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Extreme Point Pursuit—Part I: A Framework for
Constant Modulus Optimization

Junbin Liu, Ya Liu, Wing-Kin Ma, Mingjie Shao and Anthony Man-Cho So

Abstract— This study develops a framework for a class of con-
stant modulus (CM) optimization problems, which covers binary
constraints, discrete phase constraints, semi-orthogonal matrix
constraints, non-negative semi-orthogonal matrix constraints,
and several types of binary assignment constraints. Capitalizing
on the basic principles of concave minimization and error bounds,
we study a convex-constrained penalized formulation for general
CM problems. The advantage of such formulation is that it allows
us to leverage non-convex optimization techniques, such as the
simple projected gradient method, to build algorithms. As the
first part of this study, we explore the theory of this framework.
We study conditions under which the formulation provides exact
penalization results. We also examine computational aspects
relating to the use of the projected gradient method for each
type of CM constraint. Our study suggests that the proposed
framework has a broad scope of applicability.

Index Terms— constant modulus optimization, non-convex
optimization, error bound, densest subgraph problem, PCA,
graph matching, clustering, ONMF

I. INTRODUCTION

Optimization with constant modulus (CM) constraints ap-
pears in a wide variety of applications in signal processing,
communications, data science and related fields. We deal
with binary and discrete phase constraints in MIMO detec-
tion [1]–[3], radar code waveform designs [4], one-bit and
constant envelope precoding [5], phase retrieval [6] and phase-
only beamforming [7]; semi-orthogonal matrix constraints in
various forms of principal component analysis (PCA), such
as sparse PCA [8], [9], robust PCA [10], fair PCA [11]
and heteroscedastic PCA [12]; binary selection constraints
in graph bisection [13] and the densest k-subgraph problem
[14]; permutation matrix constraints in quadratic assignment
[15] and graph matching [16]; size-constrained assignment
matrix constraints in paper-to-session assignment [17] and
size-constrained clustering [18]; non-negative semi-orthogonal
matrix constraints for orthogonal non-negative matrix factor-
ization (ONMF) [19], [20].

Optimization with CM constraints is, in general, challeng-
ing. There has been much enthusiasm with devising practical
schemes for tackling, or approximating, CM problems. The
CM constraint structures, perhaps together with the objective
function structures, are carefully utilized to build methods in
a case-specific fashion. That led to a vast array of techniques,
from combinatorial optimization, convex relaxation, to non-
convex optimization. Given the massive volume of literature
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and the wide variety of methods related to CM optimization,
there are widely different perspectives on how CM problems
are treated; e.g., some are concerned with theoretical computa-
tional aspects such as NP-hardness and conditions under which
the problem is tractable, while some directly use intuitions
to build heuristics and apply them to practical applications.
Here we concern ourselves with the non-convex optimization
perspective. In this context we may say that we are well-versed
with minimizing a possibly non-convex objective function
over a convex set. Minimization over a non-convex CM
set, in comparison, requires much sharper skills in a case-
specific way; examples are manifold optimization for semi-
orthogonal matrix constraints [21]–[23] and the generalized
power method [9], [24]. There are also methods that avoid the
difficulty of non-convex CM constraints by applying penal-
ization, placing a penalty function on the objective function
as “soft” constraints [19], [20], [25]. It is also worthwhile to
mention the concave minimization approach [16], which will
be considered in this paper.

Our study has a simple beginning. We want to extend our
prior study [5]. In that study we considered the cases of binary,
discrete-phase and continuous-phase constraints. We derived a
convex-constrained penalized formulation for the problem at
hand, and subsequently we built a projected gradient-based
algorithm which was numerically found to work well. In the
current study, we, on the one end, want to look back to uncover
the most basic, the most primal, principles that underlie our
prior study. On another end, we want to see how far we can
expand the principles to various applications.

With these as our goals, this study sets out to build a convex-
constrained penalized framework for a class of CM problems.
Named extreme point pursuit (EXPP), this framework covers a
collection of CM constraints, such as the constraints described
at the beginning of the Introduction. At the heart of our study
is the aspect of exact penalization, that is, conditions under
which EXPP is an equivalent formulation of its corresponding
CM problem. We will study this aspect under two different
principles, namely, the concave minimization and error bound
principles. We will see that EXPP serves as an exact pe-
nalization formulation for a wide scope of problems. Also,
like its predecessor, EXPP leads to an equivalent formulation
that has a benign structure from the viewpoint of building
algorithms; it can be handled by methods as simple as the
vanilla projected gradient (or subgradient) method. In this
regard we will examine computational aspects relating to the
use of the projected gradient (or subgradient) method for
different CM constraints.

We should describe prior related works. Concave minimiza-
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tion (see, e.g., [26, Section 32]) is a classic notion that has
been used in various ways in optimization. For example, it
was described as a way to provide exact penalization in the
context of quadratic assignment [27] back in the 1980’s. The
idea is popularly used in the related context of graph matching
[16], and it was also considered in quadratic assignment [28],
[29]. Our prior study also touched upon concave minimization
in an indirect way; see [5, Theorem 2]. We however have
not seen a study that systematically expands the notion of
concave minimization to general CM problems. Moreover,
error bounds are a notion that has deep roots in constrained
optimization for providing exact penalization guarantees [30],
[31]. Nevertheless, we see very few studies on using error
bounds to treat CM problems. Our prior study may be seen as
accidentally stumbling upon the essence of error bounds in a
narrow sense; see [5, Theorem 1]. Most recently, error bounds
begin to receive attention in the context of ONMF and related
problems [32], [33]. Once again, we have not seen a systematic
development of error bound techniques for a wide class of CM
problems.

Part of this paper was presented in conferences. In [34]
we presented a premature version of EXPP under the con-
cave minimization principle. In [35] we applied EXPP to
the densest k-subgraph problem. The development of error
bound techniques, which occupies a significant portion of
contributions of our study, is presented for the first time in
this paper.

As Part I of this paper, the contents are organized as follows.
Section II provides the problem statement. Section III uses
the concave minimization principle to establish EXPP for a
class of CM problems. There, we also examine computational
aspects relating to the use of the projected gradient method.
Section IV studies EXPP using the error bound principle
and establishes new conditions for exact penalization (which
concave minimization cannot cover). Section V further covers
the aspect of exact penalization with respect to locally optimal
solutions. Section VI concludes our findings. Part II of this
paper will provide numerical results in different applications.
It will also derive new case-specific EXPP results.

A. Notations

The symbols Z, R, R+, R++ and C denote the sets of inte-
gers, real numbers, non-negative numbers, positive numbers,
and complex numbers, respectively. A vector and a matrix are
represented by a boldfaced lowercase letter and a boldfaced
capital letter, such as x and X , respectively. A vector is
always assumed to be a column vector in this paper. The
ith component of a given vector x is denoted by xi. The
(i, j)th component of a given matrix X is denoted by xij . The
transpose of a given vector x is denoted by x⊤. The notation
x = (x1, . . . , xn) is synonymous with x = [ x1, . . . , xn ]⊤.
The trace of a given matrix X ∈ Rn×n is denoted by tr(X).
Given a matrix X ∈ Rm×n, the vectors xj ∈ Rm and
x̄i ∈ Rn denote the jth column and ith row of X , respectively.

The notations 0, 1 and I denote an all-zero vector, an all-
one vector and an identity matrix, respectively. The notation
ei denotes a unit vector with [ei]i = 1 and [ei]j = 0

for all j ̸= i. The component-wise absolute value and
power-of-p of a given vector x ∈ Rn are denoted by
|x| = (|x1|, . . . , |xn|) and xp = (xp1, . . . , x

p
n), respec-

tively. The notation max{x,y} denotes the component-wise
maximum of two vectors x,y ∈ Rn, i.e., max{x,y} =
(max{x1, y1}, . . . ,max{xn, yn}). Given two vectors x,y ∈
Rn, the notation x ≥ y means that xi ≥ yi for all i. Given
two vectors a, b ∈ Rn with a ≤ b, the notation [x]ba :=
(min{max{a1, x1}, b1}, . . . ,min{max{an, xn}, bn}) denotes
the clipping of a given vector x ∈ Rn over an interval [a, b].
The ith largest component of a given vector x ∈ Rn is denoted
by x[i]. The function

sk(x) := x[1] + · · ·+x[k]

denotes the max-k-sum of x ∈ Rn.
Given a scalar p ≥ 1, the ℓp norm of a vector x ∈ Rn

is denoted by ∥x∥p = (
∑n

i=1 |xi|p)1/p; and the ℓ∞ norm
of x is denoted by ∥x∥∞ = max{|x|1, . . . , |x|n}. Similarly,
the component-wise ℓp norm of a matrix X ∈ Rm×n (with
p ≥ 1) is denoted by ∥X∥ℓp = (

∑m
i=1

∑n
j=1 |xij |p)1/p.

The ith largest singular value of a given matrix X is de-
noted by σi(X). Given a matrix X ∈ Rm×n, we denote
σ(X) = (σ1(X), . . . , σr(X)), where r = min{m,n}. The
spectral norm, Frobenius norm and nuclear norm of a matrix
X ∈ Rm×n are denoted by ∥X∥2 = σ1(X), ∥X∥F =
(
∑r

i=1 σi(X)2)1/2 = ∥X∥ℓ2 and ∥X∥∗ =
∑r

i=1 σi(X),
respectively (where r = min{m,n}).

Given a non-empty set X ⊆ Rn, the convex hull of X is
denoted by conv(X ). We denote

∆n = {x ∈ Rn
+ | 1⊤x = 1},

Bn = {x ∈ Rn | ∥x∥2 ≤ 1},
Bn,r = {X ∈ Rn×r | ∥X∥2 ≤ 1},

as the unit simplex on Rn, the unit ℓ2 norm ball on Rn, and
the unit spectral norm ball on Rn×r, respectively. The gradient
of a given function f : D → R, with D ⊆ Rn, is denoted by
∇f(x). The distance from a point x ∈ Rn to a non-empty
set X ⊆ Rn is defined as dist(x,X ) = inf{∥x − z∥2 | z ∈
X}. The projection of a point x ∈ Rn onto a non-empty set
X ⊆ Rn is denoted by ΠX (x); specifically, ΠX (x) denotes
any point in X such that ∥x−ΠX (x)∥2 = dist(x,X ).

The above notations apply to matrices and complex-valued
vectors, whenever applicable. Also, we denote j =

√
−1. The

real component, imaginary component, and angle of a complex
scalar x are denoted by ℜ(x), ℑ(x), and ∠x, respectively.

II. PROBLEM STATEMENT

A. The Problem

In this study, we consider a class of constant modulus (CM)
problems. To describe it, a set V ⊂ Rn is said to be a CM set
with modulus

√
C if ∥x∥22 = C for any x ∈ V . We focus on

problems that take the form

min
x∈V

f(x), (1)

where f : D → R is a function with domain D ⊆ Rn;
V ⊆ D is a non-empty closed CM set with modulus

√
C
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and with conv(V) ⊆ D. We will place particular emphasis on
the following CM sets.
1. binary vector set: {−1, 1}n.
2. m-ary phase shift keying (MPSK) set:

Θm := {x ∈ C | x = ej
2πl
m +j π

m , l ∈ {0, 1, . . . ,m− 1}},

where m ≥ 3 is an integer.
3. unit sphere:

Sn := {x ∈ Rn | ∥x∥2 = 1}.

An example is the complex unit-modulus set {x ∈ C |
|x| = 1}.

4. semi-orthogonal matrix set:

Sn,r := {X ∈ Rn×r |X⊤X = I},

where n ≥ r.
5. unit vector set:

Un := {e1, . . . , en} ⊆ Rn.

6. selection vector set:

Un
κ := {x ∈ {0, 1}n | 1⊤x = κ},

where κ ∈ {1, . . . , n}.
7. partial permutation matrix set:

Un,r := {X ∈ Rn×r | xj ∈ Un ∀j, x⊤
j xj′ = 0 ∀j ̸= j′},

where n ≥ r. Note that Un,n is the full permutation matrix
set. The set Un,r can be characterized as

Un,r = {X ∈ {0, 1}n×r |X⊤1 = 1,X1 ≤ 1},

and, for n = r, it can be further written as

Un,n = {X ∈ {0, 1}n×n |X⊤1 = 1,X1 = 1}.

8. size-constrained assignment matrix set:

Un,r
κ := {X ∈ Rn×r | xj ∈ Un

κj
∀j, x⊤

j xj′ = 0 ∀j ̸= j′},

where n ≥ r, κ ∈ {1, . . . , n}r,
∑r

j=1 κj ≤ n. The set
Un,r
κ can be characterized as

Un,r
κ = {X ∈ {0, 1}n×r |X⊤1 = κ,X1 ≤ 1},

and, for
∑r

j=1 κj = n, it can be further written as

Un,r
κ = {X ∈ {0, 1}n×n |X⊤1 = κ,X1 = 1}.

9. non-negative semi-orthogonal matrix set:

Sn,r+ := Sn,r ∩ Rn×r
+ ,

where n ≥ r.
10. Cartesian product of CM sets: V = V1 × · · · × Vr, where

each Vi ⊆ Rni is a CM set with modulus
√
Ci. Examples

are the MPSK vector set Θn
m and the complex component-

wise unit-modulus set {x ∈ Cn | |x| = 1}.
Note that the unit sphere Sn is a special case of the semi-
orthogonal matrix set Sn,r; the unit vector set Un is a special
case of the selection vector set Un

κ ; the selection vector set
Un
κ and the partial permutation matrix set Un,r are special

cases of the size-constrained assignment matrix set Un,r
κ . The

reader is referred to the beginning of the Introduction and the
references therein for the applications.

B. The Approach to Be Pursued

There are many different approaches to deal with specific
CM problems. For instance, when the constraint set V is a
smooth manifold in an Euclidean space (such as the unit
sphere Sn or the semi-orthogonal matrix set Sn,r), the CM
problem (1) can be tackled by manifold optimization tech-
niques [22], [23]. On the other hand, if the constraint set V
can be expressed as a subgroup of the orthogonal group (such
as the MPSK set Θm, the unit sphere Sn, the semi-orthogonal
matrix set Sn,r, or the full permutation matrix set Un,n),
then it can also be tackled by the so-called generalized power
method; see, e.g., [24] and cf. [9]. However, the efficiency
of these approaches depends crucially on that of computing
the projection onto the often non-convex constraint set V .
Moreover, these approaches cannot tackle the entire class of
CM problems that we are interested in. This study aims to
provide a unified treatment of a large class of CM problems
using penalization techniques. Specifically, we want to con-
vert the general CM problem (1) into a convex-constrained
minimization problem

min
x∈X

f(x) + λh(x), (2)

where X ⊆ D is a constraint set that is convex and closed,
h : Rn → R is a penalty function that promotes the decision
variable x to lie in the CM set V , and λ > 0 is a given
scalar. To ensure that such a conversion is advantageous from
both theoretical and numerical viewpoints, our goal is to find
an X and an h such that (i) problem (2) is an equivalent
formulation of the CM problem (1), in the sense that there is
a correspondence between the (locally) optimal solutions to
the two problems; (ii) problem (2) can be tackled by standard
numerical methods that enjoy convergence guarantees and are
practically efficient.

C. Remarks

We want to discuss a basic aspect relating to classic
constrained optimization. Readers who want to immediately
see our methods can jump to the next section. Advanced
readers from optimization will notice that the formulation
(2) is the same as that by the classical penalty methods in
constrained optimization; see, e.g., [36, Chapter 17] or [31,
Chapter 9]. This is true, but there is also a difference. In the
context of constrained optimization, it is common to assume
X = D. Or, the chosen X has little relationship with the
structure of the original constraint set V . Moreover, the penalty
functions arising from classical constrained optimization could
be unfriendly from the viewpoint of building algorithms. For
example, for the binary case V = {−1, 1}n, the application of
the quadratic penalty method in constrained optimization [36,
Chapter 17] leads to the following penalty function

h(x) = ∥1− |x|2∥22.

As the reader will see, we take inspiration from basic optimiza-
tion principles to derive both X and h for exact penalization
results. For example, for the binary case we will see that

h(x) = −∥x∥22, X = [−1, 1]n
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gives exact penalization results. Our approach can be viewed
as a concrete instantiation of the theory of exact penalization in
[31, Chapter 9] and yields, for the first time, exact penalization
results that are specifically tailored for CM problems.

III. EXACT PENALIZATION BY CONCAVIFICATION

In this section, we study the notion of concave minimization
for converting a CM problem to a convex-constrained mini-
mization problem. In the first subsection, we will first review
the basic idea by using MIMO detection as an example. Then,
in the second subsection, we will expand the idea as a principle
for general CM problems. The third subsection will introduce
an optimization scheme under the principle to be established,
and the fourth subsection will assess the applicability and
computational issues of the resulting scheme for various CM
sets. The fifth subsection will summarize the development and
discuss further aspects.

A. Example: MIMO Detection

As an example, consider the following problem

min
x∈{−1,1}n

f(x) = ∥y −Hx∥22 (3)

for some given y ∈ Rm and H ∈ Rm×n. This problem
is known as the MIMO detection problem in the context of
communications and signal processing. The reader is referred
to the literature (e.g., the references in [2]) for the background.
Here we focus on a reformulation of problem (3) as a convex-
constrained minimization problem. Given a scalar λ > 0,
consider the following penalized formulation

min
x∈[−1,1]n

Fλ(x) := f(x)− λ∥x∥22. (4)

This formulation was proposed in [5]. The idea is to use a
negative square penalty to force each variable xi to have its
modulus |xi| as large as possible, which, under the constraint
xi ∈ [−1, 1], should lead xi to be close to either −1 or 1.
It can be shown that, for a sufficiently large λ, the penalized
formulation (4) is an equivalent formulation of the MIMO
detection problem (3) [5, Theorem 2]. Consider the following
lemma.

Lemma 1 Let D ⊆ Rn. Let A ⊆ D be a non-empty set. Let
Φ : D → R be a function that is strictly concave at least on
conv(A), with conv(A) ⊆ D. Suppose that

min
x∈A

Φ(x) (5)

has an optimal solution. Then the following problem

min
x∈conv(A)

Φ(x) (6)

is an equivalent formulation of problem (5) in the sense that
(a) problem (6) has an optimal solution, given by any one of
the optimal solutions to (5); and (b) any optimal solution to
(6) must be an optimal solution to (5).

Lemma 1 is an elementary result in optimization [26,
Section 32]. Since its proof is easy to understand and provides
insight, we concisely review the proof.

Proof of Lemma 1: Let x be any point in conv(A). By
definition, we can represent x by x =

∑k
i=1 θiai for some

a1, . . . ,ak ∈ A, θ ∈ Rk
+,
∑k

i=1 θi = 1, and k. Let x⋆ denote
any optimal solution to (5). We have

Φ(x) ≥
∑k

i=1 θiΦ(ai) (7a)

≥
∑k

i=1 θiΦ(x
⋆) (7b)

= Φ(x⋆), (7c)

where (7a) is due to Jensen’s inequality and the concavity of
Φ, and (7b) is due to Φ(a) ≥ Φ(x⋆) for any a ∈ A. Eq. (7)
implies that the minimum of Φ over conv(A) can be attained,
and it is attained at x⋆. In other words, problem (6) has an
optimal solution, and any optimal solution to (5) is an optimal
solution to (6). Moreover, (7a) attains equality if and only if
θ = ej for some j; this is because Φ is strictly concave. This
implies that the minimum of Φ over conv(A) is attained at x
only if x ∈ A, which implies that any optimal solution to (6)
is also an optimal solution to (5). The proof is complete. ■

It is known that conv({−1, 1}n) = [−1, 1]n. By expanding

Fλ(x) = x⊤(H⊤H − λI)x− 2y⊤H⊤x+ ∥y∥22,

we see that Fλ is strictly concave when H⊤H−λI is negative
definite. Suppose that λ > σ1(H)2 such that H⊤H − λI is
negative definite. Then Lemma 1 asserts that problem (4) is
an equivalent formulation of

min
x∈{−1,1}n

Fλ(x) = min
x∈{−1,1}n

f(x)− λn

which is the MIMO detection problem (3). Hence, given any
λ > σ1(H)2, problem (4) is an equivalent formulation of the
MIMO detection problem (3). To provide the reader with the
intuition, we graphically illustrate the optimization landscape
in Fig. 1(a). We see that as Fλ becomes concave, it exhibits
a down-slope landscape. Such landscape causes the optimal x
to go to either −1 or 1.

B. Extreme Point Pursuit for General CM Problems

We want to expand the idea in the previous subsection to
general CM problems. Given a scalar λ > 0, consider the
following penalized formulation of the CM problem (1):

min
x∈conv(V)

Fλ(x) := f(x)− λ∥x∥22. (8)

From the exact penalization result in Lemma 1, we know that
problem (8) is an equivalent formulation of the CM problem
(1) if Fλ is strictly concave. We have learned in the previous
example that if f is quadratic, we can always concavify the
penalized objective function Fλ. Now the question is how far
we can go beyond quadratic functions.

To answer this question, we consider the notion of weak
convexity. Let us provide the context. Let D ⊆ Rn. Given a
scalar ρ > 0 and a convex set X ⊆ D, a function ϕ : D → R
is said to be ρ-weakly convex on X if ϕ(x) + ρ∥x∥22/2 is
convex on X . A popular subclass of weakly convex functions
is the class of functions that are differentiable and have the
Lipschitz continuous gradient property. Given a scalar L > 0
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and a set X ⊆ D, a function ϕ : D → R is said to have L-
Lipschitz continuous gradient on X if ϕ is differentiable and
∥∇ϕ(x) − ∇ϕ(x′)∥2 ≤ L∥x − x′∥2 for all x,x′ ∈ X . We
have the following result.

Lemma 2 ( [37]) If ϕ : D → R has L-Lipschitz continuous
gradient on a convex set X ⊆ D, then ϕ is L-weakly convex
on X . In particular, given any µ > L, the function ϕ(x) +
µ∥x∥22/2 is strictly convex on X .

In our study, we want f to be weakly concave; i.e., −f is
weakly convex. By definition, if ϕ has L-Lipschitz continuous
gradient on X , then −ϕ also has L-Lipschitz continuous
gradient on X . This leads to the following important variant
of Lemma 2.

Lemma 3 If ϕ : D → R has L-Lipschitz continuous gradient
on a convex set X ⊆ D, then −ϕ is L-weakly convex on X .
In particular, given any µ > L, the function ϕ(x)− µ∥x∥22/2
is strictly concave on X .

We are now ready to provide a sufficient condition under
which the penalized formulation (8) gives exact penalization
results for general CM problems. Assume the following.

Assumption 1 The objective function f of the CM problem
(1) has L-Lipschitz continuous gradient on conv(V).

Assumption 1 is considered applicable in many applications.
This is because any twice continuously differentiable function
f has Lipschitz continuous gradient on a compact set, and
conv(V) is always compact. The following theorem describes
the exact penalization result.

Theorem 1 Consider the CM problem in (1). Suppose that
Assumption 1 holds. Given any scalar λ > L/2, problem (8)
is an equivalent formulation of the CM problem (1) in the
sense that the optimal solution sets of problems (8) and (1)
are equal.

As a remark, it is even possible to show that the locally optimal
solution sets of problems (1) and (8) are equal for many CM
sets of interest; this will be described later in Section V.

The proof of Theorem 1 is as follows. By Lemma 3, the
function Fλ in (8) is strictly concave when λ > L/2. Applying
Lemma 1 gives the desired result.

Theorem 1 asserts that, given a sufficiently large scalar λ >
0, the penalized formulation (8) is an equivalent formulation
of a general CM problem. In what follows, we will call the
penalized formulation (8) the extreme point pursuit (EXPP)
problem of the CM problem (1). This is because every point
in a CM set V can be shown to be an extreme point of V , and
the penalty −∥x∥22 has a flavor of pulling the minimizer of (8)
to approach an extreme point. Fig. 1(b) graphically illustrates
such effects.

C. Projected Gradient Methods and Homotopy Optimization

Our next question is how we deal with the EXPP problem
(8) in terms of building algorithms to find its solution. The
EXPP problem (8) is an optimization problem with a convex
constraint and a non-convex differentiable objective function;
the objective function Fλ also possesses the Lipschitz continu-
ous gradient property. Let us suppose that it is easy to compute
Πconv(V)(·), the projection onto conv(V); this is a key issue
and we will come back to this in the next subsection. A
naturally suitable class of optimization methods for the EXPP
problem would be the projected gradient method. Specifically,
consider

xl+1 = Πconv(V)(x
l − ηl∇Fλ(x

l)), l = 0, 1, . . . , (9)

where ηl > 0 is the step size, the vector xl, l ≥ 1, denotes the
lth iterate of the algorithm, and x0 denotes a given starting
point for the algorithm. It is well-known in the context of
first-order optimization that, if 1/ηl is chosen to be no less
than the Lipschitz constant of the gradient of Fλ, then the
projected gradient algorithm in (9) has several convergence
properties with respect to a critical point or a near-critical
point of the EXPP problem (8); see, e.g., [38, Chapter 10],
[39] (particularly Theorem 5.3) and the references therein.

We would like to consider another aspect, which is based
on our previous empirical experience in MIMO detection [2]
and was also indicated in a related study [16]. The exact
penalization result in Theorem 1 tells us to use a large scalar
λ for the EXPP problem. If we choose a large λ and then run
an algorithm (such as the projected gradient algorithm) for
the EXPP problem (8), we found that the results are usually
poor. It seems that the algorithm can easily get trapped in poor
local minima when λ is large. In practice, we often employ a
homotopy optimization strategy [2], [16], [40]–[42]. We start
with a small λ such that the corresponding EXPP problem (8)
is “easy” to solve. Specifically, if the objective function f is
convex, we can start with λ = 0 and the corresponding EXPP
problem (8) is a convex optimization problem. If f is non-
convex, we can still make the problem easy. By Lemma 2,
we know that, under Assumption 1, the function Fλ is convex
if λ < −L/2; that is, we can convexify Fλ. We illustrate
the convexification effects in Fig. 1(b); see the curve for
λ = −5. By starting with λ < −L/2, we start with a
convex problem. What we do next is to gradually increase λ.
The intuition is that the optimization landscape should change
gradually as we change λ gradually. Hence, by starting with
an easy EXPP problem, and then tackling the EXPP problems
with gradually increasing λ’s, we might be able to trace the
optimal solution path of the EXPP problem with respect to λ,
thereby gradually approaching the optimal solution to the CM
problem. So far there is no theoretical proof for homotopy
optimization to guarantee to find the optimal solution, but
empirical results look promising. We describe the homotopy
optimization method as a pseudo-code in Algorithm 1.

D. Are Projections Onto Convex Hulls Easy?

When we discuss the optimization aspects in the last sub-
section, we make a simplifying assumption that it is easy
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(a) f(x) = (x− 0.5)2. (b) f(x) = (x+ 0.9)(x+ 0.1)(x− 0.6)(x− 1). (c) f(x) = |x|.

Fig. 1: Illustration of the concavification effects with Fλ(x) = f(x) − λ∥x∥22. (a) A convex quadratic instance of f ; (b) a
non-convex differentiable instance of f ; (c) a non-differentiable instance of f .

Algorithm 1 A homotopy optimization method.

1: given: a sequence {λk} and a starting point x0

2: k ← 0
3: repeat
4: run an algorithm for problem (8) with λ = λk (e.g.,

the projected gradient algorithm in (9)), with xk as the
starting point. Set xk+1 as the solution obtained by the
algorithm.

5: k ← k + 1
6: until a stopping rule is met
7: output: xk

to compute Πconv(V)(·). Now we return to this aspect by
examining our interested CM sets described in Section II.
1. binary vector set: We have conv({−1, 1}n) = [−1, 1]n and

Π[−1,1]n(z) = [z]1−1.
2. MPSK set: Given an integer m ≥ 3, define

Pm =
{
x ∈ C

∣∣∣ℜ(ej 2πl
m x
)
≤ cos

(
π
m

)
, l ∈ {0, . . . ,m− 1}

}
.

This set equals conv(Θm). An illustration of Pm is shown
in Fig. 2. The projection onto Pm is

ΠPm
(z) = ej

2πk
m

(
[ℜ(y)]cos(π/m)

0 + j[ℑ(y)]sin(π/m)
− sin(π/m)

)
,

where k = ⌊(∠z + π/m)/(2π/m)⌋, y = ze−j 2πk
m .

3. unit sphere: The convex hull of the unit sphere is the unit
ℓ2 norm ball:

conv(Sn) = {x ∈ Rn | ∥x∥2 ≤ 1} = Bn.

The projection onto Bn is ΠBn(z) = z if ∥z∥2 ≤ 1, and
ΠBn(z) = z/∥z∥2 if ∥z∥2 > 1.

4. semi-orthogonal matrix set: To describe the convex hull,
we first note that the semi-orthogonal matrix set can be
characterized as

Sn,r = {X ∈ Rn×r | σi(X) = 1 ∀i}.

The convex hull of Sn,r is the unit spectral norm ball:

conv(Sn,r) = {X ∈ Rn×r | σi(X) ≤ 1 ∀i} = Bn,r.

To describe the projection onto Bn,r, let Z ∈ Rn×r be a
given matrix. Let Z = UΣV ⊤ be its singular value de-
composition (SVD), where U ∈ Rn×r is semi-orthogonal,
Σ = Diag(σ(Z)), and V ∈ Rr×r is orthogonal. We have

ΠBn,r (Z) = UDiag([σ(Z)]10)V
⊤.

The computational cost with the projection is mainly with
the SVD, which requires O(nr2) operations.

5. unit vector set: The convex hull of the unit vector set is
the unit simplex:

conv(Un) = {x ∈ Rn
+ | 1⊤x = 1} = ∆n.

The projection onto ∆n does not have a closed form, but
it can be computed by an algorithm with a complexity of
O(n log(n)) [43].

6. selection vector set: It can be shown that

conv(Un
κ ) = {x ∈ [0, 1]n | 1⊤x = κ}. (10)

The projection onto conv(Un
κ ) can be computed by a bisec-

tion search algorithm [44, Algorithm 1] with a complexity
of O(n log(n/ε)), where ε > 0 describes the solution
precision.

7. partial permutation matrix set: The Birkhoff-von Neumann
theorem asserts that the convex hull of the full permutation
matrix set is the set of doubly stochastic matrices:

conv(Un,n) = {X ∈ [0, 1]n×n |X⊤1 = 1,X1 = 1}.

For the general case n ≥ r, it can be shown that

conv(Un,r) = {X ∈ [0, 1]n×r |X⊤1 = 1,X1 ≤ 1}.

The projection onto conv(Un,r) does not have a closed-
form or easy-to-compute solution, to the best of our knowl-
edge. A numerical solver is required to solve the projection
problem. One convenient option is to use a general-purpose
convex optimization software, such as CVX [45]. Another
option is to find a specialized solver, one that exploits
the problem structure for efficient computation. One such
solver is the dual gradient method in [29]; it was developed
for the case of n = r and can be extended to the case
of n ≥ r. This method has a complexity per iteration of
O(nr), but it may take many iterations to reach an accurate
result. In summary, while it is possible to numerically com-
pute the projection onto conv(Un,r), it may be practically
expensive to do so particularly when n and r are large.

8. size-constrained assignment matrix set: It can be shown
that

conv(Un,r
κ ) = {X ∈ [0, 1]n×r |X⊤1 = κ,X1 ≤ 1}.

The projection onto conv(Un,r
κ ) faces the same compu-

tational issues discussed in the last point. It is a more
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general problem, and thus no easier, than its counterpart for
conv(Un,r). One can find a numerical solver to compute
the projection onto conv(Un,r

κ ), but that may be expensive
particularly for large n and r.

9. non-negative semi-orthogonal matrix set: To the best of our
knowledge, the expression of the convex hull of Sn,r+ =
Sn,r ∩ Rn×r

+ is not known. We are unable to derive it,
neither. It is very tempting to think that conv(Sn,r+ ) =
conv(Sn,r) ∩ Rn×r

+ = Bn,r ∩ Rn×r
+ . Unfortunately this is

not true: the point 0 lies in Bn,r ∩Rn×r
+ , but any point in

conv(Sn,r+ ) can be shown to be nonzero. Given our lack
of knowledge of conv(Sn,r+ ), we do not know what is the
associated projection.

10. Cartesian product of CM sets: As a basic fact,

conv(V1 × · · · × Vr) = conv(V1)× · · · × conv(Vr);

see [46, Problem 1.37]. Given a vector z = (z1, . . . ,zr),
zi ∈ Rni , the projection of z onto conv(V1) × · · · ×
conv(Vr) is (Πconv(V1)(z1), . . . ,Πconv(Vr)(zr)).

Fig. 2: The convex hull of the MPSK set. m = 8.

We provide the proof of some of the main convex hull and
projection results in the supplemental material. While some
results are known, e.g., [9, Section 3.4] for Sn,r and [47,
Theorem 9.8.3] for Un,r (see also [24] for related results),
there are also results that we could not find accurate proofs
from the literature.

E. Summary and Further Remarks

Let us pause and give a mini summary. We studied a
convex-constrained penalized formulation (8), called EXPP,
for a general class of CM problems (1). The EXPP formu-
lation has a benign structure, and it can be handled by the
projected gradient method as a universal algorithmic scheme.
The computational efficiency of implementing the projected
gradient method is however case-specific. It crucially depends
on whether the projection onto the convex hull of the CM set
is easy to compute. Our study showed that

(a) the cases of binary vectors, MPSK vectors, unit sphere
vectors, semi-orthogonal matrices, unit vectors and selec-
tion vectors have efficient-to-compute projections;

(b) the cases of partial/full permutation matrices and size-
constrained assignment matrices have computable projec-
tions, but the costs can be high for large n and r;

(c) the case of non-negative semi-orthogonal matrices is an
open problem, and we do not know how to apply EXPP.

In conclusion, EXPP is considered “easy” to use for CM
constraints under category (a). The other CM constraints will
be further studied in our subsequent development.

IV. EXACT PENALIZATION BY ERROR BOUNDS

The core principle of the EXPP formulation in the last sec-
tion is to turn Fλ(x) = f(x)− λ∥x∥22 to a concave function.
This concave minimization principle can cover a broad class
of differentiable objective functions f ’s, but it may not cover
non-smooth f . As an example, consider f(x) = ∥x∥1. It can
be verified that Fλ(x) can never be concave, regardless of how
large λ is; see Fig. 1(c) for an illustration.

In this section, we study the EXPP formulation under the
error bound principle [30], seeing if the EXPP formulation
can actually provide exact penalization results for a class of
possibly non-smooth objective functions. The first subsection
will first review elementary error bound results. In the sec-
ond subsection, we will consider an example, namely, one-
bit MIMO precoding, to provide insights on how the error
bound principle interacts with EXPP. The third and fourth
subsections will link the error bound principle with EXPP for
the general case and specific cases, respectively. The fifth and
sixth subsections will provide technical proofs. The seventh
subsection will give further discussion.

A. Elementary Results

First we introduce the notion of Lipschitz continuity. Let
D ⊆ Rn. Given a scalar K > 0 and a set X ⊆ D, a function
ϕ : D → R is said to be K-Lipschitz continuous on X if

|ϕ(x)− ϕ(x′)| ≤ K∥x− x′∥2, ∀x,x′ ∈ X .

For example, ϕ(x) = ∥x∥1 is
√
n-Lipschitz continuous on

Rn. A quadratic function is not Lipschitz continuous on Rn,
but it is Lipschitz continuous on a compact set.

Second we describe basic constrained optimization results
that utilize Lipschitz continuity to achieve exact penalization.
The following result is considered most elementary.

Lemma 4 (Proposition 2.4.3 in [48]) Let D ⊆ Rn. Let A ⊆
D be a non-empty closed set. Let ϕ : D → R be a function that
is K-Lipschitz continuous on some set C ⊆ D, with A ⊆ C.
Suppose that

min
x∈A

ϕ(x) (11)

has an optimal solution. Given any scalar λ > K, the
following problem

min
x∈C

ϕ(x) + λ dist(x,A) (12)

is an equivalent formulation of problem (11) in the sense that
(a) problem (12) has an optimal solution, given by any one of
the optimal solutions to (11); and (b) any optimal solution to
(12) must be an optimal solution to (11).
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The proof of Lemma 4 is easy to understand. Given its
importance, we review the proof to give readers insight.

Proof of Lemma 4: Let x be any point in C. As an
elementary property of dist(·,A) with non-empty closed A,
there exists a point a ∈ A such that ∥x − a∥2 = dist(x,A)
[48]. Let Φ(x) = ϕ(x) + λ dist(x,A). Let x⋆ ∈ A denote
any optimal solution to (11). We have

Φ(x) ≥ ϕ(a) + (λ−K)∥x− a∥2 (13a)
≥ ϕ(x⋆) = Φ(x⋆), (13b)

where (13a) is due to the K-Lipschitz continuity of ϕ relative
to C, and (13b) is due to λ > K and ϕ(a) ≥ ϕ(x⋆) for any a ∈
A. Eq. (13) implies that Φ attains a minimum over C at x⋆.
Hence, problem (12) has an optimal solution, and any optimal
solution to (11) is an optimal solution to (12). Moreover, (13b)
attains its equality only if x = a ∈ A; note that λ > K.
This implies that any optimal solution to (12) must also be an
optimal solution to (11). The proof is complete. ■

Lemma 4 shows that a penalized formulation with the
distance function dist(·,A) as the penalty function can lead to
an equivalent formulation of the original constrained problem.
Lemma 4 provides the foundation for the error bound principle
for exact penalization. To describe it, consider the following
definition.

Definition 1 Given a set C ⊆ Rn and a set A ⊆ C, a function
ψ : Rn → R is said to be an error bound function of A relative
to C if

dist(x,A) ≤ ψ(x), ∀x ∈ C, (14a)
ψ(x) = 0, ∀x ∈ A. (14b)

Alternatively, given an inequality in the form of (14a), we call
(14a) an error bound relative to C if (14a) attains equality
when x ∈ A.

An error bound function can be seen as a majorant of
dist(·,A) at 0 and on C. As the successor of Lemma 4, the
following result is important and frequently-used.

Lemma 5 (Theorem 2.1.2 and Remark 2.1.3 in [30], or
Proposition 9.1.1 in [31]) Consider the same setting in
Lemma 4. Let ψ be an error bound function of A relative
to C. Given any scalar λ > K, the following problem

min
x∈C

ϕ(x) + λψ(x) (15)

is an equivalent formulation of problem (11) in the same sense
as that in Lemma 4.

We remark that it is also possible to establish a relationship be-
tween the locally optimal solutions to problems (11) and (15);
see, e.g., [31, Proposition 9.1.2] and also Section V.

Lemma 5 can be straightforwardly derived by following the
proof of Lemma 4, and we shall not provide the proof in this
paper; see the aforementioned references for the proof. The
advantage of Lemma 5 over its predecessor Lemma 4 is that
it provides us with an opportunity to derive friendly penalty

functions. In the next subsection we will give an example to
illustrate why this is so. Sometimes we may have to make a
compromise by accepting inexact penalization. We derive the
following result, which will be useful later.

Lemma 6 Consider the same setting in Lemmas 4–5. Let x⋆

denote any optimal solution to (11). Suppose that, given any
scalar λ > 0, the following problem

min
x∈C

ϕ(x) + λψ(x)2 (16)

has an optimal solution. Let x̂ denote any optimal solution
to (16), and let x′ = ΠA(x̂) be any projection of x̂ onto A.
Problem (16) is an inexact formulation of problem (11) in the
sense of the following assertions:
(a) dist(x̂,A) ≤ K/λ,
(b) ϕ(x̂) ≤ ϕ(x⋆) ≤ ϕ(x̂) +K2/λ, and
(c) ϕ(x⋆) ≤ ϕ(x′) ≤ ϕ(x⋆) +K2/λ.

The proof of Lemma 6 is shown in Appendix A. Lemma 6
suggests that (16) approximates (11) better as λ increases. In
particular, by letting ε = O(1/λ), a solution x̂ to (16) is
ε-feasible to problem (11) and achieves an ε-close objective
value relative to the optimal value of problem (11); a rounded
solution x′ from a solution to (16) is ε-optimal to (11).

B. Example: One-Bit MIMO Precoding

To illustrate the potential of the exact penalization results
in the last subsection, consider the following example

min
x∈{−1,1}n

f(x) := max
i=1,...,m

a⊤
i x+ bi, (17)

where a1, . . . ,am ∈ Rn and b1, . . . , bm ∈ R are given.
This problem arises in one-bit MIMO precoding [5]. The
objective function f is non-smooth. It can be verified that
f is Lipschitz continuous on Rn, with Lipschitz constant
K = maxi=1,...,m ∥ai∥2.

We consider applying the exact penalization results in Lem-
mas 4–5 to problem (17). We begin with the more elementary
one, Lemma 4. It is easy to verify that dist(x, {−1, 1}n) =
∥1−|x|∥2, and by Lemma 4 we have the following equivalent
formulation of problem (17):

min
x∈X

f(x) + λ∥1− |x|∥2

where X ⊆ Rn is any set that covers {−1, 1}n. However, the
penalty function with the above formulation does not look too
friendly. We thus turn to error bounds. Recall that in EXPP
we choose X = [−1, 1]n. For any x ∈ [−1, 1]n, we have

∥1− |x|∥2 ≤ ∥1− |x|∥1 (18a)
=
∑n

i=1(1− |xi|) (18b)
≤ n−

∑n
i=1 |xi|2, (18c)

where (18c) is due to z ≥ z2 for all z ∈ [0, 1]; also, Eq. (18)
attains equality when x ∈ {−1, 1}n. This means that n−∥x∥22
is an error bound function of {−1, 1}n relative to [−1, 1]n.
Applying this error bound to Lemma 5 gives the following
problem

min
x∈[−1,1]n

f(x)− λ∥x∥22 (19)
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as an equivalent formulation of problem (17). Interestingly, the
above formulation is the same as the EXPP problem (8). This
reveals that EXPP can also deal with a non-smooth objective
function f . We remark that the error bound-based proof (18)
is very simple, and it appears to be new.

We give two further remarks. First, the function n−∥x∥22 is
not the only error bound. We can see from (18) that n−∥x∥1 is
also an error bound function of {−1, 1}n relative to [−1, 1]n.
This means that the following formulation

min
x∈[−1,1]n

f(x)− λ∥x∥1 (20)

is also an equivalent formulation of problem (17). Second, (19)
and (20) were already shown to be equivalent formulations of
the one-bit MIMO precoding problem (17) in [5, Theorem 1]
and [49, Theorem 3], respectively, though they were not shown
using error bounds.

C. Error Bounds for General CM Problems and EXPP

The above example raises a question: Does the notion of
error bounds for exact penalization apply to EXPP in general?
To pose the question more accurately, recall the EXPP problem
(8) of the general CM problem (1):

min
x∈conv(V)

Fλ(x) = f(x)− λ∥x∥22. (21)

Also, consider the following assumption.

Assumption 2 The objective function f of the CM problem
(1) is K-Lipschitz continuous on conv(V).

Assumption 2 is considered reasonable. Suppose that the
domain D of f is open. It is known that, if f can be written
as f = f1 + f2, where f1 is continuously differentiable
(not necessarily convex) and f2 is convex (not necessarily
differentiable) on D, then f is Lipschitz continuous on any
compact set (conv(V) in our study). In particular, if f satisfies
the Lipschitz gradient assumption in Assumption 1, then it
satisfies Assumption 2 trivially; if f is weakly convex, then it
satisfies Assumption 2.

Our question is whether C−∥x∥22, or its scaled counterpart,
serves as an error bound function of V relative to conv(V). If
the answer is yes, then, by the virtue of Lemma 5, the EXPP
problem is an equivalent formulation of any CM problem. The
following theorem provides the answer.

Theorem 2 Let V be an arbitrary CM set with modulus
√
C.

(a) There does not exist a bounded constant ν > 0 such that,
given any CM set V , the following inequality

dist(x,V) ≤ ν(C − ∥x∥22), ∀x ∈ conv(V),

can be satisfied. In particular, consider the following
counter-example. Let V = {e−jφ, ejφ}, where φ ∈
(0, π/2]. It holds that

dist(x,V) ≥ 1

2 sin(φ)
(1− |x|2). (22)

(b) Given any CM set V , we have an error bound

dist(x,V) ≤
√
C − ∥x∥22, ∀x ∈ conv(V).

The proof of Theorem 2(a) is given in Appendix B. The
proof of Theorem 2(b) is shown as follows.

Proof of Theorem 2(b): Let x be any point in conv(V),
and represent it by x =

∑k
i=1 θivi for some v1, . . . ,vk ∈ V ,

θ ∈ Rk
+,
∑k

i=1 θi = 1, and k. We have

dist(x,V)2 ≤ ∥vi − x∥22 = C − 2v⊤
i x+ ∥x∥22,

for all i. It follows that

dist(x,V)2 ≤
∑k

i=1 θi∥vi − x∥22
= C − 2(

∑k
i=1 θivi)

⊤x+ ∥x∥22
= C − ∥x∥22.

The proof is complete. ■

Theorem 2(a) suggests that, under the error bound principle
in Lemma 5, it is impossible to show that the EXPP prob-
lem is always an equivalent formulation of a CM problem.
Theorem 2(b) gives rise to the following conclusions.

Theorem 3 Consider the CM problem in (1). Suppose that
Assumption 2 holds.
(a) Given any scalar λ > 0, the EXPP problem in (8) or in

(21) is an inexact formulation of the CM problem (1) in
the sense of the assertions in Lemma 6.

(b) Given any scalar λ > K, the following problem

min
x∈conv(V)

f(x) + λ
√
C − ∥x∥22 (23)

is an equivalent formulation of the CM problem (1) in the
sense that the optimal solution sets of problems (23) and
(1) are equal.

Theorem 3 is the direct consequence of applying Theorem 2 to
Lemmas 5–6. Theorem 3(a) indicates that, given a general CM
set, EXPP may still provide good approximation results when
λ is large relative to the Lipschitz constant K of the objective
function f . Theorem 3(b) suggests a fix for achieving exact
penalization. However the penalty function with the fix in (23)
appears to be unfriendly.

D. Error Bounds for Specific CM Sets

While it is impossible to show that the EXPP problem in
(21) provides exact penalization results for any CM set, we
can consider specific CM sets. Encouragingly, we found that
most of our interested cases do lead to the desired results.
Here is the highlight of what we will show.
1. binary vector set: This was shown in Section IV-B: For any

x ∈ [−1, 1]n we have the error bounds

dist(x, {−1, 1}n) ≤ n− ∥x∥1 ≤ n− ∥x∥22.

2. MPSK set: For any x ∈ conv(Θm) we have the error bound

dist(x,Θm) ≤ ν(1− |x|2), (24)
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where ν = 2 for m = 3, and ν = 1/ sin(π/m) for m ≥ 4.
3. unit sphere: For any x ∈ Bn we have the error bounds

dist(x,Sn) ≤ 1− ∥x∥2 ≤ 1− ∥x∥22. (25)

4. semi-orthogonal matrix set: For any X ∈ Bn,r we have
the error bounds

dist(X,Sn,r) ≤ r − ∥X∥∗ ≤ r − ∥X∥2F. (26)

5. unit vector set: For any x ∈ ∆n we have the error bounds

dist(x,Un) ≤ 2(1− x[1]) ≤ 2(1− ∥x∥22). (27)

Recall that x[i] denotes the ith largest components of x.
6. selection vector set: For any x ∈ [0, 1]n with 1⊤x = κ,

we have the error bounds

dist(x,Un
κ ) ≤ 2(κ− sκ(x)) ≤ 2(κ− ∥x∥22). (28)

Recall that sκ(x) = x[1] + · · ·+ x[κ].
7. partial permutation matrix set: For any X ∈ [0, 1]n×r with

X⊤1 = 1 and X1 ≤ 1, we have the error bounds

dist(X,Un,r) ≤ 3
√
r

 r∑
j=1

(1− s1(xj))

 (29a)

≤ 3
√
r(r − ∥X∥2F). (29b)

8. size-constrained assignment matrix set: For any X ∈
[0, 1]n×r with X⊤1 = κ and X1 ≤ 1, we have the error
bounds

dist(X,Un,r
κ ) ≤ 3

√
1⊤κ

 r∑
j=1

(κj − sκj
(xj))

 (30a)

≤ 3
√
1⊤κ(1⊤κ− ∥X∥2F). (30b)

9. non-negative semi-orthogonal matrix set: Recall that the
expression of the convex hull of Sn,r+ is not known. Let
us consider Bn,r+ := Bn,r ∩ Rn×r

+ . For any X ∈ Bn,r+ , we
have the error bound

dist(X,Sn,r+ ) ≤ 5r
3
4

√
r − ∥X∥2F. (31)

10. Cartesian product of CM sets: Let x = (x1, . . . ,xr),
where xi ∈ Rni . It is easy to show that

dist(x, conv(V)) ≤
∑r

i=1 dist(xi, conv(Vi)).

If every Vi has an error bound dist(xi, conv(Vi)) ≤ ν(Ci−
∥xi∥22) for some ν > 0 and for any xi ∈ conv(Vi), then
we have an error bound dist(x, conv(V)) ≤ ν(

∑r
i=1 Ci −

∥x∥22) for any x ∈ conv(V).
Applying the above error bound results to Lemmas 5–6 gives
us the following important conclusion.

Theorem 4 Consider the CM problem in (1). Suppose that
Assumption 2 holds.
(a) Suppose that V is any one of the above studied sets, except

for the non-negative semi-orthogonal matrix set. Given
any scalar λ > Kν for some constant ν > 0, the EXPP
problem in (8) or in (21) is an equivalent formulation of
the CM problem (1) in the sense that the optimal solution
sets of the CM problem and the EXPP problem are equal.

(b) Suppose that V is the non-negative semi-orthogonal matrix
set Sn,r+ . If we modify the EXPP problem by replacing
the constraint X ∈ conv(Sn,r+ ) with X ∈ Bn,r+ , then
the EXPP problem is an inexact formulation of the CM
problem in the sense of the assertions in Lemma 6.

We should remind the reader that the assertions in Lemma 6
imply that the EXPP problem for Case (b) becomes closer to
the CM problem as λ increases. In the next subsection we will
describe how the above error bounds for the various CM sets
are shown.

E. How the CM Set Error Bounds are Shown

Here we show the error bounds of the various CM sets in
the previous subsection.
1. binary vector set: It was shown in Section IV-B.
2. MPSK set: The proof is relegated to Appendix C.
3. unit sphere: For x = 0, Eq. (25) holds trivially. For x ̸= 0,

it can be verified that ΠSn(x) = x/∥x∥2. Hence, for any
∥x∥2 ≤ 1, x ̸= 0, we have

dist(x,Sn)= ∥x− x/∥x∥2∥2 = |1− ∥x∥2|
= 1− ∥x∥2 ≤ 1− ∥x∥22.

4. semi-orthogonal matrix set: Let X ∈ Rn×r with σ(X) ≤
1. Let X = UΣV ⊤ be the SVD of X , where U ∈ Sn,r,
V ∈ Sr,r, and Σ = Diag(σ(X)). Let Y = UV ⊤. It can
be shown that Y = ΠSn,r (X), e.g., by the von Neumann
trace inequality. We have

dist(X,Sn,r) = ∥X −UV ⊤∥F
= ∥1− σ(X)∥2 ≤ ∥1− σ(X)∥1
=
∑r

i=1(1− σi(X)) = r − ∥X∥∗
≤
∑r

i=1(1− σi(X)2) = r − ∥X∥2F.

5. unit vector set: Let x ∈ [0, 1]n with 1⊤x = 1. Without loss
of generality, assume x1 ≥ · · · ≥ xn. It can be verified that
∥x− e1∥2 = dist(x,Un). We have

dist(x,Un)= ∥x− e1∥2 ≤ ∥x− e1∥1
= (1− x1) +

∑n
i=2 xi

= 2(1− x1); (32)

note that the second and third equalities are due to 0 ≤
xi ≤ 1 and x⊤1 = 1, respectively. Eq. (32) leads to the
first error bound in (27). Consider the following inequality:

x1 = x1(x1 + x2 + · · ·+ xn) ≥ x21 + x22 + · · ·+ x2n.
(33)

Applying (33) to (32) gives the second error bound in (27).
6. selection vector set: The proof method is the same as the

previous. Let x ∈ [0, 1]n with 1⊤x = κ, and assume x1 ≥
· · · ≥ xn. Let y = (1, . . . , 1, 0, . . . , 0), where the number
of ones is κ. It can be verified that ∥x−y∥2 = dist(x,Un

κ ).
By the same spirit as (32), it can be shown that

dist(X,Un
κ ) ≤ 2(κ−

∑κ
i=1 xi). (34)

This results in the first error bound in (28). The following
lemma is a generalization of (33).
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Lemma 7 For any x ∈ [0, 1]n with 1⊤x = κ ∈ {1, . . . , n}
and x1 ≥ · · · ≥ xn, it holds that

∑κ
i=1 xi ≥ ∥x∥22.

The proof of Lemma 7 is given in Appendix D. Applying
Lemma 7 to (34) gives the second error bound in (28).

7. partial permutation matrix set: The result is a special case
of that of the size-constrained assignment matrix set.

8. size-constrained assignment matrix set: We relegate the
proof to the next subsection.

9. non-negative semi-orthogonal matrix set: We need the
following theorem.

Theorem 5 (Theorem 5 in [33]) For any X ∈ Rn×r, we
have the error bound

dist(X,Sn,r+ ) ≤ 5r
3
4 (∥X−∥

1
2

F + ∥X⊤X − I∥
1
2

F),

where X− = max{−X,0}.

We will discuss Theorem 5 in the second part of this paper.
It can be verified that

∥X⊤X − I∥F = ∥σ(X)2 − 1∥2.

Hence, for any X ∈ Rn×r
+ with σ(X) ≤ 1, we have

dist(X,Sn,r+ )≤ 5r
3
4 ∥σ(X)2 − 1∥

1
2
1

= 5r
3
4 [
∑r

i=1(1− σi(X)2)]
1
2

= 5r
3
4 (r − ∥X∥2F)

1
2 .

F. The Proof of Error Bounds for Size-Constrained Assign-
ment Matrices

The proof of the error bounds for the size-constrained
assignment matrix set Un,r

κ is important as it will provide
insight into our development in the second part of this paper.
In most of the above error bound proofs, we invariably do
the following: i) given an x ∈ conv(V), find the projection
y = ΠV(x); ii) analyze the error ∥x−y∥2 and derive an error
bound. This is possible when y is analytically tractable. The
case here is not. We do not have a closed form for ΠUn,r

κ
(X).

Taking insight from the error bound analysis for non-negative
semi-orthogonal matrices in [32], [33], we take the following
approach. We construct a Y by yj = ΠUn

κj
(xj) for all j.

We take advantage of the fact that ∥xj − yj∥2 is analytically
tractable—we did so already for the case of Un

κ . Taking the
row constraint X1 ≤ 1 into account, we aim to show that,
when the errors ∥xj − yj∥2’s are sufficiently small, Y will
have to lie in Un,r

κ . This will lead us to a local error bound, as
we will see. Once we have the local error bound, some simple
trick can be used to establish a valid error bound.

The proof is as follows. Let X ∈ [0, 1]n×r, with X⊤1 = κ
and X1 ≤ 1, be given. Let

h(X) = 2

r∑
j=1

(κj − sκj (xj)).

We consider two cases. In the first case, we suppose that

h(X) < 1.

Let Y ∈ Rn×r be given by yj = ΠUn
κj
(xj) for all j. Using

the first error bound for Un
κ in (28), we bound the error X−Y

as

∥X − Y ∥F≤ ∥X − Y ∥ℓ1 =
∑r

j=1 ∥xj − yj∥1
≤ 2

∑r
j=1(κj − sκj (xj))

= h(X) < 1.

Since Y is component-wise binary, it holds that 1⊤ȳi ∈
{0, 1, 2, . . . , r} for all i. If 1⊤ȳi < 2 for all i, then Y lies in
Un,r
κ . The former can be shown to be true under h(X) < 1:

1⊤ȳi= 1⊤x̄i + 1⊤(ȳi − x̄i) ≤ 1 + ∥ȳi − x̄i∥1
≤ 1 + h(X) < 2,

where we have used X1 ≤ 1, or 1⊤x̄i ≤ 1 for all i. Since
Y ∈ Un,r

κ , we have

dist(X,Un,r
κ ) ≤ ∥X − Y ∥F ≤ h(X). (35)

This is the local error bound we mentioned previously.
In the second case we suppose that

h(X) ≥ 1.

We may not guarantee Y ∈ Un,r
κ , so we seek another

direction. The distance between X and any Z ∈ Un,r
κ is

bounded, specifically,

∥X −Z∥2F = ∥X∥2F − 2tr(X⊤Z) + ∥Z∥2F ≤ 2(1⊤κ).
(36)

Here, we have tr(X⊤Z) ≥ 0 due to X,Z ≥ 0, and we have
κj =

∑n
i=1 xij ≥

∑n
i=1 x

2
ij = ∥xj∥22 (note that 0 ≤ xij ≤ 1)

and consequently ∥X∥2F ≤ 1⊤κ. Let B =
√
2(1⊤κ). From

(36) we have

dist(X,Un,r
κ ) ≤ B ≤ B h(X). (37)

Assembling the two cases, (35) and (37), together gives the
first error bound in (30). The second error bound in (30) is
obtained by applying Lemma 7 to the first error bound in (30).

G. Further Remarks

Now that we have obtained exact penalization formulations
in the form of (15) for a large class of CM problems, it
is natural to ask how we can tackle them numerically. If
the objective function in question has a Lipschitz continuous
gradient over C, then we can apply the vanilla projected
gradient method as discussed in Section III-C to tackle the
resulting formulation. On the other hand, if the objective
function is weakly convex (but possibly non-smooth) on C,
then it is still possible to tackle the resulting formulation using
the vanilla projected subgradient method; see [50].

V. LOCALLY OPTIMAL SOLUTION CORRESPONDENCES

Thus far, we have focused on exact penalization in the
globally optimal sense; we identified conditions under which
the globally optimal solution set of the EXPP problem equals
that of the CM problem. Using results in concave minimization
and error bounds, we can also pin down correspondences
between the locally optimal solution sets of the two problems.
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Theorem 6 Consider the CM problem (1) and the EXPP
problem (8). Suppose that the CM set V satisfies the condition
that, for some constant ν > 0, ν(C−∥x∥22) is an error bound
function of V relative to conv(V).
(a) Suppose that Assumption 1 holds. Given any scalar λ >

max{L/2,Kν}, the set of locally optimal solutions to the
EXPP problem equals that to the CM problem.

(b) Suppose that Assumption 2 holds. Given any scalar λ >
Kν, a locally optimal solution to the CM problem is a
locally optimal solution to the EXPP problem. Moreover,
if a locally optimal solution to the EXPP problem lies in
V , then it is a locally optimal solution to the CM problem.

Here is a simplified interpretation of Theorem 6: If the
objective function is differentiable, then the locally optimal
solution set of the EXPP problem should equal that of the
CM problem. If the objective function is nonsmooth, then any
locally optimal solution to the CM problem should be a locally
optimal solution to the EXPP problem; the converse, however,
requires some additional condition.

The proof of Theorem 6 is described as follows. We use
the notation arglocminx∈X ϕ(x) to denote the set of locally
optimal solutions to the problem minx∈X ϕ(x). Theorem 6 is
built on the following two results.

Lemma 8 (modified version of Theorem 2 in [5]) Consider
the context of the concave minimization principle in Lemma 1.
Recall that D ⊆ Rn, A ⊆ D is non-empty with conv(A) ⊆ D,
and Φ : D → R is strictly concave on conv(A). It holds that

x̌ ∈ arglocmin
x∈conv(A)

Φ(x) =⇒ x̌ ∈ arglocmin
x∈A

Φ(x)

Lemma 9 (Proposition 9.1.2 in [31]) Consider the context of
the error bound principle in Lemma 5. Recall that D ⊆ Rn,
A ⊆ D is non-empty closed, C ⊆ D is some set such that
A ⊆ C, ϕ : D → R is K-Lipschitz continuous on C, and
ψ : D → R is an error bound function of A relative to C.

(a) Given any scalar λ > K, it holds that

x̌ ∈ arglocmin
x∈A

ϕ(x) =⇒ x̌ ∈ arglocmin
x∈C

ϕ(x)+λψ(x).

(b) If x̌ is a point in A, then the following implication is true

x̌ ∈ arglocmin
x∈C

ϕ(x)+λψ(x) =⇒ x̌ ∈ arglocmin
x∈A

ϕ(x).

We provide the proofs of Lemmas 8 and 9 in Appendices E and
F, respectively, for readers’ easy access and for clear exposi-
tion of the underlying ideas. Let us first consider Theorem 6(a).
Applying Lemma 8 (and also Lemma 3) to the EXPP problem
gives the result that a locally optimal solution to the EXPP
problem is that to the CM problem. Assumption 1 implies
Assumption 2, and consequently we can apply Lemma 9(a)
to obtain the result that a locally optimal solution to the CM
problem is that to the EXPP problem. The proof of Theorem
6(a) is therefore complete. Moreover, Theorem 6(b) is the
direct corollary of Lemmas 9(a)–(b).

VI. CONCLUSION

We developed a framework for a class of CM problems.
Called EXPP, this framework converts a CM problem to
a convex-constrained penalized formulation that has benign
structures from the viewpoint of building algorithms. In par-
ticular, we can handle the penalized formulation by using
methods as simple as the vanilla projected gradient or subgra-
dient method. A central aspect is whether EXPP is an exact
formulation of a CM problem. Also, the computation of the
projected gradient method for each type of CM constraint is
of concern. The following is a summary of our exploration.
1. Assume that the objective function f satisfies the Lipschitz

continuous gradient assumption in Assumption 1; any twice
continuously differentiable f falls into this scope. EXPP is
an exact penalization formulation for any CM constraint
set. This is the outcome under the concave minimization
principle. One can straightforwardly apply the projected
gradient method to implement EXPP.

2. Assume that f satisfies the Lipschitz continuous assump-
tion in Assumption 2; any continuously differentiable f or
any non-differentiable weakly-convex f on an open domain
(say, Rn) falls into this scope. EXPP is not guaranteed to
be an exact penalization formulation for any CM set; it
can at best be an inexact penalization formulation whose
exactness improves as the penalty parameter λ increases.
However, EXPP is an exact penalization formulation for
many CM sets of interest. These are the outcomes under the
error bound principle. We may apply the projected gradient
or subgradient method to implement EXPP.

3. When we work on a specific CM set V , we need to exploit
the underlying structure. The computational efficiency of
the projected gradient or subgradient method depends on
whether the projection onto conv(V) can be efficiently
computed. We saw easy cases, and we also saw challenges.

In Part II of this paper, we will provide numerical results
on different applications. We will also continue our study for
some challenging CM cases. As a remark, while we focus
on the projected gradient method to demonstrate the utility of
EXPP, it is free for one to consider other methods, such as the
Frank-Wolfe method and the ADMM method, to implement
EXPP. The opportunity for such further development is open.

APPENDIX

A. Proof of Lemma 6

Let Φ(x) = ϕ(x) + λψ(x)2. First we have

ϕ(x⋆) = Φ(x⋆) ≥ Φ(x̂) ≥ ϕ(x̂). (38)

Second,

Φ(x̂) ≥ ϕ(x′)−K∥x̂− x′∥2 + λ∥x̂− x′∥22 (39a)

≥ Φ(x̂)−K∥x̂− x′∥2 + λ∥x̂− x′∥22, (39b)

where (39a) is due to the Lipschitz continuity of ϕ and to the
inequality ψ(x̂)2 ≥ dist(x̂,A)2 = ∥x̂ − x′∥22, and (39b) is
due to ϕ(x′) = Φ(x′) ≥ Φ(x̂). Eq. (39) implies that

K

λ
≥ ∥x̂− x′∥2 = dist(x̂,A). (40)
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Third we have

ϕ(x⋆) ≤ ϕ(x′) ≤ ϕ(x̂) +K∥x̂− x′∥2 ≤ ϕ(x̂) +K2/λ,
(41)

where we have used (40) and the Lipschitz continuity of ϕ.
Fourth,

ϕ(x′) ≤ ϕ(x̂) +K∥x̂− x′∥2 (42a)

≤ Φ(x̂) +K2/λ (42b)

≤ ϕ(x⋆) +K2/λ, (42c)

where (42a) is once again due to the Lipschitz continuity of
ϕ, (42b) is due to (40), and (42c) is due to (38). Eqs. (38),
(40), (41) and (42) lead to the assertions in Lemma 6.

B. Proof of Theorem 2(a)

As described in the theorem, we consider V = {e−jφ, ejφ},
φ ∈ (0, π/2], as a counter example. Any point x in conv(V)
can be characterized as

x = θe−jφ + (1− θ)ejφ = cosφ+ j(1− 2θ) sinφ,

where θ ∈ [0, 1]. Since 1−2θ ∈ [−1, 1], we can re-characterize
x as

x = cosφ+ jβ sinφ, β ∈ [−1, 1].

It can be verified that

dist(x,V) = |x− ejsgn(β)φ| = (1− |β|) sinφ, (43)

where sgn(β) = 1 if β ≥ 0 and sgn(β) = −1 if β < 0. From
the absolute square |x|2 = cos2(φ) + β2 sin2(φ) we have

|β| sinφ =
√
|x|2 − cos2(φ). (44)

As a basic inequality, it can be verified that
√
a ≤
√
b+

1

2
√
b
(a− b), for any a ≥ 0, b > 0.

Applying the above inequality to the right-hand side of (44),
with a = |x|2−cos2(φ) and b = 1−cos2(φ) = sin2(φ), gives

|β| sinφ ≤ sinφ+
|x|2 − 1

2 sinφ
.

Putting the above inequality into (43) gives the desired result

dist(x,V) ≥ 1− |x|2

2 sinφ
.

C. Proof of (24), the Error Bound for the MPSK Set

We need the following lemmas.

Lemma 10 Let φ ∈ [0, 2π). Let y ∈ C. It holds that y ∈
conv({0, e−jφ, ejφ}) if and only if y takes the form

y = α [cos (φ) + jβ sin (φ)] , (45)

for some α ∈ [0, 1], β ∈ [−1, 1].

Proof of Lemma 10: Let y be any point in
conv({0, e−jφ, ejφ}). We can write y = θ2e

−jφ + θ3e
jφ for

some θ ∈ R3
+, θ1 + θ2 + θ3 = 1. If θ2 = θ3 = 0, we can

represent y by (45) with α = β = 0. If either θ2 > 0 or
θ3 > 0, we can do the following. Let α = θ2 + θ3, and let
ϑ = θ2/α. We can write

y= α(ϑe−jφ + (1− ϑ)ejφ)
= α [cos (φ) + j(1− 2ϑ) sin (φ)] . (46)

By noting that 1 − 2ϑ ∈ [−1, 1], we see from (46) that y
takes the form in (45). Conversely, let y be given by (45). By
letting ϑ = (1−β)/2, we can see from (46) that y is a convex
combination of 0, e−jφ, ejφ. The proof is complete. ■

Lemma 11 Let φ ∈ (0, π/2). Let y ∈ conv({0, e−jφ, ejφ}).
It holds that

dist(y, {e−jφ, ejφ}) ≤ ν(1− |y|2),

where ν = 1/min{sin(φ), cos(φ)}.

Proof of Lemma 11: Let y ∈ conv({0, e−jφ, ejφ}). We can
represent y by (45) for some α ∈ [0, 1], β ∈ [−1, 1]. It can
be verified that dist(y, {e−jφ, ejφ}) = |y − ejφ| if β ≥ 0, and
that dist(y, {e−jφ, ejφ}) = |y − e−jφ| if β ≤ 0. This leads to

dist(y, {e−jφ, ejφ})

=
[
(1− α)2 cos(φ)2 + (1− α|β|)2 sin(φ)2

] 1
2

≤ (1− α) cos(φ) + (1− α|β|) sin(φ). (47)

Consider the case cos(φ) ≥ sin(φ). From (47) we have

dist(y, {e−jφ, ejφ})

≤ (1− α) sin(φ) cos(φ) + (1− α|β|) sin(φ)2

sin(φ)

≤ (1− α) cos(φ)2 + (1− α|β|) sin(φ)2

sin(φ)

≤ 1− [α2 cos(φ)2 + (α|β|)2 sin(φ)2]
sin(φ)

=
1− |y|2

sin(φ)
,

where the third inequality is due to a2 ≤ a for a ∈ [0, 1].
Similarly, it can be shown that, for sin(φ) ≥ cos(φ), it holds
that dist(y, {e−jφ, ejφ}) ≤ (1− |y|2)/ cos(φ). Combining the
two cases leads to the desired result. ■

Now we show the error bound (24) for the MPSK set Θm.
Let x be any point in Pm. We can represent x by

x = yej
2πk
m , (48)

where k ∈ {0, . . . ,m − 1} and y ∈ conv({0, e−j π
m , ej

π
m }).

This representation is seen to be true from pictures; see Fig. 2.
It can also be algebraically shown, and we refer the reader to
Proposition 2 in the supplemental material for details. It can
be verified from (48) that ΠΘm

(x) ∈ {ej 2πk
m −j π

m , ej
2πk
m +j π

m }.
We hence have

dist(x,Θm)= dist(x, {ej 2πk
m −j π

m , ej
2πk
m +j π

m })
= dist(y, {e−j π

m , ej
π
m })

≤ ν(1− |y|2) = ν(1− |x|2),
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where ν = 1/min{sin(π/m), cos(π/m)}. Here, the
inequality is due to Lemma 11. By noting that
min{sin(π/m), cos(π/m)} = cos(π/3) = 0.5 for m = 3,
and min{sin(π/m), cos(π/m)} = sin(π/m) for m ≥ 4, we
get the desired result.

D. Proof of Lemma 7

Recall that 1 ≥ x1 ≥ · · · ≥ xn ≥ 0 and
∑n

i=1 xi = κ. Let
us write

κ∑
i=1

xi =

κ−1∑
i=1

xi + a− b,

a = xκ

(
κ−

κ−1∑
i=1

xi

)
, b = xκ

(
(κ− 1)−

κ−1∑
i=1

xi

)
.

(49)

We have

a= xκ

(
n∑

i=κ

xi

)
≥

n∑
i=κ

x2i ,

b= xκ

(
κ−1∑
i=1

(1− xi)

)
≤

κ−1∑
i=1

xi(1− xi) =
κ−1∑
i=1

xi −
κ−1∑
i=1

x2i .

Putting the above inequalities into (49) results in the desired
result

∑κ
i=1 xi ≥

∑n
i=1 x

2
i .

E. Proof of Lemma 8

Let x̌ be a locally optimal solution to the problem
minx∈conv(A) Φ(x). First, we show that x̌ ∈ A. By the
definition of locally optimal solutions, there exists a constant
ε > 0 such that

Φ(x̌) ≤ Φ(x), ∀x ∈ conv(A) ∩N , (50)

where N = {x ∈ Rn | ∥x− x̌∥2 ≤ ε}. Suppose that x̌ /∈ A.
Then there exist two points x′,x′′ ∈ conv(A), x′ ̸= x′′, and
a scalar θ ∈ (0, 1) such that

x̌ = θx′ + (1− θ)x′′.

Let
x̃′ = x̌− r(x′ − x′′) = (θ − r)x′ + (1− (θ − r))x′′,

x̃′′ = x̌+ r(x′ − x′′) = (θ + r)x′ + (1− (θ + r))x′′,
(51)

for some 0 < r ≤ min{θ, 1− θ, ε/∥x′ − x′′∥2}. Note that

x̌ = 1
2 x̃

′ + 1
2 x̃

′′. (52)

It is easy to verify that θ − r ∈ [0, 1], θ + r ∈ [0, 1], and
r∥x′−x′′∥2 ≤ ε. Consequently we see from (51) that x̃′, x̃′′ ∈
conv(A)∩N . Also, applying Jensen’s inequality to (52) gives

Φ(x̌) > 1
2Φ(x̃

′) + 1
2Φ(x̃

′) ≥ min{Φ(x̃′),Φ(x̃′′)}, (53)

where the strict inequality is due to the strict concavity of
Φ. Eq. (53) and x̃′, x̃′′ ∈ conv(A) ∩ N violate the locally
optimal condition in (50). Hence, by contradiction, we must
have x̌ ∈ A.

Second, we show that x̌ is a locally optimal solution to the
problem minx∈A Φ(x). Eq. (50) implies Φ(x̌) ≤ Φ(x) for all
x ∈ A ∩ N . Since x̌ ∈ A, we have the desired result. The
proof is complete.

F. Proof of Lemma 9

Let Φ(x) = ϕ(x) + λψ(x). First, we show the assertion
in Lemma 9(a). Let x̌ be a locally optimal solution to
minx∈A ϕ(x). There exists a constant ε > 0 such that

ϕ(x̌) ≤ ϕ(x), ∀x ∈ A ∩N , (54)

where
N = {x ∈ Rn | ∥x− x̌∥2 ≤ ε}. (55)

Let
N ′ = {x ∈ Rn | ∥x− x̌∥2 ≤ ε/2}.

Let x ∈ C∩N ′, and let a ∈ A be a point such that ∥x−a∥2 =
dist(x,A) (such a point exists since A is non-empty closed).
By noting that

∥x− a∥2 = min
x̃∈A
∥x− x̃∥2 ≤ ∥x− x̌∥2,

we have

∥x̌− a∥2 ≤ ∥x̌− x∥2 + ∥x− a∥2
≤ 2∥x̌− x∥2 ≤ ε.

This implies that a ∈ N . Suppose that λ > K. We have, for
any x ∈ C ∩ N ′,

Φ(x) ≥ ϕ(x) + λ dist(x,A) (56a)
≥ ϕ(a) + (λ−K)∥x− a∥2 (56b)
≥ ϕ(a) (56c)
≥ ϕ(x̌) = Φ(x̌), (56d)

where (56b) is due to the Lipschitz continuity result |ϕ(x)−
ϕ(a)| ≤ K∥x − a∥2; (56d) is due to a ∈ A ∩ N and
(54). Eq. (56) implies that x̌ is a locally optimal solution to
minx∈C Φ(x).

Second, we show the assertion in Lemma 9(b). Let x̌ be a
locally optimal solution to minx∈C Φ(x). For some ε > 0, we
have

Φ(x̌) ≤ Φ(x), ∀x ∈ C ∩ N , (57)

where N is given by (55). Since A ⊆ C and ψ(x) = 0 for any
x ∈ A, (57) implies Φ(x̌) ≤ ϕ(x) for all x ∈ A∩N . If x̌ lies
in A, then we further have ϕ(x̌) ≤ ϕ(x) for all x ∈ A ∩ N ,
that is, x̌ is a locally optimal solution to minx∈A ϕ(x). The
proof is complete.
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