faster convergence
rate of σ

m
2 . This implies that we have a κF -independent linear

rate when m is a constant and an asymptotically super-linear
rate when m increases to infinity as the number of iterations
increases to infinity. When m > 4 log(4κF )

− log σ , the communication

complexity in Stage II is O
(

1
− log σ log 1

ϵ

)
. Since Stage I

terminates within a finite number of iterations, when ϵ is small,
our algorithm, albeit using multi-step consensus, still has a
lower total communication cost than first-order algorithms due
to the independence of κF in Stage II. A comparison of the
iteration complexity of existing decentralized first-order and
second-order methods are summarized in Table I.

TABLE I: Iteration complexity to reach an ϵ-optimal solution
for decentralized consensus optimization algorithms

Algorithm Iteration complexity

DLM [9] O

(
max

{
κ2
F λmax(Lu)

λmin(Lu)
,

(λmax(Lu))2

λmin(Lu)λ̂min(Lo)

}
log 1

ϵ

)
1

EXTRA [8] O

(
κ2
F

1−σ
log 1

ϵ

)
2

GT [12] O

(
κ2
F

(1−σ)2
log 1

ϵ

)
DQM [28] O

(
max

{(
λmax(Lu)

λ̂min(Lo)

)2
,
κF λmax(Lu)

λ̂min(Lo)

}
log 1

ϵ

)
3

ESOM [35] O

(
κ2
F

λ̂min(In−W )
log 1

ϵ

)
4

NT [31] O

(
max

{
κ2
F + κF

√
κg ,

κ
3/2
g

κF
+ κF

√
κg

}
log 1

ϵ

)
5

This Paper Stage I: min
{
K,O

(
κF max

{
σm−1

(1−σ2)3
, 2

}
log 1

ϵ

)}
6

Stage II: O
(

1
−m log σ

log 1
ϵ

)
7

Notation. We use Id to denote the d×d identity matrix, 1n
to denote the n-dimensional column vector of all ones, ∥ ·∥ to
denote the Euclidean norm of a vector or the largest singular

1Here, Lu and Lo are the unoriented and oriented Laplacian defined in
[9], respectively. The rate is obtained when α = L1κF

λmin(Lu)
and ϵ = L1κF

with L1 being the Lipschitz constant of the gradient.
2Here, W is the mixing matrix, W̃ = In+W

2
, and α =

0.5λ̂min(W̃ )
L1κF

.
3Here, the convergence is local and α = L1

λmax(Lu)λ̂min(L0)
.

4Here, the convergence is local and the number of consensus inner steps
goes to infinity.

5Here, κg =
λmax(In−W )

λ̂min(In−W )
as defined in [31] and the convergence is local.

6Here, K is a finite constant defined in (18) and is independent of ϵ. Stage
I terminates within K steps and Stage II is independent of κF . For simplicity,
we use the local Lipschitz constant of the gradient L1 to define κF . Actually,
by following the techniques in [30], we can use the global Lipschitz constant
of the gradient for L1.

7Here, m is set as a constant.

value of a matrix, ∥ · ∥F to denote the Frobenius norm, and
⊗ to denote the Kronecker product. For a matrix A, we use
A ≥ 0 to indicate that each entry of A is non-negative. For a
symmetric matrix A, we use A ⪰ 0 and A ≻ 0 to indicate that
A is positive semidefinite and positive definite, respectively.
For two matrices A and B of the same dimensions, we use
A ≥ B, A ⪰ B, and A ≻ B to indicate that A − B ≥ 0,
A − B ⪰ 0, and A − B ≻ 0, respectively. We use λmax(·),
λmin(·), and λ̂min(·) to denote the largest, smallest, and the
smallest positive eigenvalues of a matrix, respectively.

For x1, . . . , xn ∈ Rd, we define the aggregated vari-
able x = [x1; . . . ;xn] ∈ Rnd. The aggregated variables d
and g are defined similarly. We define the average variable
over all the nodes at time step k as xk = 1

n

∑n
i=1 x

k
i ∈

Rd. The average variables d
k

and gk are defined simi-
larly. We define the aggregated gradient at time step k
as ∇f(xk) =

[
∇f1(x

k
1); . . . ;∇fn(x

k
n)
]

∈ Rnd, the av-
erage of all the local gradients at the local variables as
∇f(xk) = 1

n

∑n
i=1 ∇fi(x

k
i ) ∈ Rd, and the average of all

the local gradients at the common average xk as ∇F (xk) =
1
n

∑n
i=1 ∇fi(x

k) ∈ Rd. The aggregated Hessian ∇2f(xk) ∈
Rnd×d, the average of all the local Hessian at the local
variables ∇2f(xk) ∈ Rd×d, and the average of all the local
Hessians at the common average ∇2F (xk) ∈ Rd×d are
defined similarly. Given the matrices Hk

i ∈ Rd×d, we define
the aggregated matrix Hk = [Hk

1 ; . . . ;H
k
n] ∈ Rnd×d. The

aggregated matrices Ek, H̃k, and Ĥk are defined similarly.
We define the average variable over all the nodes at time step
k as H

k
= 1

n

∑n
i=1 H

k
i and diag{Hi} ∈ Rnd×nd as the block

diagonal matrix whose i-th block is Hi ∈ Rd×d. We define
W = W ⊗ Id ∈ Rnd×nd and W∞ =

1n1
T
n

n ⊗ Id ∈ Rnd×nd.

II. PROBLEM SETTING AND ALGORITHM DEVELOPMENT

In this section, we give the problem setting and the basic
assumptions. Then, we propose a decentralized Newton’s
method with multi-step consensus and compression.

A. Problem Setting

We consider an undirected, connected graph G = (V, E),
where V = {1, . . . , n} is the set of nodes and E ⊆ V × V is
the set of edges. We use (i, j) ∈ E to indicate that nodes i and
j are neighbors, and neighbors are allowed to communicate
with each other. We use Ni to denote the set of neighbors of
node i and itself. We introduce a mixing matrix W ∈ Rn×n to
model the communication among nodes. The mixing matrix
is assumed to satisfy the following:

Assumption 1. The mixing matrix W is non-negative, sym-
metric, and doubly stochastic (i.e., wij ≥ 0 for all i, j ∈
{1, . . . , n}, W = WT , and W1n = 1n) with wij = 0 if and
only if j /∈ Ni.

Assumption 1 implies that the null space of In − W is
span(1n), the eigenvalues of W lie in (−1, 1], and 1 is an
eigenvalue of W of multiplicity 1. Let σ be the second largest
singular value of W . Under Assumption 1, we have

σ = ∥W −W∞∥ < 1.



Usually, σ is used to represent the connectedness of the graph
[5], [8]. Mixing matrices satisfying Assumption 1 are fre-
quently used in decentralized optimization over an undirected,
connected network; see, e.g., [36] for details.

Throughout the paper, we make the following assumptions
on the local objective functions.

Assumption 2. Each fi is twice-continuously differentiable.
Both the gradient and Hessian are Lipschitz continuous, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L1∥x− y∥

and

∥∇2fi(x)−∇2fi(y)∥ ≤ L2∥x− y∥

for all x, y ∈ Rd, where L1 > 0 and L2 > 0 are the Lipschitz
constants of the local gradient and local Hessian, respectively.

Assumption 3. The entire objective F is µ-strongly convex
for some constant µ > 0, i.e.,

∇2F (x) ⪰ µId

for all x ∈ Rd, where µ is the strong convexity constant.

We should remark that in Assumption 3, we only assume the
entire objective function F to be strongly convex. The local
objective function fi on each node could even be nonconvex,
which makes our analysis more general.

To avoid having each node to communicate the entire local
Hessian approximation, we design a compression procedure
with a deterministic contractive compression operator Q(·)
that satisfies the following assumption.

Assumption 4. The deterministic contractive compression
operator Q : Rd×d → Rd×d satisfies

∥Q(A)−A∥F ≤ (1− δ)∥A∥F (3)

for all A ∈ Rd×d, where δ ∈ (0, 1] is a constant determined
by the compression operator.

We now present two concrete examples of such an operator.
Let A =

∑d
i=1 σiuiv

T
i be the singular value decomposition of

the matrix A, where σi is the i-th largest singular value with ui

and vi being the corresponding singular vectors. The Rank-K
compression operator outputs Q(A) =

∑K
i=1 σiuiv

T
i , which

is a rank-K approximation of A. For Top-K compression
operator, Q(A) keeps the K largest entries (in terms of the
absolute value) of the matrix A and sets the other entries as
zero. For more details of compression operators, one can refer
to [37]–[39].

The following proposition shows that both the Rank-K and
Top-K compression operators satisfy Assumption 4.

Proposition 1. For the Rank-K and Top-K compression
operators, Assumption 4 holds with δ = K

2d and δ = K
2d2 ,

respectively.

Proof. See the full version [40].

Remark 1. Different from the random compression operators
used in first-order algorithms [41], [42], we use deterministic
compression operators. This is because any realization not

satisfying (3) may lead to a non-positive semidefinite Hessian
approximation and thus leads to the failure of the proposed
Newton’s method.

B. Algorithm Development

In this section, we propose a decentralized Newton’s method
with multi-step consensus and compression. In iteration k,
node i first conducts one minimization step along a local
approximated Newton direction di and then communicates the
result with its neighbors for m rounds to compute

xk+1
i =

∑
j∈Ni

(Wm)ij
(
xk
j − αdkj

)
. (4)

Here, α > 0 is a step size and (Wm)ij is the (i, j)-th entry
of Wm. Such multi-step consensus costs m rounds of com-
munication. As we will show in the next section, multi-step
consensus balances between computation and communication
and is vital to get a provably fast convergence rate.

To update the local direction, we use the DAC technique
to obtain a gradient approximation and a Hessian approxi-
mation, which track the global gradient and global Hessian,
respectively. The gradient approximation gk+1

i on node i is
computed by

gk+1
i =

∑
j∈Ni

(Wm)ij
(
gkj +∇fj(x

k+1
j )−∇fj(x

k
j )
)

(5)

with initialization g0i = ∇fi(x
0
i ). Similar to (4), we use

multi-step consensus to make gk+1
i a more accurate gradient

approximation.

Algorithm 1: Decentralized Newton’s method

Input: x0,d0, g0i = ∇fi(x
0
i ), H

0
i = ∇2fi(x

0
i ), E

0
i , H̃0

i , α,
γ, m, M .
for k = 0, 1, 2, . . . do
xk+1 = Wm(xk − αdk)
gk+1 = Wm

(
gk +∇f(xk+1)−∇f(xk)

)
Compression Procedure
H̃k+1 = H̃k +Q(Hk − H̃k)
Ĥk = H̃k +Q(Ek +Hk − H̃k)
Ek+1 = Ek +Hk − H̃k −Q(Ek +Hk − H̃k)
Hk+1 = Hk−γ(Ind −W)Ĥk+∇2f(xk+1)−∇2f(xk)

dk+1 ≈
(
diag{Hk+1

i }+MInd
)−1

gk+1

end for

To obtain the Hessian approximation, we also use DAC to
mix the second-order curvature information over the network
but keep in mind that communicating the entire local Hessian
approximation leads to a high communication cost. Thus, we
design a compression procedure with error compensation to
estimate the global Hessian in a communication-efficient way.
In other words, each node is able to obtain more accurate
global curvature information by exchanging the compressed



local Hessian approximation with its neighbors, without incur-
ring a high communication cost. The Hessian approximation
Hk+1

i on node i is given by

H̃k+1
i = H̃k

i +Q(Hk
i − H̃k

i ),

Ĥk
i = H̃k

i +Q(Ek
i +Hk

i − H̃k
i ),

Ek+1
i = Ek

i +Hk
i − H̃k

i −Q(Ek
i +Hk

i − H̃k
i ), (6)

Hk+1
i = Hk

i −γ
∑
j∈Ni

wij(Ĥ
k
i − Ĥk

j )+∇2fi(x
k+1
i )−∇2fi(x

k
i )

with initialization H0
i = ∇2fi(x

0
i ), where γ > 0 is a parame-

ter. Compared with DAC without compression, i.e., Hk+1
i =

Hk
i − γ

∑
j∈Ni

wij(H
k
i − Hk

j ) + ∇2fi(x
k+1
i ) − ∇2fi(x

k
i ),

the term wij(H
k
i −Hk

j ) is replaced by wij(Ĥ
k
i − Ĥk

j ), which
can be constructed with compressed communication. There are
two techniques to compensate for the compression error in the
construction of Ĥk

i : (i) We introduce H̃k
i as a counterpart of

Hk
i and compress their difference Hk

i −H̃k
i . (ii) We add Ek

i —
the compression error in the (k−1)-st iteration—back into the
difference Hk

i −H̃k
i in the k-th iteration for error feedback and

compress Ek
i +Hk

i − H̃k
i . Intuitively, there is no compression

error when the algorithm converges so that Hk
i → H̃k

i and
Ek

i → 0. This intuition will be verified by our analysis later
(see Proposition 3). It is worth noting that we only use one
round of communication per iteration to construct the Hessian
approximation.

With the local gradient and Hessian approximations, we are
ready to update the local direction. To avoid calculating the
inverse of the local Hessian approximation, we utilize an early-
terminated conjugate gradient (CG) method [43] to obtain a
local direction dk+1

i via(
Hk+1

i +MId
)
dk+1
i ≈ gk+1

i ,

where M > 0 is a regularization parameter. The accuracy of
the CG step will be given later (see Fact 1). The proposed
algorithm can be written in a compact form as summarized in
Algorithm 1. With a slight abuse of notation in the compact
form, given an aggregated matrix A = [A1; . . . ;An] ∈ Rnd×d,
we use Q(·) to denote the block-wise compression operator
such that Q(A) = [Q(A1); . . . ;Q(An)] ∈ Rnd×d.

In Algorithm 1, computing WĤk requires communicating
the uncompressed matrices Ĥk

1 , . . . , Ĥ
k
n , which is costly. As

shown in [44], there is an equivalent but communication-
efficient implementation of the compression procedure, sum-
marized in Algorithm 2. The basic idea is to introduce an
auxiliary variable H̃k

w that is equal to WH̃k and use it
to construct Ĥk

w that is equal to WĤk. Algorithm 2 is
communication-efficient since the nodes only communicate the
compressed variables Qk and Q̂k. For simplicity, we study
Algorithm 1 in our convergence analysis.

Remark 2. The work [27] proposes a Newton-Raphson
method, which utilizes DAC to track the global gradient and
global Hessian. However, the method requires communication
of local Hessians and computation of matrix inverses. There
is no analysis of the convergence rate in [27]. The work
[39] proposes a decentralized primal-dual algorithm called
LEAD, which compresses the local gradient information to

Algorithm 2: Communication-efficient implementa-
tion

Input: x0,d0, g0i = ∇fi(x
0
i ), H

0
i = ∇2fi(x

0
i ), E

0
i , H̃0

i ,
H̃0

w = WH̃0, α, γ, m, M .
for k = 0, 1, 2, . . . do
xk+1 = Wm(xk − αdk)
gk+1 = Wm

(
gk +∇f(xk+1)−∇f(xk)

)
Compression Procedure
Qk = Q(Hk − H̃k)
Q̂k = Q(Ek +Hk − H̃k)
H̃k+1 = H̃k +Qk

H̃k+1
w = H̃k

w +WQk

Ĥk = H̃k + Q̂k

Ĥk
w = H̃k

w +WQ̂k

Ek+1 = Ek +Hk − H̃k − Q̂k

Hk+1 = Hk − γ(Ĥk − Ĥk
w) +∇2f(xk+1)−∇2f(xk)

dk+1 ≈
(
diag{Hk+1

i }+MInd
)−1

gk+1

end for

save communication. Our compression procedure is similar
to that of LEAD but is applied to compress the local Hes-
sian information. Further efforts are required to analyze the
compression procedure in our paper, including the uniform
boundedness of the Hessian approximations (in Stage I) and
the approximation errors with respect to the global Hessian
(in Stage II). We will elaborate on these in Section III.

III. CONVERGENCE ANALYSIS

In this section, we conduct a novel two-stage analysis
of our proposed Algorithm 1 and establish its convergence
rate. Our analysis reveals that Algorithm 1 is provably faster
than the first-order algorithms. For the centralized Newton’s
method, to get a globally linear convergence rate with arbitrary
initialization and a locally quadratic convergence rate, one
often resorts to backtracking line search, which adaptively
gives a small step size at the early stage and always gives a unit
step size within a neighborhood of the optimal solution [45].
However, backtracking line search becomes expensive in the
decentralized setting. Nevertheless, we can mimic the process
of backtracking line search and split the convergence process
into two stages: The algorithm uses a small step size in Stage I
and converges linearly until the local copies are close enough
to the optimal solution. Then, the algorithm enters Stage II and
starts to use a unit step size; we will show a local faster-than-
linear rate by taking advantage of the curvature information
which is not exploited in Stage I.

Before starting the analysis, we specify the accuracy of the
CG method with the following fact [43].

Fact 1. With at most d iterations for each node, the CG step
yields (

diag{Hk+1
i }+MInd

)
dk+1 = gk+1 + rk+1 (7)

with
∥rk+1∥ ≤ ck∥gk+1∥



for any 0 ≤ ck ≤ 1.

A. Stage I: Globally Linear Convergence

The convergence analysis of Stage I is inspired by the work
of [33], where a general framework of stochastic decentral-
ized quasi-Newton methods is proposed. A globally linear
convergence rate is established under the assumption that
the constructed Hessian inverse approximations are positive
definite with bounded eigenvalues. Similar to [33], we define
two constants M1 and M2 as

M1 ≜ µ+M − L2

√
u0
1

n
− ũ0

2, M2 ≜ L1+M + L2

√
u0
1

n
+ũ0

2,

(8)

where u0
1 is defined in (10) and ũ0

2 is a constant given in (40).

When choosing the parameter M ≥ ũ0
2 + L2

√
u0
1

n , we have
M2 ≥ M1 > 0. We establish the globally linear convergence
in Stage I under the condition

M1Id ⪯ Hk
i +MId ⪯ M2Id, ∀i ∈ {1, . . . , n}. (9)

We will prove that the sequence {Hk
i }k≥0 generated by

Algorithm 1 satisfy condition (9) for all k ≥ 0 (see Proposition
4).

1) Main Theorem for Stage I: In Stage I, we want to
establish the globally linear convergence of Algorithm 1 with
arbitrary initialization. To this end, it is sufficient to only
use the uniform bound instead of the curvature information
of Hessian approximations given in (9). This significantly
simplifies our analysis of Stage I. To begin, let us define

qk
1 ≜

 ∥xk −W∞xk∥2
1
L2

1
∥gk −W∞gk∥2

n
L1

(
F (xk)− F (x∗)

)


and

uk
1 ≜

(
1,

(1− σ2)2

50
, 2σm−1

)
qk
1 , (10)

where uk
1 = 0 implies that xk

1 = · · · = xk
n = x∗ due to the

strong convexity of F .

Theorem 1. Under Assumptions 1–4, if the parameters satisfy

M≥L2

√
u0
1

n
+ ũ0

2, α≤min

{
M2

1 (1− σ2)3

100L1M2σm−1
,

M2
1

200L1M2

}
,

ck ≤ M1

4M2

√
2κF

, γ ≤ δ2(1− σ)

50
, (11)

then for any m ≥ 1 and any x0, we have

uk+1
1 ≤

(
1− µα

2M2

)
uk
1 , ∀k ≥ 0. (12)

Theorem 1 implies that if the parameter M is sufficiently
large, the step sizes α and γ are sufficiently small, and the
CG step is sufficiently accurate, then Algorithm 1 converges
linearly with any number of communication rounds m and any
initialization x0.

Remark 3. By substituting (11) into (12), we have that the
total number of iterations for Algorithm 1 to get an ϵ-optimal
solution is

O

(
κF max

{
σm−1

(1− σ2)3
, 2

}
log

1

ϵ

)
,

where we use M2

M1
= O(1) by setting M ≫ L1+L2

√
u0
1

n + ũ0
2.

Note that this complexity holds for any m ≥ 1. If we set m ≥
log 2(1−σ2)3

log σ + 1, then the computational complexity becomes

O

(
κF log

1

ϵ

)
,

which is independent of the graph. The computational com-
plexity of Stage I is still κF -dependent because we only use
the uniform bounds on the Hessian approximations and have
not yet employed the curvature information. Nevertheless, this
rate is still favorable since the goal of Stage I is to guarantee
globally linear convergence with arbitrary initialization. We
will show a faster theoretical rate for Stage II.

Remark 4. Compared with the analysis of stochastic quasi-
Newton methods in [33], we consider the deterministic case
and need novel techniques to control the inexactness caused by
the CG step. Besides, we get a better theoretical computational
complexity than that of [33] by using DAC to mix local
Hessian approximations.

2) One-step Descent in Stage I: Given that condition (9)
holds at a certain time step k0, the following proposition
establishes one-step descent from uk0

1 to uk0+1
1 .

Proposition 2. Under Assumptions 1–4, if ck ≤ 1 and (9)
holds at a certain time step k0, then we have

qk0+1
1 ≤ J[1]qk0

1 (13)

with

J[1]≜


1−0.49(1−σ2) 0.004(1−σ2)3

64σ2mα2L2
1

(1−σ2)M2
1

33
1−σ2 1− 0.49(1−σ2)

64σ2mα2L2
1

(1−σ2)M2
1

(1−σ2)3

20σm−1

(1−σ2)3

80σm−1 1− µα
M2

 .

Further, if the parameters M , α, ck, and γ satisfy (11), then
(13) implies that

uk0+1
1 ≤

(
1− µα

2M2

)
uk0
1 . (14)

Proof. See Appendix VI-B.

3) Proof of Main Theorem for Stage I: Thanks to Propo-
sition 2, to prove Theorem 1, we only need to show that (9)
holds for all k ≥ 0. Observing that (9) gives bounds on the
Hessian approximations, we need to take the specific compres-
sion procedure into consideration and give the convergence
rate of the Hessian tracking error ∥Hk+1 − W∞Hk+1∥F .
To do this, we establish the following proposition to bound
the compression error ∥Ek+1∥F , the Hessian approximation
difference ∥Hk+1 − H̃k+1∥F , and the Hessian tracking error
∥Hk+1 −W∞Hk+1∥F . Let us define

qk
2 ≜

 ∥Ek∥F
∥Hk − H̃k∥F

∥Hk −W∞Hk∥F





and

uk
2 ≜

(
δ(1− σ)

8(1− δ)
,
1− σ

4
, 1

)
qk
2 .

Here, uk
2 = 0 implies that Ek = 0, H̃k = Hk, and

Hk
1 = · · · = Hk

n = 1
n

∑n
i=1 ∇2fi(x

k
i ), where we use

H
k+1

= ∇2f(xk+1) for all k ≥ 0.

Proposition 3. Under Assumptions 1, 2, and 4, if γ ≤ 1, then
for all k ≥ 0, we have

qk+1
2 ≤ J[2]qk

2 + L2∥xk+1 − xk∥[0; 1; 1] (15)

with

J[2] ≜

1− δ 1− δ 0
4γ (1− δ + 2γ(1− δ)) 2γ
4γ 2γ(1− δ) 1− γ(1− σ)

 .

Further, under Assumption 3, if the parameters M , α, ck, and
γ satisfy (11) and (9) holds at a certain time step k0, then
(15) implies that

uk0+1
2 ≤

(
1− γ

2
(1− σ)

)
uk0
2 +

15L2

4

√
σ−(m−1)uk0

1 . (16)

Proof. See Appendix VI-C.

Observing that Propositions 2 and 3 hold for a certain k0, we
show that (9) holds for all k ≥ 0 via mathematical induction.

Proposition 4. Under the setting of Theorem 1, considering
the sequence {Hk

i }k≥0 for any i ∈ {1, . . . , n} generated by
Algorithm 1, we have that condition (9) holds for all k ≥ 0.

Proof. See Appendix VI-D.

Thus, combining Propositions 2 and 4 directly gives (12).
This completes the proof of Theorem 1.

B. Stage II: Faster Local Convergence
After Stage I, all the local copies xk

1 , . . . , x
k
n are close

enough to x∗ according to Theorem 1 and all the local Hessian
approximations Hk

1 , . . . ,H
k
n are almost consensual according

to Proposition 3, as long as k is sufficiently large. We will
specify the number of iterations needed by Stage I later
(see (18)). In Stage I, we only use the uniform boundedness
of the Hessian approximations and do not take advantage
of the curvature information adequately. However, in Stage
II, to get a locally faster rate, we need to bound the error
between each local Hessian approximation Hk

i and the global
Hessian ∇2F (xk). After this, we further bound the error
between local directions dki and the global Newton direction
(∇2F (xk))−1∇F (xk) (see (42)). In this way, we utilize the
locally quadratic convergence rate of the centralized Newton’s
method to bound ∥xk−x∗∥ (see Corollary 4). The analysis is
novel compared with those of existing first-order and second-
order methods and is vital to relate the decentralized Newton’s
method with the centralized one.

Let the proposed algorithm enter Stage II after K iterations
with

K≥

m
2 log σ − log 41κF

µ
√
n

(
ũ0
2+

52L2κF
√
κFσ− 5m

4

(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

, (18)

where ϕ is defined in (39). Let M1 ≜ 40µ
41 and M2 ≜ L1+

µ
41

in Stage II, which are different from those in Stage I but we
use the same notation for simplicity. We establish the faster
local rate in Stage II under the condition

M1Id ⪯ Hk+1
i ⪯ M2Id, ∀ i ∈ {1, . . . , n} (19)

for all k ≥ K. Proposition 6 below shows that the sequence
{Hk

i }k≥0 for any i ∈ {1, . . . , n} generated by Algorithm 1
satisfies (19).

1) Main Theorem for Stage II: Define qk
3 and J[3] as in

(17) and
uk
3 ≜

(
1, σ−m

4 , 0.5σ− 3m
4

)
qk
3 .

We establish a faster local rate for Stage II.

Theorem 2. Under Assumptions 1–4, if the parameters satisfy

α = 1, M = 0, m >
4 log(4κF )

− log σ
,

ck ≤ M1σ
m
2

40µκF
, γ ≤ δ2(1− σ)

50
, (20)

then for all k ≥ K, we have

uk+1
3 ≤ σ

m
2 uk

3 .

Theorem 2 implies that we get a κF -independent linear rate
when the number of consensus inner steps m is constant in all
iterations. The following corollary extends Theorem 2 to the
case where the number of consensus inner steps varies with
the number of iterations.

Corollary 1. Under Assumptions 1–4, if the parameters satisfy

α = 1, M = 0, m >
4 log(4κF )

− log σ
,

ck ≤ M1σ
mk
2

40µκF
, γ ≤ δ2(1− σ)

50
,

where

mk = m+

⌊
2(k −K) log ϕ

log σ

⌋
(21)

is the number of consensus inner steps in iteration k, then for
all k ≥ K, we have

uk+1
3 ≤ σ

mk
2 uk

3 .

Besides generalizing Theorem 2, Corollary 1 reveals the
interesting theoretical phenomenon that if we choose mk ↗ ∞
as k ↗ ∞, then we can achieve an asymptotically super-linear
rate in Stage II.

Remark 5. In Stage II, we artificially set a unit step size α to
establish a faster local rate. This is done by taking advantage
of the curvature information. Note that existing techniques
for adaptively choosing step sizes, such as backtracking line
search, require evaluations of the entire objective function for
many times per iteration. In our numerical experiments, we
show that geometrically increasing the step size to unit works
well. Furthermore, here are our selection strategies for other
parameters in Algorithm 2. We set γ to a small constant. We
can simply set M = 0, because we use Hessian tracking to



qk
3≜

 ∥xk−W∞xk∥
1
L1

∥gk−W∞gk∥√
n∥xk−x∗∥

, J[3]≜


σm
(
1 + ακF ϱ

k̃0

)
σmα(1 + ϱk̃0)κF 2σmαϱk̃0κF

σm
(
2+ακF +2ακF ϱ

k̃0

)
σm
(
1+ακF (σ

m+2ϱk̃0)
)

σmα
(
1+2κF ϱ

k̃0+ϑk̃0

)
ακF

(
1 + ϱk̃0

)
ακF ϱ

k̃0 1− α+ αϑk̃0 + ακF ϱ
k̃0

 , (17)

where κF = L1

µ , ϑk ≜ L2

2µ∥x
k − x∗∥, and ϱk ≜ 1

M1

(
L2√
n
∥xk −W∞xk∥+ 1√

n
∥Hk −W∞Hk∥F + ckµ

)
for all k ≥ 0.

make Hk
i a good approximation of the global Hessian. We

use the CG method to avoid computing the inverse of Hk
i . We

fix the parameter ck, which represents the accuracy of the CG
step, to a small constant. Since the CG step just solves a linear
system approximately locally, it can be completed quickly. We
set m to a fixed constant. When the geometrically increasing
step size α reaches 1, the proposed algorithm automatically
enters Stage II, in which we need to adjust m to an appropriate
value to achieve a better balance between computation and
communication. As an aside, we can use an increasing mk

(for example, mk = k) to verify the asymptotically super-
linear rate as guaranteed by Corollary 1, though this is more
of theoretical interest.

2) One-step Descent in Stage II: To prove Theorem 2, given
that condition (19) holds for a certain time step k̃0 with k̃0 ≥
K, we establish one-step descent from uk̃0

2 to uk̃0+1
2 .

Proposition 5. Under Assumptions 1–3, if M = 0 and (19)
holds for a certain k̃0 with k̃0 ≥ K, then we have

qk̃0+1
3 ≤ J[3]qk̃0

3 . (22)

Further, if

κF ϱ
k̃0 + ϑk̃0 ≤ 1

20
σ

m
2 (23)

and the parameters α, m, ck, and γ satisfy (20), then (22)
implies that

uk̃0+1
3 ≤ σ

m
2 uk̃0

3 . (24)

Proof. See Appendix VI-E.

3) Proof of Theorem 2: According to Proposition 5, to
prove Theorem 2, we only need to show (19) and (23) hold
for all k ≥ K. This is done in Proposition 6.

Proposition 6. Under the setting of Theorem 2, (19) and (23)
hold for any k ≥ K.

Proof. See Appendix VI-F.

By combining Propositions 5 and 6, we complete the proof
of Theorem 2.

4) Proof of Corollary 1: This is a direct extension of
Propositions 5 and 6; see Appendix VI-G.

IV. NUMERICAL EXPERIMENTS

In the numerical experiments, we consider quadratic pro-
gramming and logistic regression problems over a network.
The network is randomly generated with n nodes connected
by τn(n−1)

2 edges, where τ ∈ (0, 1] is the connectivity ratio.

Fig. 1: Robustness to graph connectivity in Stage I

We pre-compute the optimal solution x∗ with a centralized
Newton’s method. The performance metric is the relative error,
defined as 1

n∥x
k − x∗∥2/∥x0 − x∗∥2. We compare the pro-

posed method with the first-order method ABC [17], the accel-
erated first-order method ABm [15], the multi-step consensus
accelerated first-order method Mudag [20], the second-order
methods SONATA [30] and DiRegINA [25]. We use hand-
optimized step sizes for all the algorithms. The experiments
are done on a laptop with 1.80GHz Intel(R) Core(TM) i7 CPU,
16.0 GB RAM, and Windows 10 operating system.

A. Quadratic Programming

We conduct two sets of numerical experiments to show
that the convergence rate of the proposed Newton’s method
is independent of the graph in Stage I when m is sufficiently
large (as stated in Remark 3) and is independent of κF in
Stage II (as stated in Theorem 2). Let us consider solving a
quadratic programming problem over a network, i.e.,

x∗ = arg min
x∈Rd

n∑
i=1

(
1

2
xTQix+ pTi x

)
.

Each node i has private data Qi ∈ Rd×d ≻ 0 and pi ∈
Rd, whose elements are generated according to the standard
Gaussian distribution. In both experiments, we use Rank-3
compression, set n = 10, d = 30, M = 0, γ = 0.02, and
use the increasing step sizes αk = min{1, 0.02× 1.1k}.

To show that the convergence rate of the proposed Newton’s
method is independent of the graph when m is sufficiently
large in Stage I, we run the proposed algorithm on random
graphs with τ = 0.8, 0.7, 0.6, 0.5, respectively. For these
graphs, we have σ = 0.570, 0.623, 0.639, 0.791, respectively.
According to Remark 3, to get a σ-independent convergence
rate at Stage I, we should have m ≥ log 2(1−σ2)3

log σ + 1. Thus,
we set m = 2, 3, 3, 11, respectively. Also, we set κF = 100.



Fig. 2: Robustness to κF in Stage II

Fig. 1 shows that the convergence process of the proposed
algorithm has two stages. The turning point is at round the
41-st iteration and the corresponding step size is αk ≈ 1.
In Stage I, the proposed algorithm has the same performance
on all the tested graphs, which suggests that the convergence
rate is independent of the graph when m is sufficiently large.
This result is in line with our theoretical findings presented in
Remark 3.

To show the independence of the condition number κF in
Stage II (see Theorem 2), we generate matrices Q1, . . . , Qn

under different condition numbers κF = 10, 102, 104. We
set τ = 0.2. We compare the proposed Newton’s method with
ABC. For the proposed Newton’s method, to further show that
its convergence rate is connected with the number of multi-
step consensus inner-loops, we set m = 15 and m = 20. To
show the asymptotic rate with m → ∞, we consider κF = 104

and m = k, where k is the index of iteration. In ABC, we set
the step sizes α = 0.4, 0.05, 0.0008 for the condition numbers
κF = 10, 102, 104, respectively.

Fig. 2 demonstrates the relative error versus the number of
iterations. For the first-order method ABC, the convergence
slows down with an increasing κF . On the other hand, for the
proposed algorithm, similarly to the results displayed in Fig. 1,
the convergence process has two stages. For each fixed m, our
proposed Newton’s method converges at the same rate under
different κF . Also, the convergence rate is faster with a larger
m. When we increase the number of multi-step consensus
inner-loops to m = k, the convergence rate becomes much
faster. These experiment results corroborate the theoretical
findings in Theorem 2.

B. Logistic Regression

We conduct two sets of numerical experiments to compare
our proposed method with the first-order methods ABC [17],
ABm [15], and Mudag [20] with Top-K compressors, as well
as the second-order methods SONATA [30] and DiRegINA
[25] with Rank-K compressors. We solve a logistic regression
problem

x∗ = argmin
x∈Rd

ρ

2
∥x∥2 +

n∑
i=1

mi∑
j=1

ln
(
1 + exp

(
−
(
oT
ijx
)
pij

))
,

in which each node i privately owns mi training samples
(oij ,pij) ∈ Rd×{−1,+1}, j = 1, . . . ,mi. The regularization
term ρ

2∥x∥
2 parameterized by ρ > 0 is to avoid overfitting.

1) Comparison with first-order methods: In the first set
of numerical experiments, the elements of oij are randomly
generated following the standard Gaussian distribution and
those of pij are generated following the uniform distribution
on {−1, 1}. Thus, f1, . . . , fn are similar. We use the Top-K
compression operator, where node i transmits K = 20 entries
of the matrix with the largest absolute values and their indexes.
There are n = 30 nodes with connectivity ratio τ = 0.2. Each
node has 100 samples, i.e. mi = 100,∀i. The dimension is
d = 20 and the regularization parameter is ρ = 0.001.

The step size of ABC, ABm, and Mudag are best tuned.
For the proposed algorithm, we use the increasing step sizes
αk = min

{
1, 0.2× 1.1k

}
and set γ = 0.03. We set M = 0

and the proposed algorithm still works well. We speculate that
this is because we use the CG step to avoid computing the
inverse of Hk

i + MId and Hk
i becomes closer and closer to

H
k

as the iteration proceeds.
Fig. 3 illustrates the relative error versus the number of

iterations, the number of bits for communication, and the
running time. We run the proposed algorithm with different
m. ABm is better than ABC due to the introduction of
acceleration. Although Mudag outperforms ABm in terms
of the number of iterations by further introducing multi-step
consensus, ABm is advantageous over Mudag in terms of the
number of transmitted bits and running time. When m = 1,
the proposed Newton’s method is better than the others in
terms of the number of iterations but inferior in terms of the
number of transmitted bits and running time, due the use of
second-order information. When m ≥ 7, it outperforms the
others in terms of all three metrics. The reason is that the
advantage of multi-step consensus in reducing the number
of iterations outweighs its disadvantage in incurring more
transmitted bits and running time. In addition, the properly
designed compression procedure guarantees that the number
of transmitted bits is limited.

2) Comparison with second-order methods without data
similarity: We compare the proposed algorithm with the
second-order methods SONATA and DiRegINA. It is worth
noting that SONATA and DiRegINA are proved to have
faster convergence rates than first-order methods under the
assumption of data similarity, meaning that the local Hessians
are similar so that each node can use its local Hessian as
a substitute of the global one [25], [30]. However, in our
algorithm, we do not require such a data similarity assumption.
To generate dissimilar data, the elements of oij are drawn from
the Gaussian distribution with mean 0 and variance i, where
i ∈ [n] and j ∈ [mi]. The other parameters are the same as
those in Fig. 3. We use the Rank-K compression operator,
where each node performs a singular value decomposition
of the matrix and transmits the largest K = 3 singular
values as well as the corresponding singular vectors. For the
proposed algorithm, we use the increasing step sizes αk =
min

{
1, 0.2× 1.1k

}
. We set γ = 0.08. For SONATA, we use

the second-order approximation of the local objective fi(x) ≈
fi(x

k
i )+⟨gki , x−xk

i ⟩+1/2(x−xk
i )

T (∇2fi(x
k
i )+ϵId)(x−xk

i ),



Fig. 3: Comparison with first-order methods with Top-K compressor

Fig. 4: Comparison with the second-order methods with Rank-K compressor

where gki is the gradient approximation of node i at the k-
th iteration. Here, we set ϵ = 0.8. For DiRegINA, we use
the second-order approximation of the local objective with
cubic regularization fi(x) ≈ fi(x

k
i ) + ⟨gki , x− xk

i ⟩+1/2(x−
xk
i )

T (∇2fi(x
k
i ) + ϵId)(x− xk

i ) + ζ/6∥x− xk
i ∥3 and solve it

using the code provided by [46]. We set ϵ = 1 and ζ = 0.9.
Fig. 4 shows the relative error versus the number of iter-

ations, the number of transmitted bits, and the running time.
When m ≥ 5, the proposed Newton’s method outperforms
SONATA in terms of the number of iterations because we
use DAC to track the global Hessian. Due to the compres-
sion procedure and the CG step, our method also has the
best performance in terms of the number of transmitted bits
and running time. We observe that SONATA is better than
DiRegINA in terms of the number of iterations and running
time. Without data similarity, the local Hessian is likely not a
good substitute for the global Hessian. In this case, using cubic
regularization does not improve the convergence performance.
In addition, DiRegINA requires an iterative algorithm in the
inner loop to solve the cubic regularized local subproblem,
which is time-consuming.

V. CONCLUSIONS

This paper considers a finite-sum minimization problem
over a decentralized network. We propose a communication-
efficient decentralized Newton’s method for solving it, which
has provably faster convergence than first-order algorithms.
Multi-step consensus that balances between computation and
communication is used for communicating local copies of
the decision variable and gradient approximations. We also
use compression with error compensation for transmitting
the local Hessian approximations, which utilizes the global

second-order information while avoiding high communication
cost. We present a novel convergence analysis and obtain
a theoretically faster convergence rate than those of first-
order algorithms. One future direction is to develop stochastic
second-order algorithms with provably κF -independent super-
linear convergence rate, considering the case when computing
the local full gradient and Hessian is not affordable on each
node. Another interesting direction is to develop decentralized
second-order algorithms to solve nonconvex and nonsmooth
problems that arise in various machine learning and signal
processing applications.

VI. APPENDIX

A. Preliminary

This section gives some preliminaries that are useful in the
ensuing convergence analysis. The following lemma bounds
the consensus errors of the iterate xk and the gradient ap-
proximation gk.

Lemma 1. Under Assumptions 1 and 2, for all k ≥ 0, we
have

∥xk+1−W∞xk+1∥≤σm(∥xk−W∞xk∥+α∥dk−W∞dk∥)
(25)

and

∥gk+1−W∞gk+1∥≤σm(∥gk−W∞gk∥+L1∥xk+1−xk∥).
(26)

Proof. See Supplementary I.

The following lemma bounds the norm of the gradient
approximation gk and the difference between two successive
iterates.



Lemma 2. Under Assumptions 1 and 2, if ck ≤ 1 and
condition (9) holds for a certain k0, then we have

∥gk∥≤∥gk−W∞gk∥+L1∥xk−W∞xk∥+
√
n∥∇F (xk)∥ (27)

for all k ≥ 0 and

∥xk0+1−xk0∥ ≤
(
2 +

2αL1

M1

)
∥xk0−W∞xk0∥ (28)

+
2α

M1
∥gk0−W∞gk0∥+2α

√
n

M1
∥∇F (xk0)∥.

Proof. See Supplementary II.

B. Proof of Proposition 2

Proof. First, we prove (13) with three lemmas. We will bound
the consensus error ∥xk0+1 − W∞xk0+1∥2, the gradient
tracking error 1

L2
1
∥gk0+1 − W∞gk0+1∥2, and the network

optimality gap n
L1

(F (xk0+1) − F (x∗)) in Lemmas 3, 4, and
5 respectively.

Lemma 3. Under Assumptions 1 and 2, if ck ≤ 1, condition
(9) holds for a certain k0, and α satisfy (11), then we have

∥xk0+1 −W∞xk0+1∥2

≤J
[1]
11∥xk0 −W∞xk0∥2 + J

[1]
12 · 1

L2
1

∥gk0 −W∞gk0∥2

+ J
[1]
13 · n

L1

(
F (xk0)− F (x∗)

)
.

(29)

Proof. See Supplementary III.

Lemma 4. Under the setting of Lemma 3, we have

1

L2
1

∥gk0+1 −W∞gk0+1∥2

≤J
[1]
21∥xk0 −W∞xk0∥2 + J

[1]
22 · 1

L2
1

∥gk0 −W∞gk0∥2

+ J
[1]
23 · n

L1

(
F (xk0)− F (x∗)

)
.

(30)

Proof. See Supplementary IV.

Lemma 5. Under the setting of Lemma 3, we have

n

L1

(
F (xk0+1)− F (x∗)

)
≤J

[1]
31∥xk0 −W∞xk0∥2 + J

[1]
32 · 1

L2
1

∥gk0 −W∞gk0∥2

+ J
[1]
33 · n

L1

(
F (xk0)− F (x∗)

)
.

(31)

Proof. See Supplementary V.

By combining Lemmas 3–5, we get (13).
To prove (14) from (13), we substitute the parameters

satisfying (11) and do algebraic manipulations. Please see the
full version [40] for details. This completes the proof.

C. Proof of Proposition 3

Proof. The proof of (15) is decomposed into three lemmas.
We are going to bound the compression error ∥Ek+1∥F , the
difference ∥Hk+1 − H̃k+1∥F , and the Hessian tracking error
∥Hk+1 −W∞Hk+1∥F in Lemmas 6, 7, and 8, respectively.

Lemma 6. Under Assumption 4, for all k ≥ 0, we have

∥Ek+1∥F ≤ (1− δ)∥Ek∥F + (1− δ)∥Hk − H̃k∥F .

Proof. See Supplementary VI.

Lemma 7. Under Assumptions 1, 2, and 4, for all k ≥ 0, we
have

∥Hk+1 − H̃k+1∥F
≤ (1− δ + 2γ(1− δ)) ∥Hk − H̃k∥F + 4γ∥Ek∥F
+ 2γ∥Hk −W∞Hk∥F + L2∥xk+1 − xk∥.

(32)

Proof. See Supplementary VII.

Lemma 8. Under Assumptions 1, 2, and 4, if γ < 1, then for
all k, we have

∥Hk+1 −W∞Hk+1∥F
≤(1− γ(1− σ))∥Hk −W∞Hk∥F + 4γ∥Ek∥F

+ 2γ(1− δ)∥Hk − H̃k∥F + L2∥xk+1 − xk∥.
(33)

Proof. See Supplementary VIII.

Combining Lemmas 6–8 directly gives (15).
Next, we prove (16) from (15). By choosing γ ≤ δ2(1−σ)

50 ,
it is easy to show that(
δ(1−σ)

8(1−δ)
,
1−σ

4
, 1

)
J[2]≤

(
1− γ

2
(1−σ)

)(δ(1−σ)

8(1−δ)
,
1−σ

4
, 1

)
.

Thus, by multiplying
(

δ(1−σ)
8(1−δ) ,

1−σ
4 , 1

)
on both sides of (15),

we get

uk+1
2 ≤

(
1− γ

2
(1− σ)

)
uk
2 +

5L2

4
∥xk+1 − xk∥ (34)

for all k ≥ 0. Further, according to (28), we have

∥xk0+1 − xk0∥2

≤2

(
2+

2αL1

M1

)2

∥xk0−W∞xk0∥2 + 16α2

M2
1

∥gk0−W∞gk0∥2

+
32α2L1

M2
1

n
(
F (xk0)− F (x∗)

)
(35)

≤9
(
∥xk0 −W∞xk0∥2 + (1− σ2)2

50L2
1

∥gk0 −W∞gk0∥2

+
n

L1

(
F (xk0)− F (x∗)

) )
=

9uk0
1

σm−1
,

where we substitute α in (11) in the second inequality. By
substituting (35) into (34), we get (16) and complete the proof.



D. Proof of Proposition 4

Proof. We use mathematical induction to prove this proposi-
tion. First, it is easy to see that (9) holds for k = 0. Second,
assume that (9) holds for all 0, 1, . . . , k−1. Then, Proposition
2 implies that

uk
1 ≤

(
1− µα

2M2

)
uk−1
1 ≤ · · · ≤

(
1− µα

2M2

)k

u0
1. (36)

By substituting (36) into (16), we get

uk
2 ≤

(
1− γ

2
(1− σ)

)
uk−1
2

+
15L2

4

√
σ−(m−1)u0

1 ·
(
1− µα

2M2

) k−1
2

.

(37)

By unrolling (37), we have

uk
2 ≤ (u0

2 − C)
(
1− γ

2
(1− σ)

)k
+ C

(
1− µα

4M2

)k

, (38)

where C ≜
3.75L2

√
σ−(m−1)u0

1√
1− µα

2M2
−(1− γ(1−σ)

2 )
. Let us define

ϕ ≜ max

{
1− γ

2
(1− σ), 1− µα

4M2

}
. (39)

Then, (38) implies that

uk
2 ≤ ϕkũ0

2

with

ũ0
2 ≜ max

{
u0
2 − C,C

}
. (40)

To complete the proof, it remains to show that (9) also holds
at time step k. To do this, with (6), we have

H
k
=

1

n

n∑
i=1

∇2fi(x
k
i ).

A simple computation shows that

∥Hk−∇2F (xk)∥≤1

n

n∑
i=1

∥∇2fi(x
k
i )−∇2fi(x

k)∥

≤L2

n

n∑
i=1

∥xk
i −xk∥≤ L2√

n
∥xk−W∞xk∥.

Then, we have

∥Hk
i −∇2F (xk)∥

≤∥Hk
i −H

k∥+ ∥Hk −∇2F (xk)∥

≤∥Hk −W∞Hk∥+ L2√
n
∥xk −W∞xk∥. (41)

Based on the definitions of uk
1 and uk

2 , (41) implies that

∥Hk
i −∇2F (xk)∥ ≤ uk

2 + L2

√
uk
1

n
,

where we use the fact that ∥ · ∥ ≤ ∥ · ∥F . Since µId ⪯
∇2F (xk) ⪯ L1Id, we have(
µ− L2

√
uk
1

n
− uk

2

)
Id ⪯ Hk

i ⪯

(
L1 + L2

√
uk
1

n
+ uk

2

)
Id.

Since uk
1 ≤ u0

1, uk
2 ≤ ϕkũ0

2 ≤ ũ0
2, and M ≥ L2

√
u0
1

n + ũ0
2,

based on the definitions of M1 and M2 given in (8), we have

M1Id ⪯ Hk
i +MId ⪯ M2Id.

Thus, we prove that (9) also holds at time step k and complete
the proof.

E. Proof of Proposition 5

Proof. First, we prove (22) in three steps. We are going to
bound the consensus error ∥xk̃0 − W∞xk̃0∥, the gradient
tracking error ∥gk̃0 − W∞gk̃0∥, and the network optimality
gap ∥xk̃0−x∗∥ in Step I, II, and III, respectively. Note that the
first two terms have already been bounded in Theorem 1. The
difference between Theorem 1 and Proposition 5 is that in
Proposition 5 we dig deeper into the curvature information
contained in the Hessian approximation Hk to bound the
distance between dk and the true Newton’s direction, which
gives tighter bounds for ∥xk̃0−W∞xk̃0∥ and ∥gk̃0−W∞gk̃0∥
than those given in Lemma 1.

Step I: To establish a tighter bound on the consensus error
∥xk̃0 −W∞xk̃0∥, we need to bound ∥dk̃0 −W∞dk̃0∥ on the
right-hand side of (25).

Lemma 9. Under Assumptions 1 and 2, if condition (19) holds
for a certain k̃0 with k̃0 ≥ K, then we have

∥dk̃0 − (∇2F (xk̃0))−1∇F (xk̃0)∥

≤ L1

µ
√
n

(
1 + ϱk̃0

)
∥xk̃0 −W∞xk̃0∥

+
ϱk̃0

µ
√
n

(
∥gk̃0 −W∞gk̃0∥+

√
nL1∥xk̃0 − x∗∥

) (42)

and

∥dk̃0−W∞dk̃0∥≤1+ϱk̃0

µ
∥gk̃0 −W∞gk̃0∥ (43)

+
L1ϱ

k̃0

µ

(
∥xk̃0−W∞xk̃0∥+

√
n∥xk̃0−x∗∥

)
.

Proof. See Supplementary IX.

With Lemma 9, the following corollary gives a tighter bound
on ∥xk+1 −W∞xk+1∥.

Corollary 2. Under the setting of Lemma 9, we have

∥xk̃0+1−W∞xk̃0+1∥

≤J[3]
11∥xk̃0−W∞xk̃0∥+J

[3]
12

L1
∥gk̃0−W∞gk̃0∥+J

[3]
13

√
n∥xk̃0−x∗∥.

Proof. We substitute the tighter bound on ∥dk̃0 − W∞dk̃0∥
given in (43) into (25) and complete the proof.

Step II: To get a tighter bound on the gradient tracking error
∥gk −W∞gk∥, we need to bound ∥xk+1 − xk∥ on the right
hand of (26) by taking advantage of the curvature information.



Lemma 10. Under Assumptions 1–3, if condition (9) holds
for a certain k̃0, then we have

∥xk̃0+1 − xk̃0∥

≤
(
2 + ακF + 2ακF ϱ

k̃0

)
∥xk̃0 −W∞xk̃0∥

+ ακF (σ
m + 2ϱk̃0) · 1

L1
∥gk̃0 −W∞gk̃0∥ (44)

+ α

(
1 + 2κF ϱ

k̃0 +
L2

2µ
∥xk̃0 − x∗∥

)√
n∥xk̃0 − x∗∥.

Proof. See Supplementary X.

With the tighter bound on ∥xk̃0+1 − xk̃0∥ given in Lemma
10, we have the following corollary, which gives a tighter
bound on the gradient tracking error ∥gk̃0+1 −W∞gk̃0+1∥.

Corollary 3. Under the setting of Lemma 10, we have

1

L1
∥gk̃0+1 −W∞gk̃0+1∥

≤J
[3]
21∥xk̃0−W∞xk̃0∥+J

[3]
22

L1
∥gk̃0−W∞gk̃0∥+J

[3]
23

√
n∥xk̃0−x∗∥.

Proof. We substitute (44) into (26) and complete the proof.

Step III: The following corollary bounds ∥xk+1 − x∗∥
based on the locally quadratic convergence of the centralized
Newton’s method.

Corollary 4. Under the setting of Lemma 10, we have

∥xk̃0+1 − x∗∥

≤J
[3]
33∥xk̃0−x∗∥+J

[3]
31∥xk̃0−W∞xk̃0∥+J

[3]
32

L1
∥gk̃0−W∞gk̃0∥.

Proof. See Supplementary XI.

Combining Corollaries 2, 3, and 4, we get (22).
To prove (24) from (22), we substitute the parameters

satisfying (20) and do algebraic manipulations. Details can
be found in the full version [40]. This completes the proof.

F. Proof of Proposition 6

Proof. According to (17), we have

κF ϱ
k + ϑk

=
κF

M1

(
1√
n
L2∥xk−W∞xk∥+ 1√

n
∥Hk−W∞Hk∥F + µck

)
+

L2

2µ
∥xk − x∗∥

≤ κF

M1
√
n
uk
2 +

κFL2

M1
√
n
uk
3 +

1

40
σ

m
2 (45)

for all k ≥ 0, where the inequality holds because ck ≤
M1σ

m/2

40µκF
, ∥Hk −W∞Hk∥F ≤ uk

2 , and

κF

M1

1√
n
L2∥xk −W∞xk∥+ L2

2µ
∥xk − x∗∥ ≤ κFL2

M1
√
n
uk
3 .

On the other hand, it is worth noting that (34) holds for any
k ≥ 0. With Theorem 1, we know that (28) holds for any
k ≥ 0. Thus, by substituting α = 1 into (28), we have

∥xk+1 − xk∥ ≤
(
2 +

2L1

M1

)
∥xk −W∞xk∥

+
2

M1
∥gk −W∞gk∥+ 2

√
n

M1
∥∇F (xk)∥ ≤ 4L1

M1
uk
3 ,

where the last inequality holds because ∥∇F (xk)∥ ≤ L1∥xk−
x∗∥. Define

Ak ≜ uk
2 +

5L1L2

M1(1− σm/2)
uk
3 .

Then, (45) implies that

κF ϱ
k + ϑk ≤ κF

M1
√
n
Ak +

1

40
σ

m
2 (46)

for all k ≥ 0. The motivation behind the definition of the
sequence {Ak}k≥0 is given as follows. If Proposition 5 holds
at time step k, i.e., uk+1

3 ≤ σ
m
2 uk

3 , then we have

Ak+1 =uk+1
2 +

5L1L2

M1(1− σm/2)
uk+1
3

≤uk
2 +

5L2

4
· 4L1

M1
uk
3 +

5L1L2

M1(1− σm/2)
σm/2uk

3

=uk
2 +

5L1L2

M1(1− σm/2)
uk
3 = Ak.

Here, we use uk+1
2 ≤ uk

2+
5L2

4 · 4L1

M1
uk
3 , which is derived from

(15) and the condition that γ ≤ δ2(1−σ)
50 .

Now, we are ready to prove that (19) and (23) hold for all
k ≥ 0 by induction. First, we show that (19) and (23) hold
at time step K. Since F (xk) − F (x∗) ≥ µ

2 ∥x
k − x∗∥2, we

know that qK
1 ≥ 1

2κF
(qK

3 )2. Thus, we have

(uK
3 )2≤

(
1, σ−m

2 , 0.25σ− 3m
2

)
(qK

3 )2

≤2κF

(
1, σ−m

2 , 0.25σ− 3m
2

)
qK
1

≤100κFσ
− 5m

2

(1− σ2)2
uK
1 ,

which implies that

AK =uK
2 +

5L1L2

M1(1− σm/2)
uK
3

≤uK
2 +

5L1L2

M1(1− σm/2)
·
10

√
κFσ

− 5m
4

1− σ2

√
uK
1

≤ũ0
2ϕ

K +
50L1L2

√
κFσ

− 5m
4

M1(1− σm/2)(1− σ2)

(
1− µα

2M2

)K
2
√
u0
1

≤

(
ũ0
2 +

50L1L2
√
κFσ

− 5m
4

M1(1− σm/2)(1− σ2)

√
u0
1

)
ϕK .

Here, the inequality holds because
(
1− µα

2M2

) 1
2 ≤ ϕ.

Further, with (46), we have

κF ϱ
K + ϑK ≤ κF

M1
√
n
AK +

1

40
σ

m
2 .



Thus, condition (23) holds at time step K if

κF

M1
AK ≤ κF

M1

(
ũ0
2 +

50L1L2
√
κFσ

− 5m
4

M1(1− σm/2)(1− σ2)

√
u0
1

)
ϕK

≤ 1

40
σ

m
2 , (47)

which is equivalent to

K ≥

log σm/2

40κF
M1

(
ũ0
2+

50L1L2
√

κF σ
− 5m

4

M1(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

(48)

=

m
2 log σ − log 40κF

M1
√
n

(
ũ0
2 +

50L1L2
√
κFσ− 5m

4

M1(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

.

Besides, based on (41) and the definition of Ak, we have

∥HK
i −∇2F (xK)∥F

≤∥HK −W∞HK∥F +
L2√
n
∥xK −W∞xK∥F

≤uK
2 ≤ AK ≤ M1

40
=

µ

41
, (49)

where we use (47) in the last inequality. Then, (49) implies
that

M1Id = (u− µ

41
)Id ≤ HK

i ≤ (L1 +
µ

41
)Id = M2Id.

Thus, both (19) and (23) hold at time step K.
Second, assume that (19) and (23) hold for K, . . . , k − 1.

To complete the mathematical induction, it remains to show
that both (19) and (23) hold at time step k, which can be done
with basic algebraic manipulations. Please see the full version
[40] for details.

Finally, by substituting M1 = 40µ
41 into (48), we get

K ≥

m
2 log σ − log 41κF

µ
√
n

(
ũ0
2 +

52L2κF
√
κFσ− 5m

4

(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

and complete the proof.

G. Proof of Corollary 1

The result (22) gives an one-step descent that holds for any
m ≥ 1, and we can directly replace m with mk since mk ≥ m.
To prove Corollary 1, it remains to show that condition (23)
still holds for mk. In other words, if we can prove that

κF ϱ
k + ϑk ≤ 1

20
σ

mk
2 , (50)

then we have uk+1
3 ≤ σ

mk
2 uk

3 , which is the desired result.
Considering that mk ≥ m, which implies smaller consensus
errors, we conclude that Propositions 2–4 still hold for any k.
Thus, similar to (45) and (46), if we choose ck ≤ M1σ

mk/2

40µκF
,

then we have

κF ϱ
k + ϑk ≤ κF

M1
√
n
uk
2 +

κFL2

M1
√
n
uk
3 +

1

40
σ

mk
2

≤ κF

M1
√
n
Ak +

1

40
σ

mk
2 .

Using a similar derivation as in (47), condition (50) holds at
time step k if

κF

M1
Ak ≤ κF

M1

(
ũ0
2 +

50L1L2
√
κFσ

− 5m
4

M1(1− σm/2)(1− σ2)

√
u0
1

)
ϕk

≤ 1

40
σ

mk
2 ,

which is equivalent to

k ≥

log σmk/2

40κF
M1

(
ũ0
2+

50L1L2
√

κF σ
− 5m

4

M1(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

=

mk

2 log σ − log 40κF

M1
√
n

(
ũ0
2 +

50L1L2
√
κFσ− 5m

4

M1(1−σm/2)(1−σ2)

√
u0
1

)
log ϕ

=K +
mk −m

2 log ϕ
log σ.

Since the above condition is guaranteed by (21), we complete
the proof of Corollary 1.

REFERENCES

[1] C. Fang, Z. Yang, and W. U. Bajwa, “Bridge: Byzantine-resilient decen-
tralized gradient descent,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 8, pp. 610–626, 2022.

[2] D. Ciuonzo, S. H. Javadi, A. Mohammadi, and P. S. Rossi, “Bandwidth-
constrained decentralized detection of an unknown vector signal via
multisensor fusion,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 6, pp. 744–758, 2020.

[3] A. Beznosikov, G. Scutari, A. Rogozin, and A. Gasnikov, “Distributed
saddle-point problems under data similarity,” in Advances in Neural
Information Processing Systems, 2021.

[4] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[5] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[6] W. Liu, L. Chen, and W. Zhang, “Decentralized federated learning:
Balancing communication and computing costs,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 8, pp. 131–143,
2022.

[7] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus ADMM,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, 2014.

[8] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[9] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized
alternating direction method of multipliers,” IEEE Transactions on
Signal Processing, vol. 63, no. 15, pp. 4051–4064, 2015.

[10] W. Li, Y. Liu, Z. Tian, and Q. Ling, “Communication-censored linearized
ADMM for decentralized consensus optimization,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 6, pp. 18–34,
2019.

[11] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning Part I: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[12] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2017.

[13] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization
over time-varying digraphs,” Mathematical Programming, vol. 176,
no. 1, pp. 497–544, 2019.

[14] R. Xin, U. A. Khan, and S. Kar, “Fast decentralized nonconvex finite-
sum optimization with recursive variance reduction,” SIAM Journal on
Optimization, vol. 32, no. 1, pp. 1–28, 2022.

[15] R. Xin and U. A. Khan, “Distributed heavy-ball: A generalization
and acceleration of first-order methods with gradient tracking,” IEEE
Transactions on Automatic Control, vol. 65, no. 6, pp. 2627–2633, 2019.



[16] S. A. Alghunaim, E. Ryu, K. Yuan, and A. H. Sayed, “Decentralized
proximal gradient algorithms with linear convergence rates,” IEEE
Transactions on Automatic Control, vol. 66, no. 6, pp. 2787–2794, 2020.

[17] J. Xu, Y. Tian, Y. Sun, and G. Scutari, “Distributed algorithms for
composite optimization: Unified framework and convergence analysis,”
IEEE Transactions on Signal Processing, vol. 69, pp. 3555–3570, 2021.

[18] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” in International Conference on Machine Learning, 2017.

[19] H. Li, C. Fang, W. Yin, and Z. Lin, “A sharp convergence rate
analysis for distributed accelerated gradient methods,” arXiv preprint
arXiv:1810.01053, 2018.

[20] H. Ye, L. Luo, Z. Zhou, and T. Zhang, “Multi-consensus decentralized
accelerated gradient descent,” arXiv preprint arXiv:2005.00797, 2020.

[21] F. Mansoori and E. Wei, “Superlinearly convergent asynchronous dis-
tributed network Newton method,” in IEEE Conference on Decision and
Control, 2017.

[22] A. Mokhtari, Q. Ling, and A. Ribeiro, “Network Newton distributed
optimization methods,” IEEE Transactions on Signal Processing, vol. 65,
no. 1, pp. 146–161, 2016.

[23] R. Tutunov, H. Bou-Ammar, and A. Jadbabaie, “Distributed Newton
method for large-scale consensus optimization,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 3983–3994, 2019.

[24] J. Zhang, K. You, and T. Başar, “Distributed adaptive Newton methods
with global superlinear convergence,” Automatica, vol. 138, p. 110156,
2022.

[25] A. Daneshmand, G. Scutari, P. Dvurechensky, and A. Gasnikov, “Newton
method over networks is fast up to the statistical precision,” in Interna-
tional Conference on Machine Learning, 2021, pp. 2398–2409.

[26] E. Berglund, S. Magnússon, and M. Johansson, “Distributed Newton
method over graphs: Can sharing of second-order information eliminate
the condition number dependence?” IEEE Signal Processing Letters,
vol. 28, pp. 1180–1184, 2021.

[27] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-Raphson consensus for distributed convex optimization,” in
IEEE Conference on Decision and Control and European Control
Conference, 2011.

[28] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–5173,
2016.

[29] M. Eisen, A. Mokhtari, and A. Ribeiro, “A primal-dual quasi-Newton
method for exact consensus optimization,” IEEE Transactions on Signal
Processing, vol. 67, no. 23, pp. 5983–5997, 2019.

[30] Y. Sun, G. Scutari, and A. Daneshmand, “Distributed optimization
based on gradient tracking revisited: Enhancing convergence rate via
surrogation,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 354–
385, 2022.

[31] J. Zhang, Q. Ling, and A. M.-C. So, “A Newton tracking algorithm
with exact linear convergence for decentralized consensus optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 346 – 358, 2021.

[32] H. Wei, Z. Qu, X. Wu, H. Wang, and J. Lu, “Decentralized approximate
Newton methods for convex optimization on networked systems,” IEEE
Transactions on Control of Network Systems, vol. 8, no. 3, pp. 1489–
1500, 2021.

[33] J. Zhang, H. Liu, A. M.-C. So, and Q. Ling, “Variance-reduced stochas-
tic quasi-Newton methods for decentralized learning—Part I: General
framework,” arXiv preprint arXiv:2201.07699, 2022.

[34] ——, “Variance-reduced stochastic quasi-Newton methods for decen-
tralized learning—Part II: Damped limited-memory DFP and BFGS
methods,” arXiv preprint arXiv:2201.07733, 2022.

[35] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for consensus
optimization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 4, pp. 507–522, 2016.

[36] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[37] M. Safaryan, R. Islamov, X. Qian, and P. Richtárik, “FedNL: Making
Newton-type methods applicable to federated learning,” arXiv preprint
arXiv:2106.02969, 2021.

[38] R. Islamov, X. Qian, and P. Richtárik, “Distributed second-order meth-
ods with fast rates and compressed communication,” in International
Conference on Machine Learning, 2021, pp. 4617–4628.

[39] X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear conver-
gent decentralized optimization with compression,” arXiv preprint
arXiv:2007.00232, 2020.

[40] H. Liu, J. Zhang, A. M.-C. So, and Q. Ling, “A communication-efficient
decentralized Newton’s method with provably faster convergence,” arXiv
preprint arXiv:2210.00184, 2022.

[41] P. Richtárik, I. Sokolov, and I. Fatkhullin, “Ef21: A new, simpler,
theoretically better, and practically faster error feedback,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[42] X. Qian, R. Islamov, M. Safaryan, and P. Richtárik, “Basis matters:
Better communication-efficient second order methods for federated
learning,” arXiv preprint arXiv:2111.01847, 2021.

[43] Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with
a strong global convergence property,” SIAM Journal on optimization,
vol. 10, no. 1, pp. 177–182, 1999.

[44] Y. Liao, Z. Li, K. Huang, and S. Pu, “A compressed gradient tracking
method for decentralized optimization with linear convergence,” IEEE
Transactions on Automatic Control, 2022.

[45] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[46] M.-C. Yue, Z. Zhou, and A. M.-C. So, “On the quadratic convergence
of the cubic regularization method under a local error bound condition,”
SIAM Journal on Optimization, vol. 29, no. 1, pp. 904–932, 2019.

[47] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2003, vol. 87.



SUPPLEMENTARY MATERIAL FOR
A Communication-Efficient Decentralized Newton’s Method with Provably Faster Convergence

I. PROOF OF LEMMA 1

Proof. First, we show that multi-step consensus with m inner
loops improves the convergence rate of the consensus error
from σ to σm. To do this, we compute

Wm = (W −W∞ +W∞)m = (W −W∞)m +W∞,

where we use (W∞)2 = W∞ and WW∞ = W∞W =
W∞. Thus, we have

∥Wm −W∞∥ = ∥W −W∞∥m ≤ σm.

Then, xk+1 = Wm(xk − αdk) implies that

xk+1−W∞xk+1=(Wm −W∞)(xk − αdk)

=(Wm−W∞)
(
xk−αdk−W∞(xk−αdk)

)
.

Taking the norm ∥ · ∥ on both sides of the above equality and
using the triangle inequality, we get (25).

Second, according to gk+1 = Wm(gk + ∇f(xk+1) −
∇f(xk)), we have

gk+1 −W∞gk+1

=(Wm −W∞)
(
gk −W∞gk +∇f(xk+1)−∇f(xk)

)
.

Taking the norm ∥ · ∥ on both sides of the above inequality
and using the triangle inequality and Assumption 2, we get
(26) and complete the proof.

II. PROOF OF LEMMA 2

Proof. According to (5), we have gk = ∇f(xk). Under
Assumption 2, we have

∥gk −∇F (xk)∥ ≤ L1√
n
∥xk −W∞xk∥, (51)

which implies that

∥gk∥≤∥gk −W∞gk∥+
√
n∥gk∥ (52)

≤∥gk−W∞gk∥+
√
n∥gk−∇F (xk)∥+

√
n∥∇F (xk)∥

≤∥gk−W∞gk∥+L1∥xk −W∞xk∥+
√
n∥∇F (xk)∥.

This inequality gives (27).
If (9) holds for a certain k0, according to the fact that

(diag{Hk+1
i }+MInd)d

k+1 = gk+1 + rk+1, we have

∥dk0 −W∞dk0∥ ≤ ∥dk0∥ ≤ ∥gk0 + rk0∥
M1

≤ 2∥gk0∥
M1

, (53)

where we use ck ≤ 1 in the last inequality and the first
inequality is given for later use (see (55)). According to
xk+1 = Wm(xk − αdk), we have

∥xk0+1−xk0∥ ≤∥(Wm−Ind)(x
k0 −W∞xk0)∥+ α∥dk0∥

≤2∥xk0 −W∞xk0∥+ 2α

M1
∥gk0∥, (54)

where we substitute (53) in the last inequality. By substituting
(52) into (54), we get (28) and complete the proof.

III. PROOF OF LEMMA 3

Proof. With (25), we have

∥xk0+1 −W∞xk0+1∥2

≤σ2m
(
(1 + η1)∥xk0 −W∞xk0∥2

+

(
1 +

1

η1

)
α2∥dk0 −W∞dk0∥2

)
(55)

≤σ2m−2(1 + σ2)

2
∥xk0−W∞xk0∥2+ 8σ2mα2

(1−σ2)M2
1

∥gk0∥2,

where the first inequality holds for any η1 > 0 due to Young’s
inequality and the second inequality holds by setting η1 =
1−σ2

2σ2 and substituting into (53).
Further, according to (27), we have

∥gk∥2

≤4∥gk−W∞gk∥2+2L2
1∥xk−W∞xk∥2+4n∥∇F (xk)∥2

≤4∥gk −W∞gk∥2 + 2L2
1∥xk −W∞xk∥2 (56)

+ 8L1n
(
F (xk)− F (x∗)

)
for all k ≥ 0, where the last inequality holds since

∥∇F (xk)∥2 ≤ 2L1

(
F (xk)− F (x∗)

)
, (57)

whose proof can be found in [47, Theorem 2.1.5]. By substi-
tuting (56) into (55), we get

∥xk0+1 −W∞xk0+1∥2

≤σ2m−2

(
1 + σ2

2
+

16σ2α2L2
1

(1− σ2)M2
1

)
∥xk0 −W∞xk0∥2

+
32σ2mα2L2

1

(1− σ2)M2
1

· 1

L2
1

∥gk0 −W∞gk0∥2 (58)

+
64σ2mα2L2

1

(1− σ2)M2
1

· n

L1

(
F (xk0)− F (x∗)

)
.

To get (29), the remaining is to substitute α ≤ M2
1 (1−σ2)3

100L1M2σm−1

into (58) and do algebraic manipulations. Details can be found
in the full version [40]. This completes the proof.

IV. PROOF OF LEMMA 4

Proof. With (26), we have

∥gk+1 −W∞gk+1∥2 (59)

≤σ2m

(
(1+η2)∥gk−W∞gk∥2+

(
1 +

1

η2

)
L2
1∥xk+1−xk∥2

)
≤σ2m−2(1 + σ2)

2
∥gk −W∞gk∥2 + 2σ2mL2

1

1− σ2
∥xk+1 − xk∥2

for all k ≥ 0, where the first inequality holds for any η2 > 0
due to Young’s inequality and the second inequality holds by
setting η2 = 1−σ2

2σ2 .



Further, according to (28), we have

∥xk0+1 − xk0∥2

≤2

(
2 +

2αL1

M1

)2

∥xk0 −W∞xk0∥2

+
16α2

M2
1

∥gk0 −W∞gk0∥2 + 16α2n

M2
1

∥∇F (xk0)∥2

≤2

(
2 +

2αL1

M1

)2

∥xk0 −W∞xk0∥2 (60)

+
16α2

M2
1

∥gk0 −W∞gk0∥2 + 32α2L1

M2
1

n(F (xk0)− F (x∗)),

where we substitute (57) in the last inequality. By substituting
(60) into (59), we have

1

L2
1

∥gk0+1 −W∞gk0+1∥2

≤σ2m−2

(
1 + σ2

2
+

32α2σ2L2
1

(1− σ2)M2
1

)
· 1

L2
1

∥gk0 −W∞gk0∥2

+
2σ2m

1− σ2
· 2
(
2 +

2αL1

M1

)2

∥xk0 −W∞xk0∥2 (61)

+
2σ2m

1− σ2
· 32α

2L2
1

M2
1

· n

L1

(
F (xk0)− F (x∗)

)
.

To get (30), the remaining is to substitute α ≤ M2
1 (1−σ2)3

100L1M2σm−1

into (61) and do algebraic manipulations. Detail can be found
in the full version [40]. This completes the proof.

V. PROOF OF LEMMA 5

Proof. Let us denote Bk
i = (Hk

i + MId)
−1 and B

k
=

1
n

∑n
i=1 B

k
i . Since xk+1 = xk − αd

k
, under Assumption 2

and (9), we have

F (xk0+1)

≤F (xk0)− α
〈
∇F (xk0),d

k0
〉
+

L1α
2

2
∥dk0∥2

≤F (xk0)− α
〈
∇F (xk0),B

k0∇F (xk0)
〉

− α
〈
∇F (xk0),d

k0 −B
k0∇F (xk0)

〉
(62)

+ L1α
2
(
∥Bk0∇F (xk0)∥2 + ∥dk0 −B

k0∇F (xk0)∥2
)

≤F (xk0)− α

M2
∥∇F (xk0)∥2

+ α

(
1

4M2
∥∇F (xk0)∥2 +M2∥d

k0 −B
k0∇F (xk0)∥2

)
+ L1α

2

(
1

M2
1

∥∇F (xk0)∥2 + ∥dk0 −B
k0∇F (xk0)∥2

)
=F (xk0)−

(
3α

4M2
− L1α

2

M2
1

)
∥∇F (xk0)∥2

+ (M2α+ L1α
2)∥dk0 −B

k0∇F (xk0)∥2,

where we use 1
M2

≤ ∥Bk0∥ ≤ 1
M1

in the last inequality. Next,

we bound ∥dk0 −B
k0∇F (xk0)∥2. With (7), we have

d
k
=
1

n

n∑
i=1

Bk
i (g

k
i + rki )

=
1

n

n∑
i=1

Bk
i (g

k
i − gk) +B

k
gk +

1

n

n∑
i=1

Bk
i r

k
i

=
1

n

n∑
i=1

(Bk
i − 1

2M1
Id)(g

k
i − gk) +B

k
gk +

1

n

n∑
i=1

Bk
i r

k
i

for all k, which implies that

∥dk0 −B
k0∇F (xk0)∥2

=
∥∥∥ 1
n

n∑
i=1

(Bk0
i − 1

2M1
Id)(g

k0
i − gk0)

+
1

n

n∑
i=1

Bk0
i rk0

i +B
k0
(gk0 −∇F (xk0))

∥∥∥2
≤4
∥∥∥ 1
n

n∑
i=1

(Bk0
i − 1

2M1
Id)(g

k0
i − gk0)

∥∥∥2 (63)

+ 4∥Bk0
(gk0 −∇F (xk0))∥2 + 2

∥∥∥ 1
n

n∑
i=1

Bk0
i rk0

i

∥∥∥2
≤ 4

n

n∑
i=1

∥∥∥∥(Bk0
i − 1

2M1
Id

)
(gk0

i − gk0)

∥∥∥∥2
+

4

M2
1

∥gk0 −∇F (xk0)∥2 + 2

nM2
1

n∑
i=1

∥rk0
i ∥2

≤ 1

nM2
1

(∥gk0−W∞gk0∥2+4L2
1∥xk0−W∞xk0

∥2+2c2k0
∥gk0∥2),

where we use ∥Bk0∥ ≤ 1
M1

, ∥Bk0
i − 1

2M1
Id∥ ≤ 1

2M1
, and

(51). By substituting (63) into (62), we have

F (xk0+1)− F (x∗)

≤
(
1− 2µ

(
3α

4M2
− L1α

2

M2
1

))(
F (xk0)− F (x∗)

)
+
M2α+ L1α

2

nM2
1

(
∥gk0 −W∞gk0∥2

+4L2
1∥xk0 −W∞xk0

∥2 + 2c2k0
∥gk0∥2

)
,

(64)

where we use the fact that ∥∇F (xk)∥2 ≥ 2µ(F (xk)−F (x∗))
under Assumption 3. Further, according to (27), we have

∥gk∥2

≤(∥gk −W∞gk∥+ L1∥xk −W∞xk∥+
√
n∥∇F (xk)∥)2

≤3∥gk −W∞gk∥2 + 3L2
1∥xk −W∞xk∥2 + 3n∥∇F (xk)∥2

≤3∥gk −W∞gk∥2 + 3L2
1∥xk −W∞xk∥2 (65)

+ 6nL1(F (xk)− F (x∗))



for all k ≥ 0. Substituting (65) into (64), we have
n

L1

(
F (xk0+1)− F (x∗)

)
≤

(
1−2µ

(
3α

4M2
−L1α

2

M2
1

)
+
12c2k0

L1(M2α+ L1α
2)

M2
1

)
· n
L1

(F (xk0)−F (x∗)) (66)

+
L1(M2α+ L1α

2)

M2
1

(1 + 6c2k0
) · 1

L2
1

∥gk0 −W∞gk0∥2

+
(M2α+ L1α

2)L1

M2
1

(4 + 6c2k0
)∥xk0 −W∞xk0

∥2.

With α ≤ min
{

M2
1 (1−σ2)3

100L1M2σm−1 ,
M2

1

200L1M2

}
, we have M2α+

L1α
2 ≤ 1.01M2α and ck ≤ M1

4M2

√
2κF

. To get (31), the
remaining is to substitute these inequalities into (66) and do
algebraic manipulations. Please refer to full version [40] for
details. This completes the proof.

VI. PROOF OF LEMMA 6
Proof. According to Assumption 4, we have

∥Ek+1∥F ≤ (1− δ)∥Ek +Hk − H̃k∥F
≤ (1− δ)∥Ek∥F + (1− δ)∥Hk − H̃k∥F .

(67)

This completes the proof.

VII. PROOF OF LEMMA 7
Proof. According to Algorithm 1, we have

Hk+1 − H̃k+1

=Hk − H̃k −Q(Hk − H̃k)

− γ(Ind −W)Ĥk +∇2f(xk+1)−∇2f(xk).

(68)

Next, we bound the right-hand side of (68). First, according
to Assumption 4, we have∥∥∥Hk − H̃k −Q(Hk − H̃k)

∥∥∥
F
≤ (1− δ)∥Hk − H̃k∥F .

Second, according to Algorithm 1, we have

Ĥk = Hk +Ek −Ek+1,

which implies that

∥(Ind −W)Ĥk∥F
≤∥(Ind −W)Hk∥F + ∥(Ind −W)(Ek −Ek+1)∥F
≤2∥Hk −W∞Hk∥F + 2∥Ek∥F + 2∥Ek+1∥F .

(69)

Finally, combining inequalities (68)–(69) and using Assump-
tion 2, we have

∥Hk+1 − H̃k+1∥F
≤(1− δ)∥Hk − H̃k∥F + 2γ∥Hk −W∞Hk∥F
+ 2γ∥Ek∥F + 2γ∥Ek+1∥F + L2∥xk+1 − xk∥

≤ (1− δ + 2γ(1− δ)) ∥Hk − H̃k∥F + 4γ∥Ek∥F
+ 2γ∥Hk −W∞Hk∥F + L2∥xk+1 − xk∥,

where we use (67) in the last inequality. This gives (32) and
completes the proof.

VIII. PROOF OF LEMMA 8

Proof. According to (6), we have

(Ind −W∞)Hk+1

=(Ind −W∞)Hk − γ(Ind −W)Ĥk

+ (Ind −W∞)(∇2f(xk+1)−∇2f(xk)) (70)

=(Ind−W∞−γ(Ind−W))Hk−γ(Ind−W)(Ek−Ek+1)

+ (Ind −W∞)(∇2f(xk+1)−∇2f(xk)),

where the first equality holds because (Ind − W∞)(Ind −
W) = Ind −W −W∞ +W∞ = Ind −W and the second
equality holds because Ĥk = Hk +Ek −Ek+1. For the first
term on the right-hand side of (70), we have

∥ (Ind −W∞ − γ(Ind −W))Hk∥F
=∥(1− γ)(Ind −W∞)Hk + γ(W −W∞)Hk∥F (71)

=∥(1− γ)(Ind −W∞)Hk + γ(W −W∞)(Ind −W∞)Hk∥F
≤(1− γ + γσ)∥(Ind −W∞)Hk∥F .

By taking the Frobenius norm ∥ ·∥F on both sides of (70), we
have

∥(Ind −W∞)Hk+1∥F
≤(1− γ(1− σ))∥Hk −W∞Hk∥F + 2γ∥Ek∥F
+ 2γ∥Ek+1∥F + ∥∇2f(xk+1)−∇2f(xk)∥F

≤(1− γ(1− σ))∥Hk −W∞Hk∥F + 4γ∥Ek∥F
+ 2γ(1− δ)∥Hk − H̃k∥F + L2∥xk+1 − xk∥,

where we use (71) in the first inequality and (67) and Assump-
tion 2 in the second inequality. This gives (33) and completes
the proof.

IX. PROOF OF LEMMA 9

Proof. With d
k
= 1

n

∑n
i=1 B

k
i

(
gki + rki

)
, we have

d
k
=
1

n

n∑
i=1

Bk
i g

k
i +

1

n

n∑
i=1

Bk
i r

k
i − 1

n

n∑
i=1

(∇2F (xk))−1gki

+ (∇2F (xk))−1gk (72)

for all k ≥ 0. Then, we compute∥∥dk − (∇2F (xk))−1∇F (xk)
∥∥

≤
∥∥(∇2F (xk))−1(gk−∇F (xk))

∥∥+∥∥dk−(∇2F (xk))−1gk
∥∥

=
∥∥(∇2F (xk))−1(gk −∇F (xk))

∥∥
+
∥∥ 1
n

n∑
i=1

Bk
i g

k
i +

1

n

n∑
i=1

Bk
i r

k
i − 1

n

n∑
i=1

(∇2F (xk))−1gki
∥∥

≤ L1

µ
√
n
∥xk −W∞xk∥+ 1

n

n∑
i=1

∥∥Bk
i − (∇2F (xk))−1

∥∥∥gki ∥
+

1

n

n∑
i=1

∥Bk
i ∥ck∥gki ∥ (73)

for all k ≥ 0, where we use (72) in the equality and gk =
1
n

∑n
i=1 fi(x

k
i ) in the last inequality. To bound the second



term on the right-hand side of (73), with the fact that ∥A−1−
B−1∥ ≤ ∥A−1∥∥B−1∥∥A−B∥, we have∥∥(H k̃0

i )−1 − (∇2F (xk̃0))−1
∥∥

≤ 1

µM1

∥∥∥H k̃0
i −∇2F (xk̃0)

∥∥∥
≤ 1

µM1

(∥∥H k̃0
i −H

k̃0
∥∥+ ∥∥Hk̃0 −∇2F (xk̃0)

∥∥),
(74)

where we use Bk̃0
i = (H k̃0

i )−1 and M1Id ⪯ H k̃0
i ⪯ M2Id.

Next, we bound
∥∥∥Hk −∇2F (xk)

∥∥∥ on the right-hand side of
(74). According to (6) and the initialization H0

i = ∇2fi(x
0),

we know that

H
k
= ∇2f(xk) (75)

for all k ≥ 0. Then, according to Assumption 2, (75) implies
that

∥Hk −∇2F (xk)∥ ≤ L2√
n
∥xk −W∞xk∥ (76)

for all k ≥ 0. Substituting (76) into (74), we have∥∥(H k̃0
i )−1 − (∇2F (xk̃0))−1

∥∥
≤ 1

µM1

(∥∥H k̃0
i −H

k̃0
∥∥+ L2√

n
∥xk̃0 −W∞xk̃0∥

)
.

(77)

Substituting (77) into (73), we have∥∥dk̃0 − (∇2F (xk̃0))−1∇F (xk̃0)
∥∥

≤ L1

µ
√
n
∥xk̃0 −W∞xk̃0∥+ 1

n

n∑
i=1

∥Bk̃0
i ∥ck̃0

∥gk̃0
i ∥

+
1

µM1n

n∑
i=1

∥H k̃0
i −∇2F (xk̃0)∥∥gk̃0

i ∥ (78)

≤ L1

µ
√
n
∥xk̃0 −W∞xk̃0∥+ 1

µM1n

(
L2∥xk̃0 −W∞xk̃0∥

+ ∥Hk̃0 −W∞Hk̃0∥F + µck̃0

√
n
)
∥gk̃0∥.

In addition, following similar steps as in the derivation of (78),
we have

∥dk̃0 −W∞dk̃0∥

≤
∥∥∥(Ind −W∞)

(
dk̃0 − (diag{∇2F (xk̃0)})−1gk̃0

)∥∥∥
+
∥∥∥(Ind −W∞)(diag{∇2F (xk̃0)})−1gk̃0

∥∥∥ (79)

≤ ∥gk̃0∥
µM1

√
n

(
L2∥xk̃0 −W∞xk̃0∥+ ∥Hk̃0 −W∞Hk̃0∥F

+ µck̃0

√
n
)
+

1

µ
∥gk̃0 −W∞gk̃0∥

=
ϱk̃0

µ
∥gk̃0∥+ 1

µ
∥gk̃0 −W∞gk̃0∥.

By substituting (27) into (78) and (79), we get (42) and (43).
This completes the proof.

X. PROOF OF LEMMA 10

Proof. According to xk+1 = Wm(xk − αdk), we have

∥xk+1 − xk∥
≤∥(Wm − Ind)(x

k −W∞xk)∥+ α∥Wmdk∥
≤2∥xk −W∞xk∥+ α∥Wmdk∥

(80)

for all k ≥ 0. Next, we bound the second term ∥Wmdk∥
on the right-hand side of (80). According to the triangle
inequality, we have

∥Wmdk∥

≤∥Wmdk−W∞dk∥+
√
n∥dk−(∇2F (xk))−1∇F (xk)∥

+
√
n∥(∇2F (xk))−1∇F (xk)∥ (81)

for all k ≥ 0. For the third term on the right-hand side of (81),
according to the fact that

∥xk − x∗ − (∇2F (xk))−1∇F (xk)∥ ≤ L2

2µ
∥xk − x∗∥2 (82)

holds for all k ≥ 0, we have

∥(∇2F (xk))−1∇F (xk)∥ ≤ ∥xk − x∗∥+ L2

2µ
∥xk − x∗∥2

for all k ≥ 0. For the first term on the right-hand side of (81),
we have ∥Wmdk −W∞dk∥ ≤ σm∥dk −W∞dk∥ and then
use (43) to bound it. For the second term on the right-hand
side of (81), we use (42) to bound it. Thus, (81) implies that

∥Wmdk̃0∥ ≤κF (1 + 2ϱk̃0)∥xk̃0 −W∞xk̃0∥

+κF (σ
m + 2ϱk̃0) · 1

L1
∥gk̃0 −W∞gk̃0∥ (83)

+

(
1 + 2κF ϱ

k̃0 +
L2

2µ
∥xk̃0 − x∗∥

)√
n∥xk̃0 − x∗∥.

Finally, substituting (83) into (80), we get (44) and complete
the proof.

XI. PROOF OF COROLLARY 4

Proof. With xk+1 = xk − αd
k
, we have

∥xk+1 − x∗∥ ≤∥xk − x∗ − α(∇2F (xk))−1∇F (xk)∥

+ α∥dk − (∇2F (xk))−1∇F (xk)∥
(84)

for all k ≥ 0. With (82), which is given by the centralized
Newton’s method [45], we get

∥xk − x∗ − α(∇2F (xk))−1∇F (xk)∥

≤(1− α)∥xk − x∗∥+ αL2

2µ
∥xk − x∗∥2

=(1− α+ αϑk)∥xk − x∗∥

(85)

for all k ≥ 0. By substituting (85) and (42) into (84), we
complete the proof.


	Introduction
	Decentralized First-order Methods
	Decentralized Second-order Methods
	Major Contributions

	Problem Setting and Algorithm Development
	Problem Setting
	Algorithm Development

	Convergence Analysis
	Stage I: Globally Linear Convergence
	Main Theorem for Stage I
	One-step Descent in Stage I
	Proof of Main Theorem for Stage I

	Stage II: Faster Local Convergence
	Main Theorem for Stage II
	One-step Descent in Stage II
	Proof of Theorem 2
	Proof of Corollary 1


	Numerical Experiments
	Quadratic Programming
	Logistic Regression
	Comparison with first-order methods
	Comparison with second-order methods without data similarity


	Conclusions
	Appendix
	Preliminary
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Corollary 1

	References
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Corollary 4






