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Abstract
We report a practical finite-time algorithmic
scheme to compute approximately stationary
points for nonconvex nonsmooth Lipschitz func-
tions. In particular, we are interested in two kinds
of approximate stationarity notions for nonconvex
nonsmooth problems, i.e., Goldstein approximate
stationarity (GAS) and near-approximate station-
arity (NAS). For GAS, our scheme removes the
unrealistic subgradient selection oracle assump-
tion in (Zhang et al., 2020, Assumption 1) and
computes GAS with the same finite-time com-
plexity. For NAS, Davis & Drusvyatskiy (2019)
showed that ρ-weakly convex functions admit
finite-time computation, while Tian & So (2021)
provided the matching impossibility results of
dimension-free finite-time complexity for first-
order methods. Complement to these develop-
ments, in this paper, we isolate a new class of
functions that could be Clarke irregular (and thus
not weakly convex anymore) and show that our
new algorithmic scheme can compute NAS points
for functions in that class within finite time. To
demonstrate the wide applicability of our new the-
oretical framework, we show that ρ-margin SVM,
1-layer, and 2-layer ReLU neural networks, all
being Clarke irregular, satisfy our new conditions.

1. Introduction
In this paper, we consider the following general optimization
problem for an L-Lipschitz function f : Rd → R

min
x∈Rd

f(x), (♢)
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where f could be both nonsmooth and nonconvex (“non”-
setting for short). We are particularly interested in algo-
rithms with a finite-time complexity for computing approx-
imately stationary points of Problem (♢). Note that when
f is smooth, it is folkloric that computing an ϵ-stationary
point (i.e., ∥∇f(x)∥ ≤ ϵ) only requiresO(ϵ−2) calls, which
is dimension-independent and finite, to the gradient oracle
with gradient descent (Nemirovskij & Yudin, 1983).

In the general Lipschitz “non”-setting, a widely used gener-
alized subdifferential ∂f(x) is due to Clarke (1990, Section
2.1) (see also Definition 2.1), which reduces to the convex
subdifferential (resp. gradient) if f is convex (resp. smooth).
Therefore, by mimicking results in the smooth scenario, it
is natural to conjecture that we may be able to design al-
gorithms to compute elements in {x : dist(0, ∂f(x)) ≤ ϵ}
in finite time with high probability. However, as shown by
Zhang et al. (2020, Theorem 5), that is impossible for any
first-order method. Thus, it is curious to ask: What kind of
approximate stationarity concept in the “non”-setting will
admit dimension-free finite-time computation?

Davis & Drusvyatskiy (2019) gave a nice answer for the
class of ρ-weakly convex functions1 by introducing a no-
tion named near-approximate stationarity (NAS, see Defi-
nition 2.5), which is closely related to the gradient of the
Moreau envelope of f . They showed that a subgradient-type
method computes an (ϵ, δ)-NAS point withO(ρ4δ−4+ϵ−4)
calls to the subgradient oracle. However, many modern ML
models are indeed not weakly convex,2 e.g., neural networks
with ReLU activation functions. Even worse, by extending
the Lipschitz hardness results in (Kornowski & Shamir,
2021), Tian & So (2021) demonstrated that, for any finite
T , there exists a finte ρ(T ) such that, for any 0 ≤ ϵ, δ < 1

2
uniformly, computing an (ϵ, δ)-NAS point for ρ(T )-weakly
convex functions within T steps is impossible.

On the other front, starting from the seminal work of Gold-
stein (1977), a notion named Goldstein approximate station-
arity (GAS, see Definition 2.1) exhibits favorable algorith-
mic consequences. The story begins with an approximation

1Recall f is ρ-weakly convex if f(x)+ ρ
2
∥x∥2 is convex. Weak

convexity implies Clarke regularity (Vial, 1983, Proposition 4.5).
2g(x) = −max{x, 0} is not Clarke regular (cf. (Clarke, 1990,

Definition 2.3.4)) and not ρ-weakly convex for any ρ ∈ R.
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of the Clarke subdifferential ∂δf(x) (see Definition 2.2). If
we update iteratively with

xk+1 ← xk − δ · gk/∥gk∥,

where gk := argming∈∂δf(xk) ∥g∥ is the minimal norm ele-
ment in ∂δf(xk), then we can compute an (ϵ, δ)-GAS point
in O(ϵ−1δ−1) steps. The problem is that obtaining gk for a
general Lipschitz function can be computationally expensive
(if possible at all) as there is no known approach to compute
∂δf(x). Therefore, a series of works, e.g., (Burke et al.,
2020), proposed to build a polyhedral approximation of
∂δf(xk) via random sampling and compute an approximate
gk by solving a QP in every iteration. However, the number
of sampling points needed for meaningful approximation of
∂δf(xk) ⊆ Rd is lower bounded by the dimension d. Thus,
a dimension-free finite-time complexity cannot be achieved
within the existing gradient sampling scheme.

Recently, Zhang et al. (2020) introduced a novel algo-
rithm that computes (ϵ, δ)-GAS points for general Lips-
chitz functions with a dimension-free finite-time complexity
Õ(ϵ−3δ−1). They provided a randomized procedure that
compute g̃k : ⟨g̃k, ∂δf(xk)⟩ ≤ 1

4∥g̃k∥
2 with high probabil-

ity within Õ(ϵ−2) oracle calls. However, their assumption
on the subgradient oracle is stringent and hard to be imple-
mented in practice. We restate their assumption below.

Oracle in (Zhang et al., 2020, Assumption 1(a)). Given
x, d, the oracle O(x, d) returns f(x) and a Clarke subgradi-
ent gx, such that gx ∈ ∂f(x) satisfies ⟨gx, d⟩ = f ′(x; d).

Indeed, even computing an arbitrary element in ∂f(x) for
general Lipschitz functions is highly nontrivial (Burke et al.,
2002; Nesterov, 2005; Khan & Barton, 2013; Kakade & Lee,
2018), let alone the required subgradient needs to satisfy
certain linear equation, which was recognized very early on
as impractical (Wolfe, 1975). Such considerations motivate
the following question (Q1):

Can we compute GAS points in finite time with
a provable and practical algorithm?

It is notable that GAS is a strictly weaker3 stationarity notion
than NAS even for continuously differentiable functions
(Kornowski & Shamir, 2021, Proposition 1) and convex
functions (Proposition 2.7). However, the computability
of NAS is much worse than that of GAS, since finite-time
algorithms for NAS only exist if the objective function is
ρ-weakly convex, which rules out many interesting machine
learning models. Thus, it is of interest to ask (Q2):

Can we compute NAS points in finite time for
functions beyond ρ-weakly convex, practically?

3Formally, if x is (ϵ, δ)-GAS, then x is also (ϵ, δ)-NAS. See
Definitions 2.4 and 2.5.

1.1. Prior Arts
Asymptotic Analysis. The asymptotic computability of
Clarke stationary points (i.e., {x : 0 ∈ ∂f(x)}) has been
well-understood for quite general functions. With a differen-
tial inclusion perspective, Benaïm et al. (2005); Majewski
et al. (2018); Davis et al. (2020) studied the asymptotic con-
vergence of subgradient-type methods. In particular, Davis
et al. (2020) proved the asymptotic convergence to Clarke
stationary points for Whitney stratifiable objective functions,
which include deep ReLU neural networks as a special case.
Daniilidis & Drusvyatskiy (2020) demonstrated that the
vanilla subgradient method may not converge for general
Lipschitz functions even in continuous time.

Finite-Time Analysis. In contrast to the asymptotic
regime, the finite-time complexity in the general “non”-
setting is still developing. On the positive side, (Davis &
Grimmer, 2019; Davis & Drusvyatskiy, 2019) showed that
for ρ-weakly convex functions, (ϵ, δ)-NAS is computable
with O(ρ4δ−4 + ϵ−4) oracle calls. On the negative side,
Kornowski & Shamir (2021) showed that computing NAS
for Lipschitz functions in dimension-independent finite time
is impossible. Tian & So (2021) sharpened the hardness
results for NAS to ρ-weakly convex with unbounded ρ,
thus matching the positive results. For GAS, the gradient
sampling scheme (Burke et al., 2005; Kiwiel, 2007; 2010;
Burke et al., 2020) promises finite but dimension-dependent
complexity. (Zhang et al., 2020) reported a novel dimension-
independent finite-time algorithm with a impractical subgra-
dient oracle. A recent concurrent work (Davis et al., 2021)
adopted similar strategy as our Section 3.2 with different
algorithmic implementation. Another line of research is
to exploit structure: Duchi & Ruan (2018); Drusvyatskiy
& Paquette (2019); Davis & Drusvyatskiy (2019); Bolte
et al. (2018); Beck & Hallak (2020). In these settings, nons-
moothness and nonconvexity are properly separated making
finite-time analysis possible.

1.2. Contributions
We highlight the main contributions as follows.

• For Q1, we report a practical algorithmic scheme to
compute GAS points for general Lipschitz functions
with finite-time complexity in both deterministic and
stochastic settings.

• For Q2, we isolate a new function class within which
our new algorithmic scheme computes NAS points in
finite time.This goes far beyond existing ρ-weakly con-
vex results. Besides, we establish a series of theoretical
tools to compute parameters in our new function class.

• To demonstrate the wide applicability of the new the-
oretical framework, we show that ρ-margin SVM, 1-
layer, and 2-layer ReLU neural networks, all being
Clarke irregular, satisfy our new conditions.
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Notations. The notation used in this paper is mostly stan-
dard in variational analysis. dist(x, S) :− infv∈S ∥v − x∥;
A ⊕ B denotes the direct sum of A and B; Bϵ(x) :− {v :
∥v − x∥ ≤ ϵ};B := B1(0); CoS is the convex hull of
set S; π1A := {x : ∃y, (x, y) ∈ A}; Ac is the comple-
ment of set A; Vec(X) is the vectorization of matrix X;
Sd−1 := {x ∈ Rd : ∥x∥ = 1}.

2. Preliminaries
In this section, we introduce the necessary background on
variational analysis for Lipschitz functions. To begin, we re-
call the following definition of Clarke subdifferential (Rock-
afellar & Wets, 2009, Theorem 9.61).
Definition 2.1 (Clarke subdifferential). Given a point x, the
Clarke subdifferential of Lipschitz f at x is defined by

∂f(x) := Co
{
s : ∃x′→x,∇f(x′) exists,∇f(x′)→s

}
.

The following δ-approximation of Clarke subdifferential in-
troduced by Goldstein (1977) has nice theoretical properties
and is convenient for algorithmic developments.
Definition 2.2 (Goldstein δ-subdifferential). Given a point
x and δ ≥ 0, the Goldstein δ-subdifferential of Lipschitz f
at x is defined by

∂δf(x) := Co
{⋃

y∈Bδ(x)
∂f(y)

}
.

We record some useful properties of the Clarke subdifferen-
tial and its Goldstein approximation here:
Fact 2.3 (cf. Clarke (1990); Goldstein (1977); Zhang et al.
(2020)). For an L-Lipschitz continuous f and δ > 0,

• ∂f(x), ∂δf(x) are nonempty, convex, compact;

• ∂f(x) = ∩δ>0 ∪y∈Bδ(x) ∂f(y);

• ∂f(x) = ∩δ>0∂δf(x);

• if f is C1 near x, then ∂f(x) = {∇f(x)};

• if f is convex, then ∂f(x) is the convex subdifferential.

We are now ready to introduce two important approximate
stationarity notions. We refer the reader to (Davis & Drusvy-
atskiy, 2020) for a nice expository material.
Definition 2.4 (Goldstein approximate stationarity, GAS).
Given a locally Lipschitz function f : Rd → R, we say that
x ∈ Rd is an (ϵ, δ)-GAS point if

dist
(
0, ∂δf(x)

)
≤ ϵ.

Definition 2.5 (near-approximate stationarity, NAS). Given
a locally Lipschitz function f : Rd → R, we say that x ∈ Rd

is an (ϵ, δ)-NAS point if

dist
(
0,
⋃

y∈Bδ(x)
∂f(y)

)
≤ ϵ.

It is easy to see that if x is NAS, then x is also GAS as
∂δf(x) ⊇ ∪y∈Bδ(x)∂f(y). But the converse does not hold
in general, even for continuously differentiable functions.
Fact 2.6 (Kornowski & Shamir (2021, Proposition 1)). For
any δ > 0, there exists a continuously differentiable function
f : R2 → R, which is 2π-Lipschitz on δB, such that (0, 0)
is (0, δ)-GAS but minx∈δB ∥∇f(x)∥ ≥ 1.

Fact 2.6 does not hold for ρ-weakly convex functions with
sufficiently small δ. Thus, it is still unclear whether NAS
and GAS are equivalent assuming ρ-weak convexity with
finite ρ ≥ 0. We report below a convex polyhedral version
(recall that convexity is 0-weak convexity), which might be
of independent interest.
Proposition 2.7 (convex polyhedron). For any δ > 0, there
exists a convex function f : R2 → R, which is 2-Lipschitz
with polyhedral ∂f , such that (0, 2δ) is (0, δ)-GAS but
miny∈Bδ((0,2δ)) dist

(
0, ∂f(y)

)
≥ 2

5

√
5.

3. Computing GAS with Practical Oracle by
Random Conic Perturbation

3.1. Subgradient Oracles

Assumption 3.1 (practical oracle). Given x and Lipschitz
continuous f :

(a) In the deterministic setting, if f is differentiable at
x, then the oracle Od(x) returns a function value f(x)
and the gradient∇f(x). Otherwise, it sets error=1.

(b) In the stochastic setting, if f is differentiable at x, then
the oracle Os(x) returns a stochastic gradient gx with
E[gx | σ(x)] = ∇f(x) satisfying E[∥gx −∇f(x)∥2 |
σ(x)] ≤ σ2. Otherwise, it sets error = 1.

Compared with the oracle in (Zhang et al., 2020, Assump-
tion 1), Assumption 3.1 only needs to evaluate the gradient
∇f(x) at differentiable points. Indeed, many modern Auto-
matic Differentiation software (e.g., PyTorch, TensorFlow)
can be used as an implementation of Assumption 3.1 without
worrying about their incorrectness on subgradient evaluation
for nonconvex nonsmooth function (Kakade & Lee, 2018).

3.2. Deterministic Setting

In this section, we present a practical algorithm for comput-
ing an (ϵ, δ)-GAS point and establish its finite-time com-
plexity in the deterministic setting. The new algorithm
replaces the stringent oracle assumption in (Zhang et al.,
2020, Assumption 1(a)) with Assumption 3.1(a).

3.2.1. ALGORITHM

The main idea is to make use of the almost everywhere
differentiability of Lipschitz functions as guaranteed by
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(
1− ∥mt,k∥

8L

)
δ

δ

xt

xt,k

yt

Figure 1. Random Conic Perturbation Scheme in Algorithm 1.

Rademacher’s Theorem. By adopting a random conic per-
turbation to the uniform sampling direction in (Zhang et al.,
2020, Algorithm 1), we have the following Algorithm 1, in
which the main differences with (Zhang et al., 2020, Algo-
rithm 1) are marked in blue. See also Figure 1.

Algorithm 1 Perturbed INGD
Input: x1 ∈ Rd.

1: Set error = 0.
2: for t ∈ [T ] do
3: while ∥mt,K∥ > ϵ do
4: Sample yt,1 uniformly from Bδ(xt).
5: Call oracle ∼,mt,1 = Od(yt,1).
6: for k ∈ [K] do
7: xt,k = xt −

(
1− ∥mt,k∥

8L

)
· δ mt,k

∥mt,k∥ .
8: if ∥mt,k∥ ≤ ϵ then
9: Terminate the algorithm and return xt.

10: else if f(xt,k)− f(xt) < − δ
4∥mt,k∥ then

11: Set xt+1 = xt,k and t = t+ 1.
12: Break while-loop.
13: else
14: Sample ut,k+1 ∈ Rd+1 uniformly from Sd.
15: Let vt,k+1 be the first d coordinates of ut,k+1.

16: bt,k+1 = vt,k+1−
v⊤
t,k+1(xt−xt,k)

∥xt−xt,k∥2 ·(xt−xt,k).
17: Sample yt,k+1 uniformly from [xt, x

′
t,k],

where x′t,k := xt,k+
δ∥mt,k∥

8L · bt,k+1.
18: Call oracle ∼, gt,k+1 = Od(yt,k+1).
19: Updatemt,k+1 = βt,kmt,k+(1−βt,k)gt,k+1

20: with βt,k =
8L3−L2∥mt,k∥−4L∥mt,k∥2

8L3−L2∥mt,k∥−∥mt,k∥3 .
21: end if
22: end for
23: end while
24: end for

3.2.2. FINITE-TIME ANALYSIS

The main technical contributions in the analysis are summa-
rized in the following two lemmas.

Lemma 3.2. Let D := {x : f is differentiable at x}. Given
locally Lipschitz continuous f , we have

P
(
∃(t, k) ∈ [T ]× [K] : yt,k ∈ Dc

)
= 0.

Lemma 3.3. Let K = 80L2

ϵ2 . Given t ∈ [T ], it holds

E
[
∥mt,K∥2

]
≤ ϵ2

16
,

where mt,k = 0 for all k > k0 if the k-loop breaks at
(t, k0). Consequently, for any 0 ≤ γ < 1, with probability
1− γ, there are at most log(γ−1) restarts of the while loop
in the t-th iteration.

We have the following finite-time guarantee for Algorithm 1.

Theorem 3.4. Let f be L-Lipschitz continuous. Then, Al-
gorithm 1 with K = 80L2

ϵ2 and T = 4∆
ϵδ finds an (ϵ, δ)-GAS

point with probability 1− γ using at most

320∆L2

ϵ3δ
log

(
4∆

γϵδ

)
oracle calls

with P(error = 1) = 0, where f(x0)− infx f(x) ≤ ∆.

3.3. Stochastic Setting

In this section, we consider the stochastic setting. The new
algorithm replaces the stringent oracle assumption in (Zhang
et al., 2020, Assumption 1(b)) with Assumption 3.1(b).

3.3.1. ALGORITHM

Technically speaking, the main difference from (Zhang et al.,
2020, Algorithm 2) lies in the additional perturbation step.
We need to carefully choose ζ to ensure that the iterates
are within a δ-ball of some reference point without hurting
the convergence. Since mt is a weighted average of all the
stochastic gradients, we need to show that it approximately
belongs to the Goldstein δ-subdifferential ∂δf(x) of some
reference point x.
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The subtlety when ∥mt∥ = 0: Unlike in the deterministic
setting where we can terminate the algorithm if ∥mt,k∥ is
small, in the stochastic case, mt is a convex combination of
stochastic gradients and thus it does not suffice to terminate
the algorithm even if ∥mt∥ = 0. The quantity that we aim
to minimize is its expectation ∥E [mt]∥ ≤ E [∥mt∥]. Due
to this subtlety, we cannot let the perturbation size ζt adapt
to ∥mt∥ as in the deterministic case: If ζt =

ω1∥mt∥
p∥mt∥+ω2

in
Algorithm 2, then when ∥mt∥ = 0, we have yt+1 = xt+1 =
xt, and we cannot ensure that f is differentiable at xt almost
surely. We choose a constant ζt ≡ ζ in Algorithm 2 instead.
In this case, when ∥mt∥ = 0, yt+1 is sampled from a ball
centered at xt.

By adopting a random conic perturbation to (Zhang et al.,
2020, Algorithm 2), we have the following Algorithm 2,
in which the main differences with (Zhang et al., 2020,
Algorithm 2) are marked in blue.

Algorithm 2 Perturbed Stochastic INGD
Input: x1 ∈ Rd.
Initialize: m1 = g1 = Os(x1). Set β = 1 −

ϵ2

64G2 , K = 1
ln 1

β

ln 16G
ϵ , ω =

(
1

1−β −
1

ln 1
β

)
ln 16G

ϵ ,

p = 64G2

δϵ2 ln 16G
ϵ , q = 256G3

δϵ2 ln 16G
ϵ , T =

216G3∆ ln 16G
ϵ

ϵ4δ max{1, Gδ
8∆}.

1: Set error = 0.
2: for t ∈ [T ] do
3: xt+1 = xt − ηtmt, where ηt = 1

p∥mt∥+q .
4: Sample ut+1 ∈ Rd+1 uniformly from Sd.
5: Let vt+1 ∈ Rd be the first d coordinates of ut+1.
6: If ∥mt∥ > 0, bt+1 = vt+1 − ⟨vt+1,xt−xt+1⟩

∥xt−xt+1∥2 · (xt −
xt+1); otherwise, bt+1 = vt+1.

7: Sample yt+1 uniformly from [xt, xt+1+ζbt+1],
where ζ = min{ωp ,

ϵ2

510q(L+G)}.
8: Call oracle gt+1 = Os(yt+1).
9: mt+1 = βmt + (1− β)gt+1.

10: end for
Output: xout := xmax{1,i−K}, where i ∼ Unif([T ]).

3.3.2. FINITE-TIME ANALYSIS

We have the following finite-time guarantee for Algorithm 2,
which is similar to (Zhang et al., 2020, Theorem 10) but
replaces the stringent oracle assumption in (Zhang et al.,
2020, Assumption 1(b)) with Assumption 3.1(b).
Theorem 3.5. Under Assumption 3.1(b), with proba-
bility at least 3

5 , the output of Algorithm 2 satisfies
dist(0, ∂δf(xout)) ≤ ϵ after at most

Õ

(
G3∆

ϵ4δ

)
oracle calls

with P(error = 1) = 0, where f(x0)− infx f(x) ≤ ∆.

4. Computing NAS by GAS
In this section, we isolate a new function class within
which the new algorithmic scheme can compute near-
approximately stationary points in finite time. The new
class goes far beyond that of ρ-weakly convex functions.
We will first introduce the general results, and then several
useful calculus rules. In Section 5, we will discuss appli-
cations of the new techniques to modern machine learning
models.

4.1. General Results

The main strategy is to compute NAS by GAS. To this
end, we need certain continuity of set-valued subdifferential
mapping ∂f : Rd ⇒ Rd, which should be stronger than
upper semicontinuity. A classic notion in set-valued analysis
named outer Lipschitz continuity is defined as follows.

Definition 4.1 (Dontchev & Rockafellar (2009, 3D)). A set-
valued mapping G : Rd ⇒ Rd is outer Lipschitz continuous
(OLC) at ȳ relative to a set D if ȳ ∈ D ⊂ domG, G(ȳ) is
a closed set, and there is a constant κ ≥ 0 along with a
neighborhood V of ȳ such that

G(y) ⊆ G(ȳ) + κ∥y − ȳ∥B, ∀y ∈ V ∩D.

OLC is a weaker notion than Lipschitz continuity even for
a single-valued mapping G : R → R. See (Lewis & Pang,
2010, Example 2.4(a)). However, for our purposes, OLC is
not sufficient since by the classic result of Robinson (1981)
the bad function in Proposition 2.7 is OLC.

The following modified OLC notion for set-valued mapping
is new and central in our development, which allows us to
have a Lipschitz-type control of G : Rd ⇒ Rd from above
within a constant-size neighborhood (see also Figure 2).

Definition 4.2 ((δ, η, κ)-outer Lipschitz continuous). A set-
valued mapping G : Rd ⇒ Rd is (δ, η, κ)-OLC on S if for
any x ∈ S, there exists a pivot y ∈ Bδ(x) ∩ S such that G
is κ-OLC on Bη(x)∩S. In other words, for all x ∈ S, there
exists a y ∈ Bδ(x) ∩ S such that

G(z) ⊆ G(y) + κ∥y − z∥B, ∀z ∈ Bη(x) ∩ S.

Besides, we call PG : x→ y the pivot mapping of G.

Remark 4.3. A natural question about Definition 4.2 is why
we want to set η and δ to different values. In other words,
why (δ, δ, κ)-OLC is not sufficient. Consider the convex
function g(x, y) := max{2x,−2x, y}, which is the bad
function in the proof of Proposition 2.7. It is easy to see that
∂g is polyhedral and OLC by (Robinson, 1981). However,
for any δ > 0, ∂g is not (δ, δ, κ)-OLC at (0, 2δ),∀κ ≥ 0.
Thus, even for an OLC mapping ∂g, we cannot promise
∃δ > 0 such that ∂g is (δ, δ, κ)-OLC at certain x ∈ dom ∂g.
Instead, we will show in Theorem 4.5 that if ∂g is OLC
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x

η

δ y = P (x)

Figure 2. (δ, η, κ)-Outer Lipschitz Continuity in Definition 4.2.

and S is compact, then ∀δ > 0,∃η > 0 such that ∂g is
(δ, η, κ)-OLC on S.

We are now ready for the main theorem of this section:

Theorem 4.4 (NAS by GAS). For a Lipschitz continuous
f , suppose that ∂f : Rd ⇒ Rd is (δ, η, κ)-OLC. If x is
(ϵ, η)-GAS, then x is

(
ϵ+ κ(δ + η), δ

)
-NAS.

It is natural to ask what function class admits a (δ, η, κ)-
OLC subdifferential.

Theorem 4.5. Let δ > 0 and ∂f : Rd ⇒ Rd be κ-OLC. For
any compact set S, there exists an η ∈ (0, δ] such that ∂f is
(δ, η, κ)-OLC on S.

Remark 4.6. If the set of (ϵ, δ)-GAS points is bounded and
∂f is OLC, then we can use Theorem 4.5 and Theorem 4.4
to guarantee NAS from GAS. Note that functions with OLC
subdifferential have been widely studied in the variational
analysis literature. For example, ∂f with a finite union of
convex polyhedral graph (Robinson, 1981) is OLC. If f is
an ℓc-stable function (Bednařík & Pastor, 2013, Theorem
2), then ∂f is OLC.

Given an OLC mapping ∂f and a constant δ > 0, it is
generally hard to estimate the constant η as guaranteed by
Theorem 4.5. However, its value is needed for the stopping
rules of Algorithm 1. In the next subsection, we provide
several useful calculus rules to compute the parameter η
explicitly.

4.2. Calculus of (δ, η, κ)-Outer Lipschitz Continuity

In this section, we establish a series of calculus rules to
verify and compute the parameters in Definition 4.2. We
first introduce four rules that have taken the subdifferential
calculus rules4 of f into consideration.

Proposition 4.7 (smooth regularization). Suppose that
f : Rd → R has a (δ, η, κ)-OLC ∂f and g : Rd → R is dif-
ferentiable with a β-Lipschitz gradient∇g. Then ∂(f + g)
is (δ, η, β + κ)-OLC.

4We note here that the validity of subdifferential chain rules
for nonconvex nonsmooth functions is highly non-trivial. See, for
example, (Rockafellar & Wets, 2009, Chapter 10).

Proposition 4.8 (separable sum). Suppose, for any i ∈
[m], that fi : Rdi → R has a (δi, ηi, κi)-OLC ∂fi. Let
f(x) :=

∑m
i=1 fi(xi), where x :=

⊕m
i=1 xi. Then, ∂f is

(δ, η, κ)-OLC with

δ =

√√√√ m∑
i=1

δ2i , η = min
i∈[m]

ηi, κ =

√√√√ m∑
i=1

κ2i .

Proposition 4.9 (linear composition). Suppose that f :
Rn → R has a (δ, η, κ)-OLC ∂f and A ∈ Rn×d is sur-

jective. Then, ∂(f ◦A) is
(
δ∥A†∥, η

∥A∥ , κ∥A∥
2
)

-outer Lip-
schitz continuous.

Proposition 4.10 (rescaling). Suppose that the L1-Lipschitz
f : Rn → R has a (δ, η, κ)-OLC ∂f and g : R →
R is L2-Lipschitz and β-smooth. Then, ∂(g ◦ f) is
(δ, η, βL1 + κL2)-OLC.

Then, we introduce a partial sum rule, which is powerful but
needs to be used in conjunction with certain subdifferential
calculus rules (e.g., assuming Clarke regularity). The fol-
lowing rules are crucial in the 2-layer ReLU neural network
example (see Section 5.2.2).
Proposition 4.11 (sum). Suppose, for any i ∈ [m], that Gi :
Rd ⇒ Rd is (δi, ηi, κi)-OLC with a shared pivot mapping
P : Rd → Rd. Let G(x) :=

∑m
i=1Gi(x). Then, G is

(δ, η, κ)-OLC with

δ = min
i∈[m]

δi, η = min
i∈[m]

ηi, κ =

m∑
i=1

κi.

Corollary 4.12 (partially separable sum). Suppose, for
any i ∈ [m], that Gi : Rd0 × Rdi ⇒ Rd0 × Rdi is
(δi, ηi, κi)-OLC with a partially shared pivot mapping
Pi : Rd0 × Rdi → Rd0 × Rdi , such that π1 ◦ Pi(x0, xi) =
π1 ◦ P1(x0, x1),∀i ∈ [m]. Let G(x) :=

∑m
i=1Gi(x0, xi),

where x :=
⊕m

i=0 xi. Then, G is (δ, η, κ)-OLC with

δ =

√√√√ m∑
i=1

δ2i , η = min
i∈[m]

ηi, κ =

m∑
i=1

κi.

4.3. Discussion

We record here a recipe to prove (δ, η, κ)-OLC from scratch,
which when combined with the calculus rules in this section
forms a toolbox for determining the parameters (δ, η, κ).

S1. Construct pivot mapping P : Rd → Rd.

S2. Verify ∥x− P (x)∥ ≤ δ for all x ∈ Rd.

S3. Prove that for all x ∈ Rd, it holds

G(z) ⊆ G(P (x))+κ∥z−P (x)∥B, ∀z ∈ Bη(x)∩S.

We will provide concrete examples in Section 5.
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5. Applications
To demonstrate the wide applicability of the new theoreti-
cal framework, we discuss examples in machine learning,
namely ρ-margin SVM, 1-layer, and 2-layer ReLU NN, all
being Clarke irregular and not weakly convex. We show that
all these examples are subdifferential (δ, η, κ)-OLC, where
the parameters (δ, η, κ) can be determined via the calculus
rules in Section 4.2.

5.1. ρ-Margin loss SVM

We aim to solve

min
w∈Rd

F (w) :=
1

2
∥w∥2 +

n∑
i=1

ϕρ(z
⊤
i w), (ρ-MSVM)

where ϕρ(u) := min
(
1,max

(
0, 1− u

ρ

))
.

The goal is to compute (ϵ, δ)-NAS points for Prob-
lem (ρ-MSVM) by computing (ϵ′, δ′)-GAS points. We note
that the ρ-Margin loss SVM in Problem (ρ-MSVM) and its
ρ = 1 version, also known as ramp loss SVM, have been
widely recognized in the operations research (Brooks, 2011;
Carrizosa et al., 2014; Wang et al., 2021; Tian & So, 2022),
statistics (Shen et al., 2003; Wu & Liu, 2007; Liu et al.,
2005), and machine learning (Huang et al., 2014; Keshet &
McAllester, 2011; Collobert et al., 2006b;a; Ertekin et al.,
2010; Suzumura et al., 2017; Maibing & Igel, 2015) com-
munities as providing better robustness against data outliers
than the vanilla SVM. The general ρ-version can be found in
the learning theory textbook (Mohri et al., 2018, Corollary
5.11).

It is elementary to see that ∂ϕρ is (δ, δ, 0)-OLC for any
0 < δ ≤ ρ

2 with pivot mapping Pϕρ : R→ R defined by

Pϕρ(x) :=

 0 for |x| ≤ ρ
2 ,

ρ for |x− ρ| < ρ
2 ,

x for otherwise.

Let Φρ(y) :=
∑n

i=1 ϕρ(yi). Then, by Proposition 4.8, ∂Φρ

is (
√
nδ, δ, 0)-OLC. Assuming that Z ∈ Rn×d is surjec-

tive, by Proposition 4.9, ∂(Φρ ◦ Z) is
(√

nδ∥Z†∥, δ
∥Z∥ , 0

)
-

OLC. Using Proposition 4.7, ∂F is
(√

nδ∥Z†∥, δ
∥Z∥ , 1

)
-

OLC. By Theorem 4.4, if x is
(
ϵ, δ

∥Z∥

)
-GAS, then it is also(

ϵ+
(√

n∥Z†∥+ 1
∥Z∥

)
δ,
√
n∥Z†∥δ

)
-NAS. Let the con-

dition number of Z be κ(K) := ∥Z†∥∥Z∥. In other words,
to compute an (ϵ, δ)-NAS point, it is sufficient to have an
(ϵ′, δ′)-GAS point, where (in a dimension-free manner)

ϵ′ ≤ ϵ

2
and δ′ ≤ min

{
δ√

nκ(Z)
,

ϵ

2
√
nκ(Z) + 2

,
ρ

2∥Z∥

}
.

5.2. Shallow ReLU Neural Network.

In this subsection, we will discuss the computation of (ϵ, δ)-
NAS points for shallow ReLU neural networks. For sim-
plicity, we will not trace explicitly the constants (δ, η, κ) in
this subsection. Instead, we will say that f is subdifferen-
tially OLC trackable if the parameters (δ, η, κ) of ∂f can
be determined by the calculus rules in Section 4.2.

Recently, finite-time convergence of neural networks in the
overparameterized regime has been extensively studied (Ja-
cot et al., 2018; Chizat et al., 2019; Du et al., 2018; Arora
et al., 2019; Du et al., 2019; Zou et al., 2020). For the under-
parameterized regime, the asymptotic convergence of ReLU
neural network is analyzed in the continuous-time gradient
flow sense (Eberle et al., 2021; Jentzen & Riekert, 2021).
However, it is still unclear what convergence guarantee we
can have for (potentially underparameterized) ReLU neural
networks within finite time as they are not weakly convex
and the finite-time analyses in (Davis & Grimmer, 2019;
Davis & Drusvyatskiy, 2019) are inapplicable.

5.2.1. 1-LAYER RELU NEURAL NETWORK

We first investigate the easy case, that is, the 2-layer ReLU
neural network with the weights of the second layer fixed.
It is notable that we will not impose any assumption on the
number of hidden nodes m.

Let σ(u) := max{u, 0}. Setting pivot y := 1|u|>δu, it is
elementary to see that ∂σ : R ⇒ R is (δ, δ, 0)-OLC for any
δ > 0. Similarly, ∂(−σ) is (δ, δ, 0)-OLC for any δ > 0. We
aim to solve

min
W∈Rd×m

F (W ) :=

n∑
i=1

ℓ

yi, m∑
j=1

(−1)jσ
(
w⊤

j xi
)+R(W ).

Suppose that the regularization term R : Rd×m → R
is smooth. Let h : Rm → R be given by h(u) :−∑m

j=1(−1)jσ(uj). By Proposition 4.8, h is subdifferen-
tially OLC trackable. Let ℓi(u) = ℓ(yi, u) and assume that
ℓi is Lipschitz and smooth. Let f : Rmn → R be given by
f(Vec(U)) :=

∑n
i=1 ℓi ◦ h(ui), where ui ∈ Rm,∀i ∈ [n]

and U ∈ Rm×n. With Proposition 4.10 and using Propo-
sition 4.8 again, f is subdifferentially OLC trackable. We
assume that the data X ∈ Rn×d is surjective, which holds
in many modern high-dimensional machine learning sce-
narios. Let xi ∈ R1×d be the i-th row of X . We define
Xi ∈ Rm×md and Xbig ∈ Rmn×md as

Xi :=


xi

xi
. . .

xi

 , Xbig :=


X1

X2

...
Xn

 .
As X is surjective, Xbig is surjective. Using Propo-
sition 4.9, we have f(Xbig Vec(W )) is subdifferentially
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OLC trackable, where Vec(W ) ∈ Rmd. By F (W ) =
f(Xbig Vec(W )) + R(W ) and Proposition 4.7, F (W ) is
subdifferentially OLC trackable.

5.2.2. 2-LAYER RELU NEURAL NETWORK

Let ϱ(a, b) := a ·max{b, 0}. We aim to solve

min
W∈Rd×m

a∈Rm

F (W,a) :=

n∑
i=1

ℓ

yi, m∑
j=1

ϱ(aj , w
⊤
j xi)

+R(W,a)
with surjective X ∈ Rn×d and smooth regularization term
R : Rd×m × Rm → R.

Compared with the 1-layer case, the main difficulty in the
analysis is due to the inseparability of {aj}j∈[m], as one
cannot apply the subdifferential chain rule and OLC cal-
culus rules directly. To cope with this, we need the partial
separable rule in Corollary 4.12 and a partially differentiable
sum rule in Proposition 5.2, which might be of independent
interest. To begin, we have the following subdifferential
characterization of ∂ϱ : R2 ⇒ R2:

Claim 5.1. For ϱ(u1, u2) := u1 ·max{u2, 0}, it holds

∂ϱ(u1, u2) =

 (u2, u1) for u2 > 0,
(0, 0) for u2 < 0,

(0,Co{0, u1}) for u2 = 0.

Then, we investigate the continuity of ∂ϱ. Given any δ > 0,
x ∈ R2, and z ∈ Bδ(x), we consider the following cases:

• If |x2| > δ, let y = x.

◦ If y2 > 0, then z2 > 0. We have ∂ϱ(z) =
(z2, z1)⊆(y2, y1)+∥y−z∥B=∂ϱ(y)+∥y−z∥B.
◦ If y2 < 0, then z2 < 0. We have ∂ϱ(z) =
(0, 0) = ∂ϱ(y).

• If 0 ≤ |x2| ≤ δ, let y = (x1, 0). It is easy to see that
∥y − x∥ = |x2| ≤ δ.

◦ If z2 > 0, we have ∂ϱ(z) = (z2, z1) ⊆ (0, y1) +
∥y − z∥B ⊆ ∂σ(y) + ∥y − z∥B.

◦ If z2 < 0, we have ∂ϱ(z) = (0, 0) ⊆ (0, 0) +
∥y − z∥B ⊆ ∂σ(y) + ∥y − z∥B.

◦ If z2 = 0, we have ∂ϱ(z) = (0,Co{0, z1}) ⊆
(0,Co{0, y1}])+∥y− z∥B = ∂σ(y)+∥y− z∥B.

Therefore, for any δ > 0, ∂ϱ is (δ, δ, 1)-OLC with pivot
mapping P ∂ϱ : R2 → R2 defined by

P ∂ϱ
(
(x1, x2)

)
:=

{
(x1, 0) for |x| ≤ δ,
(x1, x2) otherwise.

It is easy to see that π1 ◦ P ∂ϱ
(
(x1, x2)

)
is independent of

x2. Let hi : Rm × Rm → R,∀i ∈ [n] be defined by

hi(a, ui) := ℓi

 m∑
j=1

ϱ(aj , uij)

 .

Then, by the choices of pivots in the proof of Proposi-
tions 4.10 and 4.11, ∂hi is subdifferentially OLC trackable
with pivot mapping P ∂hi : Rm × Rm → Rm × Rm defined
by P ∂hi

(
(a, ui)

)
:= (a, ũi), where

ũij :=

{
0 for |uij | ≤ δ,
uij otherwise.

Therefore, {∂hi}i∈[m] partially shares the pivot mapping
P ∂hi on the first argument, i.e., π1 ◦P ∂hi

(
(x0, xi)

)
= π1 ◦

P ∂h1
(
(x0, x1)

)
,∀i ∈ [n]. Let f(a, U) :=

∑n
i=1 hi(a, ui).

By Corollary 4.12,
∑n

i=1 ∂hi is subdifferentially OLC track-
able. To proceed, we need the following chain rule, whose
proof is technical and might be of independent interest.
Proposition 5.2 (partially differentiable sum rule). It holds

∂f(a, U) =

n∑
i=1

∂hi(a, ui).

Then, ∂f is subdifferentially OLC trackable. Suppose that
the data X ∈ Rn×d is surjective. Let xi be the i-th row of
X . We define θ ∈ Rm+md and Xhuge ∈ R(m+mn)×(m+md)

as

θ :=

[
a

Vec(W )

]
, Xhuge :=

[
Im

Xbig

]
.

As X is surjective, Xhuge is surjective. Using Proposi-
tion 4.9, we have f(Xhugeθ) is subdifferentially OLC track-
able. By F (W,a) = f(Xhugeθ) + R(W,a) and Proposi-
tion 4.7, F (W,a) is subdifferentially OLC trackable.

6. Closing Remarks
In this paper, we report a practical algorithmic scheme to
compute GAS points for general Lipschitz functions with
finite-time complexity. We also isolate a new function class
for which our scheme computes NAS points in finite time.
Besides, we establish a series of theoretical tools to com-
pute parameters in our new function class. To demonstrate
the wide applicability of our new theoretical framework,
we discuss modern machine learning models and show that
they satisfy our new conditions. We hope that our results
can be beneficial to the understanding of finite-time com-
plexity of sharper approximate stationarity for Lipschitz
continuous “non”-problems. An intriguing further direction
is to apply the new analytical framework to other noncon-
vex nonsmooth problems. Extending the calculus rules in
Section 4.2 or refining the modified OLC notion in Defini-
tion 4.2 would also be interesting.
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A. Proofs of Section 2

Figure 3. The function used in the proof of Proposition 2.7.

Proposition 2.7 (convex polyhedron). For any δ > 0, there exists a convex function f : R2 → R, which is 2-Lipschitz with
polyhedral ∂f , such that (0, 2δ) is (0, δ)-GAS but miny∈Bδ((0,2δ)) dist

(
0, ∂f(y)

)
≥ 2

5

√
5.

Proof. Fixing some δ > 0, consider the function (see also Figure 3), whose convexity is obvious,

f(x, y) := max{2x,−2x, y}.

Note that, by (±δ, 2δ) ∈ Bδ

(
(0, 2δ)

)
, it holds

(0, 0) =
1

2
(−2, 0) + 1

2
(2, 0) ∈ 1

2
∂f
(
(−δ, 2δ)

)
+

1

2
∂f
(
(δ, 2δ)

)
⊆ ∂δf

(
(0, 2δ)).

Besides, as (0, 0) /∈ Bδ

(
(0, 2δ)

)
, it is elementary to see

dist
(
0,
⋃

y∈Bδ((0,2δ))
∂f(y)

)
≥ min

0≤λ≤1
∥(2λ, 0) + (0, 1− λ)∥ = 2

5

√
5,

as required.

B. Proofs of Section 3.2
Lemma 3.2. Let D := {x : f is differentiable at x}. Given locally Lipschitz continuous f , we have

P
(
∃(t, k) ∈ [T ]× [K] : yt,k ∈ Dc

)
= 0.

Proof. Fix (t, k) ∈ [T ]× [K]. Let

S1 :=
{
(λ, ξ) : λ ∈ [0, 1], ξ ∈ Rd−1, ∥ξ∥ ≤ 1

}
,

S2 :=

{
y ∈ Rd : y = xt + λ

(
xt,k − xt +

δ∥mt,k∥
8L

· bt,k+1

)
, λ ∈ [0, 1], ∥bt,k+1∥ ≤ 1, b⊤t,k+1(xt,k − xt) = 0

}
.

Let X⊥ ∈ Rd×d−1 be an orthonormal basis of span(xt,k − xt)⊥. We define the following isomorphism:

T : S1 −→ S2

(λ, ξ) −→ yt,k+1 := xt + λ

(
xt,k − xt +

δ∥mt,k∥
8L

·X⊥ξ

)
.

Then, by Rademacher theorem (Rockafellar & Wets, 2009, Theorem 9.60) and T−1 is Lipschitz, we have

m (y ∈ Dc ∩ S2) = m
(
(λ, ξ) ∈ T−1(Dc ∩ S2)

)
= 0.
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Let S3 := {b ∈ Rd : ∥b∥ ≤ 1, b⊤(xt,k−xt) = 0}. By (Barthe et al., 2005, Corollary 4), we have bt,k+1 ∼ Unif(S3)
d
= X⊥ξ,

where ξ ∼ Unif(Bd−1). With λ ∼ Unif([0, 1]) and countable union of zero measure set is negligible, we have

P
(
yt,k ∈ Dc ∩ S2,∀(t, k) ∈ [T ]× [K]

)
= 0,

which completes the proof.

Lemma 3.3. Let K = 80L2

ϵ2 . Given t ∈ [T ], it holds

E
[
∥mt,K∥2

]
≤ ϵ2

16
,

where mt,k = 0 for all k > k0 if the k-loop breaks at (t, k0). Consequently, for any 0 ≤ γ < 1, with probability 1 − γ,
there are at most log(γ−1) restarts of the while loop in the t-th iteration.

Proof. Let Ft,k = σ(yt,1, · · · , yt,k) and F̂t,k = σ(yt,1, · · · , yt,k, bt,k+1). We denote Dt,k as the event that k-loop
does not break at xt,k, i.e., ∥mt,k∥ > ϵ and f(xt,k) − f(xt) > − δ

4∥mt,k∥. It is clear that Dt,k ∈ Ft,k ⊂ F̂t,k. Let

γ(λ) = (1 − λ)xt + λ
(
xt,k +

δ∥mt,k∥
8L · bt,k+1

)
for λ ∈ [0, 1]. Note that γ′(λ) = xt,k − xt + δ∥mt,k∥

8L · bt,k+1. Let

x′t,k = xt,k +
δ∥mt,k∥

8L · bt,k+1. Since yt,k+1 is uniformly sampled from the line segment
[
xt, x

′
t,k

]
and f is differentiable at

yt,k+1 almost surely by Lemma 3.2, we know that

E
[〈
gt,k+1, x

′
t,k − xt

〉∣∣ F̂t,k

]
=

∫ 1

0

f ′(γ(t);x′t,k − xt)dt = f(x′t,k)− f(xt).

By x′t,k − xt = −
(
1− ∥mt,k∥

8L

)
· δ mt,k

∥mt,k∥ +
δ∥mt,k∥

8L · bt,k+1, we have

E
[
⟨gt,k+1,mt,k⟩| F̂t,k

]
= − ∥mt,k∥(

1− ∥mt,k∥
8L

)
· δ
· E
[〈
gt,k+1, x

′
t,k − xt

〉∣∣ F̂t,k

]
+

∥mt,k∥(
1− ∥mt,k∥

8L

)
· δ
· E
[〈

gt,k+1,
δ∥mt,k∥

8L
· bt,k+1

〉∣∣∣∣ F̂t,k

]

≤ − ∥mt,k∥(
1− ∥mt,k∥

8L

)
· δ
·
(
f(xt,k)− f(xt)− |f(x′t,k)− f(xt,k)|

)
+

∥mt,k∥2

8
(
1− ∥mt,k∥

8L

)
≤ − ∥mt,k∥(

1− ∥mt,k∥
8L

)
· δ
·
(
f(xt,k)− f(xt)

)
+

∥mt,k∥2

4
(
1− ∥mt,k∥

8L

) ,
which directly implies

E [ ⟨gt,k+1,mt,k⟩| Ft,k] ≤ −
∥mt,k∥(

1− ∥mt,k∥
8L

)
· δ
·
(
f(xt,k)− f(xt)

)
+

∥mt,k∥2

4
(
1− ∥mt,k∥

8L

) .
By construction, mt,k+1 = βmt,k + (1 − β)gt,k+1 under Dt,k ∩ · · · ∩ Dt,1, and mt,k+1 = 0 otherwise. Let Dt,k =
Dt,k ∩ · · · ∩Dt,1. Therefore,

E
[
∥mt,k+1∥2

∣∣Ft,k

]
≤
(
β2∥mt,k∥2 + (1− β)2L2 + 2β(1− β) · E [ ⟨gt,k+1,mt,k⟩| Ft,k]

)
1Dt,k

≤

β2∥mt,k∥2 + (1− β)2L2 + 2β(1− β) ·

− ∥mt,k∥(
1− ∥mt,k∥

8L

)
· δ
·
(
f(xt,k)− f(xt)

)
+

∥mt,k∥2

4
(
1− ∥mt,k∥

8L

)
1Dt,k

≤

β2∥mt,k∥2 + (1− β)2L2 + 2β(1− β) · ∥mt,k∥2

2
(
1− ∥mt,k∥

8L

)
1Dt,k

=: h(β)1Dt,k
.
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By rearranging, it holds

h(β) = β2

(
L2 + ∥mt,k∥2 −

∥mt,k∥2

1− ∥mt,k∥
8L

)
︸ ︷︷ ︸

T1

+β

(
∥mt,k∥2

1− ∥mt,k∥
8L

− 2L2

)
︸ ︷︷ ︸

T2

+L2.

Note that, by 0 < ∥mt,k∥ ≤ L in Dt,k and conditioning on Dt,k, it holds

T1 =
L2

8
(
1− ∥mt,k∥

8L

) (8− ∥mt,k∥
L

− ∥mt,k∥3

L3

)
> 0, and T2 =

L2

4
(
1− ∥mt,k∥

8L

) (−8 + ∥mt,k∥
L

+
4∥mt,k∥2

L2

)
< 0.

Thus, h(β) achieves the minimum at βt,k =
8L3−L2∥mt,k∥−4L∥mt,k∥2

8L3−L2∥mt,k∥−∥mt,k∥3 , which belongs to Ft,k. Since 0 < ∥mt,k∥ ≤ L in
Dt,k, we have

h(βt,k) =

(
1− c1 ·

∥mt,k∥2

L2

)
∥mt,k∥2

(♯)

≤
(
1− ∥mt,k∥2

5L2

)
∥mt,k∥2,

where

c1 =
L2

∥mt,k∥2
− L2h(βt,k)

∥mt,k∥4
=

16L4 − 8L3∥mt,k∥+ L2∥mt,k∥2

64L4 − 16L3∥mt,k∥+ L2∥mt,k∥2 − 8L∥mt,k∥3 + ∥mt,k∥4
.

Let 0 < t :=
∥mt,k∥

L ≤ 1. For the validity of inequality (♯), we observe

1

5
< inf

0<t≤1

16− 8t+ t2

64− 16t+ t2 − 8t3 + t4
≤ c1.

To see it, note that, for 0 < t ≤ 1, it holds

5 · (16− 8t+ t2)− (64− 16t+ t2 − 8t3 + t4) = (t+ 2)

(
10

(
t− 4

5

)2

+
8

5
− t3

)
> 0.

Therefore,

E
[
∥mt,k+1∥2

]
= E

[
E
[
∥mt,k+1∥2

∣∣Ft,k

] ]
≤ E

[(
1− ∥mt,k∥2

5L2

)
∥mt,k∥2

]
≤
(
1− E[∥mt,k∥2]

5L2

)
E[∥mt,k∥2].

Then, by a similar argument in the proof of (Zhang et al., 2020, Lemma 13) we have E[∥mt,K∥2] ≤ 5L2

K+4 . When K ≥ 80L2

ϵ2 ,

we have E[∥mt,K∥2] ≤ ϵ2

16 .

Theorem 3.4. Let f be L-Lipschitz continuous. Then, Algorithm 1 with K = 80L2

ϵ2 and T = 4∆
ϵδ finds an (ϵ, δ)-GAS point

with probability 1− γ using at most
320∆L2

ϵ3δ
log

(
4∆

γϵδ

)
oracle calls

with P(error = 1) = 0, where f(x0)− infx f(x) ≤ ∆.

Proof. Using Lemma 3.2 and Lemma 3.3, the remaining parts directly follow from the proof of (Zhang et al., 2020, Theorem
8).

C. Proofs of Section 3.3
Theorem 3.5. Under Assumption 3.1(b), with probability at least 3

5 , the output of Algorithm 2 satisfies dist(0, ∂δf(xout)) ≤ ϵ
after at most

Õ

(
G3∆

ϵ4δ

)
oracle calls

with P(error = 1) = 0, where f(x0)− infx f(x) ≤ ∆.
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Proof. Let αi := βt−i(1− β) and denote x′t+1 := xt+1 + ζbt+1 and Gt := σ(g1, . . . , gt),∀t. Clearly, the random variables
mt, xt, xt+1, ηt are Gt-measurable. Note that

mt = βKmt−K +

t∑
i=t−K+1

αigi.

Conceptually, if we chooseK to be sufficiently large, the term βKmt−K is negligible. Then, if all the points yt−K+1, . . . , yt
are inside xt−K + δB, we have that mt approximately belongs to ∂δf(xt−K) in expectation.

Note that for all i = t−K + 1, . . . , t,

∥yi − xt−K∥ ≤ ∥yi − xi−1∥+ ∥xi−1 − xt−K∥
(a)

≤ ∥x′i − xi−1∥+ ∥xi−1 − xt−K∥

= ∥ζbi − ηi−1mi−1∥+

∥∥∥∥∥∥
i−2∑

j=t−K

ηjmj

∥∥∥∥∥∥
(b)

≤ ζ +
i−1∑

j=t−K

ηj ∥mj∥

(c)

≤ ω

p
+
i− t+K

p

≤ K + ω

p
,

where (a) holds since yi is sampled from the line segment [xi−1, x
′
i], (b) uses ∥bi∥ ≤ 1 and (c) follows from ζ ≤ ω

p and
ηt ∥mt∥ ≤ 1

p ,∀t. We verify that the choices of K,ω and p satisfy K+ω
p ≤ δ:

K + ω

p
=

1
1−β ln 16G

ϵ

64G2

δϵ2 ln 16G
ϵ

= δ.

Then, conditioned on Gt−K , since for all i = t−K + 1, . . . , t,

E [gi | Gt−K ] = E [∇f(yi) | Gt−K ] ∈ ∂δf(xt−K),

we have (note that
∑t

i=t−K+1 αi = 1− βK)

1

1− βK

t∑
i=t−K+1

αiE [gi | Gt−K ] ∈ ∂δf(xt−K)

⇒ 1

1− βK

(
E [mt | Gt−K ]− βKmt−K

)
∈ ∂δf(xt−K)

⇒ dist(0, ∂δf(xt−K)) ≤ 1

1− βK

(
∥E [mt | Gt−K ]∥+ βK ∥mt−K∥

)
≤ 1

1− βK

(
E [∥mt∥ | Gt−K ] + βK ∥mt−K∥

)
.

Take expectation.

E [dist(0, ∂δf(xt−K))] ≤ 1

1− βK
E [∥mt∥] +

βKG

1− βK
,

1

T

T∑
t=1

E [dist(0, ∂δf(xt−K))] ≤ 1

(1− βK)T

T∑
t=1

E [∥mt∥] +
βKG

1− βK
.
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We verify that the choices of β and K satisfy βKG ≤ ϵ
16 :
(
βK ≤ ϵ

16G

)
⇔
(
K ≥ 1

ln 1
β

ln 16G
ϵ

)
. WLOG, we assume that

ϵ ≤ G, and thus βK ≤ 1
16 . The above inequality can be further bounded as

1

T

T∑
t=1

E [dist(0, ∂δf(xt−K))] ≤ 16

15T

T∑
t=1

E [∥mt∥] +
ϵ

15
. (C.1)

The remaining proof is to show that Algorithm 2 ensures that 1
T

∑T
t=1 E [∥mt∥] = O(ϵ).

For ease of analysis, we denote Yt+1 := σ(g1, . . . , gt, bt+1, yt+1) and Ŷt+1 := σ(g1, . . . , gt, bt+1). Clearly, we have
Gt ⊂ Ŷt+1 ⊂ Yt+1 ⊂ Gt+1. Let φ(λ) := (1− λ)xt + λx′t+1 for λ ∈ [0, 1]. Since yt+1 is uniformly sampled from the line
segment [xt, x′t+1] and that f is differentiable at yt+1 almost surely, it holds that

E
[〈
gt+1, x

′
t+1 − xt

〉
| Gt
]
= E

[
E
[
E
[〈
gt+1, x

′
t+1 − xt

〉
| Yt+1

]
| Ŷt+1

]
| Gt
]

= E
[
E
[〈
∇f(yt+1), x

′
t+1 − xt

〉
| Ŷt+1

]
| Gt
]

= E

[∫ 1

0

f ′(φ(λ);x′t+1 − xt)dλ | Gt
]

= E
[
f(x′t+1)− f(xt) | Gt

]
.

(C.2)

By x′t+1 − xt = −ηtmt + ζbt+1, we have

E
[〈
gt+1, x

′
t+1 − xt

〉
| Gt
]
= −ηtE [⟨gt+1,mt⟩ | Gt] + ζE [⟨gt+1, bt+1⟩ | Gt]
≤ −ηtE [⟨gt+1,mt⟩ | Gt] + ζG,

where we used ∥bt+1∥ ≤ 1. Thus, combining with (C.2), we obtain

E [⟨gt+1,mt⟩ | Gt] ≤
1

ηt
E
[
f(xt)− f(xt+1) + f(xt+1)− f(x′t+1) | Gt

]
+
ζ

ηt
G

≤ 1

ηt

(
f(xt)− f(xt+1)

)
+
ζ

ηt
(L+G).

(C.3)

Based on the construction mt+1 = βmt + (1− β)gt+1, we can conclude that

∥mt+1∥2 = β2 ∥mt∥2 + 2β(1− β) ⟨gt+1,mt⟩+ (1− β)2 ∥gt+1∥2 ,

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
= 2β(1− β)E [ηt ⟨gt+1,mt⟩] + (1− β)2E

[
ηt ∥gt+1∥2

]
.

From (C.3), it holds that

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≤ 2β(1− β)E [f(xt)− f(xt+1)] + 2β(1− β)(L+G)ζ

+ (1− β)2E
[
ηt ∥gt+1∥2

]
,

1

T

T∑
t=1

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≤ 2β(1− β)∆

T
+ 2β(1− β)(L+G)ζ +

(1− β)2G2

q
,

where we used ηt ≤ 1
q .

Since ηt = 1
p∥mt∥+q , using the same telescoping proof in (Zhang et al., 2020), as long as pG

q ≤
β
2 , the following holds

1

T

T∑
t=1

E
[
ηt
(
∥mt+1∥2 − β2 ∥mt∥2

)]
≥ β(1− β)

2T

T+1∑
t=1

E

[
∥mt∥2

p ∥mt∥+ q

]
− βG2

qT
.
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Thus,
β(1− β)

2T

T+1∑
t=1

E

[
∥mt∥2

p ∥mt∥+ q

]
≤ 2β(1− β)∆

T
+ 2β(1− β)(L+G)ζ +

(1− β)2G2

q
+
βG2

qT
,

1

T

T∑
t=1

E

[
q ∥mt∥2

p ∥mt∥+ q

]
≤ 4q∆

T
+ 4q(L+G)ζ +

2(1− β)G2

β
+

2G2

T (1− β)
.

Comparing the above inequality with (14)5 in (Zhang et al., 2020), we notice that the only difference is the additional
perturbation term 4q(L+G)ζ. Since we choose the identical β, p, q and T as in (Zhang et al., 2020), using the arguments
(15) and (16) in (Zhang et al., 2020) and denoting mavg := 1

T

∑T
t=1 E [∥mt∥], we obtain

4Gm2
avg

mavg + 4G
≤ ϵ2

17
+ 4q(L+G)ζ

(⋆)

≤ ϵ2

15
,

where (⋆) uses ζ ≤ ϵ2

510q(L+G) . The above is a quadratic equation in mavg:

4Gm2
avg −

ϵ2

15
mavg −

4Gϵ2

15
≤ 0.

Solving for the positive root of this quadratic equation and using ϵ ≤ G, we obtain

mavg ≤
ϵ2

15 +
√

ϵ4

225 + 64G2ϵ2

15

8G
≤ 4ϵ

15
≤ 5ϵ

16
.

Finally, using (C.1), we conclude that

E [dist(0, ∂δf(xout))] =
1

T

T∑
t=1

E [dist(0, ∂δf(xt−K))] ≤ 2ϵ

5
.

Thus, with probability at least 3
5 , we have dist(0, ∂δf(xout)) ≤ ϵ.

D. Proofs of Section 4.1
Theorem 4.4 (NAS by GAS). For a Lipschitz continuous f , suppose that ∂f : Rd ⇒ Rd is (δ, η, κ)-OLC. If x is (ϵ, η)-GAS,
then x is

(
ϵ+ κ(δ + η), δ

)
-NAS.

Proof. As x is Goldstein (ϵ, η)-stationary, we have dist
(
0, ∂f(x+ ηB)

)
≤ ϵ, which implies that there exists

∥g∥ ≤ ϵ, such that g ∈ ∂f(x+ ηB) = Co

 ⋃
y∈Bη(x)

∂f(y)

 .

By Carathéodory’s theorem (Rockafellar & Wets, 2009, Theorem 2.29), we can write g =
∑d+1

j=1 αjgj , where αj ≥
0,
∑d+1

j=1 αj = 1, gj ∈ ∂f(yj), yj ∈ Bη(x),∀j ∈ [d+ 1].

Let y ∈ Bδ(x) be a pivot such that ∂f is κ-outer Lipschitz continuous on Bη(x). As f is Lipschitz and by (Clarke, 1990,
Proposition 2.1.2), ∂f(y) is nonempty, convex, and compact. Let uj := argminz∈∂f(y) ∥z−gj∥, u :=

∑d+1
j=1 αjuj ∈ ∂f(y).

Then, we compute

∥u∥ =

∥∥∥∥∥∥
d+1∑
j=1

αjuj

∥∥∥∥∥∥ ≤ ∥g∥+
d+1∑
j=1

αj∥uj−gj∥ ≤ ∥g∥+κ
d+1∑
j=1

αj∥y−yj∥ ≤ ∥g∥+κ
d+1∑
j=1

αj

(
∥y−x∥+∥x−yj∥

)
≤ ϵ+κ(δ+η),

5There is a typo in the telescoping proof of Theorem 14 in (Zhang et al., 2020): The term β2G2

q
above Equation (14) should be βG2

q
.

This typo does not affect the final convergence result.
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which completes the proof.

Theorem 4.5. Let δ > 0 and ∂f : Rd ⇒ Rd be κ-OLC. For any compact set S, there exists an η ∈ (0, δ] such that ∂f is
(δ, η, κ)-OLC on S.

Proof. Let
⋃

x∈S B◦
1
2 δ̄(x)

(x) be an open cover of S, where δ̄(x) = min{δ, δ(x)} and δ(x) is the inradius of neighborhood
V (x), on which ∂f is κ-outer Lipschitz at x, satisfying Bδ(x)(x) ⊆ V (x). As S is compact, we find a finite subcover⋃

i∈[m] B◦
1
2 δi

(xi), where δi = min{δ, δ(xi)} and xi ∈ S. Let η := mini∈[m]
δi
2 . Then, by Lebesgue’s number theorem

(Munkres, 1974, Chapter 3, Lemma 7.2) on open cover
⋃

x∈S B◦
δ̄(x)

(x) of S, for any x ∈ S, there exists i ∈ [m] such that
B◦
η(x) ⊆ B◦

δi
(xi). Thus, Bη(x) ⊆ Bδi(xi) ⊆ V (xi). For any z ∈ Bη(x) ∩ S, by κ-outer Lipschitz continuity ∂f on V (xi),

we have
∂f(z) ⊆ ∂f(xi) + κ∥xi − z∥B, ∀z ∈ Bη(x) ∩ S,

where xi ∈ Bδi(x) ⊆ Bδ(x). This completes the proof.

E. Proofs of Section 4.2
Proposition 4.7 (smooth regularization). Suppose that f : Rd → R has a (δ, η, κ)-OLC ∂f and g : Rd → R is differentiable
with a β-Lipschitz gradient∇g. Then ∂(f + g) is (δ, η, β + κ)-OLC.

Proof. Let F := f + g. By (Rockafellar & Wets, 2009, Exercise 8.8(c)), ∂F = ∂f +∇g. Let y ∈ Bδ(x) be a pivot of ∂f .
Then, for ∀z ∈ Bη(x), we compute

∂F (z) = ∂f(z) +∇g(z) ⊆ ∂f(z) +∇g(y) + β∥z − y∥B ⊆ ∂F (y) + (β + κ)∥z − y∥B,

which completes the proof.

Proposition 4.8 (separable sum). Suppose, for any i ∈ [m], that fi : Rdi → R has a (δi, ηi, κi)-OLC ∂fi. Let f(x) :=∑m
i=1 fi(xi), where x :=

⊕m
i=1 xi. Then, ∂f is (δ, η, κ)-OLC with

δ =

√√√√ m∑
i=1

δ2i , η = min
i∈[m]

ηi, κ =

√√√√ m∑
i=1

κ2i .

Proof. By (Rockafellar & Wets, 2009, Proposition 10.5) and f is Lipschitz, ∂f =
⊕m

i=1 ∂fi. Let yi ∈ Bdi

δi
(xi) be a pivot

of ∂fi. Also y :=
⊕m

i=1 yi. Similarly, for any z ∈ Bη(x), it holds zi ∈ Bdi
η (xi) ⊆ Bdi

ηi
(xi),∀i ∈ [m]. We compute

∂f(z) =

m⊕
i=1

∂fi(zi) ⊆
m⊕
i=1

(
∂fi(yi) + κi∥yi − zi∥Bdi

)
⊆ ∂f(y) + κ∥z − y∥Bd,

where ∥y − x∥2 =
∑m

i=1 ∥yi − xi∥2 ≤
∑m

i=1 δ
2
i = δ2. This completes the proof.

Proposition 4.9 (linear composition). Suppose that f : Rn → R has a (δ, η, κ)-OLC ∂f and A ∈ Rn×d is surjective. Then,

∂(f ◦A) is
(
δ∥A†∥, η

∥A∥ , κ∥A∥
2
)

-outer Lipschitz continuous.

Proof. Let F (x) := f(Ax). As A is surjective, by (Rockafellar & Wets, 2009, Exercise 10.7), ∂F (x) = A⊤∂f(Ax). Let
q ∈ Bn

δ (Ax) be a pivot of ∂f . Let y := A†q + (I − A†A)x. Then Ay = q and ∥y − x∥ ≤ ∥A†∥∥q − Ax∥ ≤ δ∥A†∥.
Meanwhile, for any z ∈ Bd

η
∥A∥

(x), it holds ∥Az −Ax∥ ≤ ∥A∥∥z − x∥ ≤ η. We compute

∂F (z) = A⊤∂f(Az) ⊆ A⊤∂f(Ay) + κ∥Ay −Az∥A⊤Bn ⊆ ∂F (y) + κ∥A∥2∥y − z∥Bd,

which completes the proof.

Proposition 4.10 (rescaling). Suppose that the L1-Lipschitz f : Rn → R has a (δ, η, κ)-OLC ∂f and g : R → R is
L2-Lipschitz and β-smooth. Then, ∂(g ◦ f) is (δ, η, βL1 + κL2)-OLC.
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Proof. Let F = g ◦ f . By (Clarke, 1990, Theorem 2.3.9(ii)), ∂F (x) = ∇g(f(x)) · ∂f(x). Let y ∈ Bδ(x) be a pivot of ∂f .
Then, for ∀z ∈ Bη(x), we compute

∂F (z) = ∇g(f(z)) · ∂f(z) ⊆ ∇g(f(z)) · ∂f(y) +∇g(f(z)) · κ∥z − y∥B
⊆ ∇g(f(y)) · ∂f(y) + (βL1 + κL2)∥z − y∥B
= ∂F (y) + (βL1 + κL2)∥z − y∥B,

which completes the proof.

Proposition 4.11 (sum). Suppose, for any i ∈ [m], that Gi : Rd ⇒ Rd is (δi, ηi, κi)-OLC with a shared pivot mapping
P : Rd → Rd. Let G(x) :=

∑m
i=1Gi(x). Then, G is (δ, η, κ)-OLC with

δ = min
i∈[m]

δi, η = min
i∈[m]

ηi, κ =

m∑
i=1

κi.

Proof. Let y = P (x) ∈ Bδi(x) be a pivot of Gi(x), which by pivot sharing assumption should hold for all i ∈ [m]. Thus
∥y − x∥ ≤ mini∈[m] δi = δ. For all z ∈ Bη(x) ⊆ Bηi

(x), we compute

G(z) =

m∑
i=1

Gi(z) ⊆
m∑
i=1

(
G1(y) + κi∥z − y∥B

)
⊆ G(y) +

(
m∑
i=1

κi

)
∥z − y∥B,

as expected.

Corollary 4.12 (partially separable sum). Suppose, for any i ∈ [m], that Gi : Rd0 × Rdi ⇒ Rd0 × Rdi is (δi, ηi, κi)-OLC
with a partially shared pivot mapping Pi : Rd0 × Rdi → Rd0 × Rdi , such that π1 ◦ Pi(x0, xi) = π1 ◦ P1(x0, x1),∀i ∈ [m].
Let G(x) :=

∑m
i=1Gi(x0, xi), where x :=

⊕m
i=0 xi. Then, G is (δ, η, κ)-OLC with

δ =

√√√√ m∑
i=1

δ2i , η = min
i∈[m]

ηi, κ =

m∑
i=1

κi.

Proof. Let (y0, yi) ∈ Bd0+di

δi

(
(x0, xi)

)
be a pivot of Gi. Also y :=

⊕m
i=0 yi. Similarly, for any z ∈ Bη(x), it holds

(z0, zi) ∈ Bd0+di
η

(
(x0, xi)

)
⊆ Bd0+di

ηi

(
(x0, xi)

)
,∀i ∈ [m]. We compute

G(z) =

m∑
i=1

Gi

(
(z0, zi)

)
⊆

m∑
i=1

(
Gi

(
(y0, yi)

)
+ κi

∥∥(z0, zi)− (y0, yi)
∥∥Bd0+di

)
⊆ G(y) + κ∥z − y∥Bd,

where ∥y − x∥2 =
∑m

i=0 ∥yi − xi∥2 ≤
∑m

i=1

(
∥y0 − x0∥2 + ∥yi − xi∥2

)
≤
∑m

i=1 δ
2
i = δ2, and d =

∑m
i=0 di. This

completes the proof.

F. Proofs of Section 5
Claim 5.1. For ϱ(u1, u2) := u1 ·max{u2, 0}, it holds

∂ϱ(u1, u2) =

 (u2, u1) for u2 > 0,
(0, 0) for u2 < 0,

(0,Co{0, u1}) for u2 = 0.

Proof. Define

C1 := {(u1, u2) : u2 ≥ 0},
C2 := {(u1, u2) : u2 ≤ 0}.
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It is clear that C1 ∪ C2 = R2, and we have

ϱ(u1, u2) =

{
u1 · u2 for (u1, u2) ∈ C1,

0 for (u1, u2) ∈ C2.

Note that C1 ∩ C2 form a set S of measure 0, and if (u1, u2) /∈ S, then ϱ is differentiable. The claim follows from taking
convex hull with (Rockafellar & Wets, 2009, Theorem 9.61).

In the following proof, we will use the following notion named partial Clarke subdifferential. See also (Clarke, 1990, Page
48), (Rockafellar & Wets, 2009, Corollary 10.11).
Definition F.1. Let a local Lipschitz function f : Rn × Rm → R and gy : x → f(x, y). Then the partial Clarke
subdifferential with respect to the first argument is defined as ∂1f(x, y) := ∂gy(x). ∂2f(x, y) is defined similarly.
Claim F.2. ∂ϱ(u1, u2) = ∂1ϱ(u1, u2)× ∂2ϱ(u1, u2) and |π1 ◦ ∂ϱ(u1, u2)| = 1.

Proof. Note that ∂1ϱ(u1, u2) = max{u2, 0} and ∂2ϱ(u1, u2) = u1 · ∂(max{·, 0})(u2). The proof completes by using
Claim 5.1 and literally checking definitions.

Proposition 5.2 (partially differentiable sum rule). It holds

∂f(a, U) =

n∑
i=1

∂hi(a, ui).

Proof. To begin, we observe the following general fact. For any set A ⊆ Rn × Rm, if |π1A| = 1, then A = π1A× π2A. To
see it, for one direction, if (a1, a2) ∈ A, then a1 ∈ π1A, a2 ∈ π2A. Thus, A ⊆ π1A × π2A. For the other direction, let
a1 ∈ π1A, a2 ∈ π2A. As {a1} = π1A, then by the definition of π2A, it holds (a1, a2) ∈ A. Thus π1A× π2A ⊆ A.

To avoid uninformative sophisticated notation, we will use “P
=” for equivalence up to coordinate permutation. Formally, if

A
P
= B, then there exists a permutation matrix P such that B = {Px : x ∈ A}. We compute

∂f(a, U) ⊆
n∑

i=1

∂hi(a, ui) (Clarke (1990, Proposition 2.3.3))

=

n∑
i=1

∇ℓi

 m∑
j=1

ϱ(aj , uij)

 · m⊕
j=1

∂ϱ(aj , uij) (Clarke (1990, Theorem 2.3.9(ii)))

=

n∑
i=1

∇ℓi

 m∑
j=1

ϱ(aj , uij)

 · m⊕
j=1

(
∂1ϱ(aj , uij)× ∂2ϱ(aj , uij)

)
(Claim F.2)

P
=

 n∑
i=1

∇ℓi

 m∑
j=1

ϱ(aj , uij)

 · m⊕
j=1

∂1ϱ(aj , uij)


︸ ︷︷ ︸

S1

×

 n⊕
i=1

m⊕
j=1

∇ℓi

 m∑
j=1

ϱ(aj , uij)

 · ∂2ϱ(aj , uij)


︸ ︷︷ ︸
S2

.

Note that |S1| = 1 as |∂1ϱ(aj , uij)| = 1,∀(i, j) ∈ [n] × [m] by Claim F.2. Thus |π1 ◦ ∂f(a, U)| = 1 and ∂f(a, U)
P
=

π1 ◦ ∂f(a, U)× π2 ◦ ∂f(a, U). With (Clarke, 1990, Proposition 2.3.16), we compute

∂f(a, U)
P
=
(
π1 ◦ ∂f(a, U)

)
×
(
π2 ◦ ∂f(a, U)

)
⊇ ∂1f(a, U)× ∂2f(a, U)

♮
= S1 × S2.

To see (♮), note that f(·, U) is differentiable. Thus it is straightforward to check S1 = ∂1f(a, U). For S2, note that f(a, ·)
is fully separable (as a is fixed). Then, with (Rockafellar & Wets, 2009, Proposition 10.5) and (Clarke, 1990, Theorem
2.3.9(ii)), the verification of S2 = ∂2f(a, U) is routine.

This completes the proof.


