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A Provably Convergent Projected Gradient-Type
Algorithm for TDOA-Based Geolocation under the

Quasi-Parabolic Ionosphere Model
Sen Huang, Yuen-Man Pun, Anthony Man-Cho So, Senior Member, IEEE, and Kehu Yang, Member, IEEE

Abstract—The problem of geolocating an unknown high-
frequency emitter based on the quasi-parabolic ionosphere model
with time-difference of arrival measurements of the refracted
radio rays is of fundamental importance in various military
and civilian applications. Such a problem admits a maximum-
likelihood (ML) formulation, which is nonlinear and non-convex.
By elucidating the geometry of the feasible set of the ML
formulation, we develop a first-order algorithm, which we call
Generalized Projected Gradient Descent, to solve it. We prove
that every limit point of the iterates generated by our proposed
algorithm is a critical point of the ML formulation. Simulation
results show that our proposed algorithm can more reliably and
accurately geolocate the emitter than a state-of-the-art method
in various settings.

Index Terms—Geolocation, ionosphere, quasi-parabolic model,
time-difference of arrival, gradient descent

I. INTRODUCTION

OWING to their ability to travel long distances, high-
frequency (HF) radio waves have found many appli-

cations in both military and civilian fields [1]–[3]. In one
of the earlier attempts to describe the ray path of HF radio
transmission through the ionosphere, de Voogt [4] and later
Croft and Hoogasian [5] proposed the quasi-parabolic (QP)
model, which defines the path using a parabola-like equation
in electron density versus height. The QP model provides a
way to obtain the travel time of the radio signal, thereby
making it possible to perform geolocation. In this paper,
we consider the problem of geolocating an unknown HF
transmitter using multiple coordinated distant receivers based
on time-difference of arrival (TDOA) measurements of the
reflected radio rays [2], [6]; cf. [7], [8]. In a recent work,
Wang et al. [3] gave a maximum-likelihood (ML) formulation
of the problem and proposed a three-step heuristic algorithm
to solve it. However, there is no theoretical analysis of the
algorithm. In particular, the work [3] neither establishes the
convergence of the algorithm nor explains why the algorithm
can sometimes fail to geolocate the emitter. Motivated by
the above discussion, we begin by revisiting the ML formu-
lation proposed in [3]. Our contribution is threefold. First,
we describe how the geometry of the feasible set depends
on the ratio between the operating frequency of the emitter
and the critical frequency of the ionosphere. This sheds light
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on why the algorithm proposed in [3] can sometimes fail to
geolocate the emitter. Second, by leveraging on our analysis
of the feasible set, we reformulate the problem and design a
novel first-order algorithm called the Generalized Projected
Gradient Descent (GPGD) to tackle the resulting formulation.
Third, we prove that every limit point of the iterates generated
by the GPGD method is a critical point of the formulation. As
our numerical results show, our proposed algorithm can more
reliably and accurately geolocate the emitter than the state-of-
the-art method in [3] in various settings.

II. PROBLEM FORMULATION

Consider a geolocation scenario in which there is a single
emitter and M sensors on the earth’s surface. The location
of the emitter, which we denote by x ∈ R3, is unknown,
while the locations of the sensors, which we denote by
S1, . . . ,SM ∈ R3, are known. The radio-ray path between
any emitter-sensor pair is assumed to travel through the
ionosphere; see Fig. 1. One way of describing this path is to
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Fig. 1. Ray Path Geometry

use the QP model of the ionosphere, which relates the electron
density to height using a parabola-like equation [5] and allows
one to derive the geometry of the ray path. Specifically, let
r0 ≈ 6371km be the radius of the earth, rb be the base of
the ionosphere as measured from the earth center, rm be the
distance from the earth center at which the maximum electron
density is reached, and ym = rm−rb be layer semi-thickness.
Furthermore, let f and fc denote the operating frequency of the
emitter and the critical frequency of the ionosphere, respecti-
vely, with F = f/fc. Note that the parameters rb, rm, ym, fc
of the ionosphere can be estimated [9], while the parameter
f depends on the emitter and is assumed given. Now, for
i = 1, . . . ,M , let βi ∈ [0, π2 ] be the flying angle (measured
above the optical horizon) of the radio ray from the emitter
to sensor i and γi be the angle of the radio ray from the
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emitter to sensor i at the base of the ionosphere. By Snell’s
law, one has the relation cos γi = r0

rb
cosβi [5]. Moreover,

by defining A = 1 − 1
F 2 +

(
rb
Fym

)2
, B = − 2rmr

2
b

F 2y2m
, and

C =
(
rbrm
Fym

)2
− r20 cos2 βi, the distance between the emitter

and sensor i along the earth’s surface is given by

Di(βi) = 2r0

{
(γi − βi)− r0 cos βi

2
√
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4C

(
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}
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(1)

while the group path (i.e., the signal transmit time multiplied
by the speed of light c) from the emitter to sensor i is given
by

Pi(βi) = 2

{
rb sin γi − r0 sinβi + 1

A

[
− rb sin γi−

B
4
√
A

ln B2−4AC
(2Arb+B+2rb

√
A sin γi)

2

]}
;

(2)

see Fig. 1 for an illustration and [5] for the derivation. Using
sensor 1 as the reference, the (noisy) TDOA measurements are
modeled as τi1 = τi−τ1+ni1 for i = 2, 3, . . . ,M , where τi =
Pi/c and {ni1}i are Gaussian measurement noises with mean
zero and covariance matrix Σ. Then, one can formulate the
following ML estimation problem for geolocating the emitter,
where for simplicity we write Di = Di(βi) and Pi = Pi(βi)
(i = 1, . . . ,M ); cf. [3]:

min
x,β

φ(β) = (GP − π)TΣ−1(GP − π)

s.t. ‖Si − x‖ = 2r0 sin

(
Di

2r0

)
, i = 1, . . . ,M, (3a)

‖x‖ = r0. (3b)

Here, P = [P1, . . . , PM ]T ∈ RM , β = [β1, . . . , βM ]T ∈
RM , G =

[
−eM−1 IM−1

]
∈ R(M−1)×M , and π =

c [τ21, τ31, . . . , τM1]
T ∈ RM−1, where en denotes the n-

dimensional column vector of all ones and In denotes the n×n
identity matrix. In this formulation, the Euclidean distance
between the emitter and sensor i (where i = 1, . . . ,M ) is
given by (3a) and the emitter is constrained to be on the
earth’s surface by (3b). Note that due to the non-line-of-sight
nature of the ray path, the above formulation is different from
most existing formulations (e.g., [10]–[12]) in the localization
literature. Although the formulation (3) is nonlinear and non-
convex, it possesses some favorable properties that can be
exploited in algorithm design. This will be explained next.

III. PROBLEM ANALYSIS AND ALGORITHM DESIGN

A. Problem Analysis

Observe that once the flying angle βi is determined, both
Di and Pi are also determined; see (1) and (2). To better
understand the structure of the nonlinear equations (3a), let
us plot the function β 7→ D(β). As can be verified and
also illustrated in Fig. 2, when F ≤ 1, D is monotonically
decreasing and one-to-one in β ∈ [0, π2 ]. Hence, given a value
D̄, there is a unique β̄ such that D̄ = D(β̄). On the other
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Fig. 2. Graph of β 7→ D(β)

hand, when F > 1, D decreases as β increases and reaches a
minimum at the angle βU1 , whose value can be found by, say,
the golden-section search [13]. The value D(βU1) is known
as the skip distance. In particular, the emitter’s signal cannot
reach sensors whose distance from the emitter is less than the
skip distance [14]. As β increases beyond βU1 , D increases
again until β = βU2 , at which the ray penetrates the ionosphere
and is not refracted back to the ground. The value βU2 can be
obtained by solving B2 − 4AC = 0; see (1).

The case where F > 1 is often of practical interest, as
the emitter could then provide certain long-range coverage
capabilities [14]. However, in this case, given a value D̄ that
is greater than the skip distance, there are two corresponding
flying angles—one lies in [0, βU1) and the other in (βU1 , βU2);
see Fig. 2. For most purposes, only rays of the former
type are used, while rays of the latter type are considered
a nuisance [14]. In view of the above discussion, we shall
focus on the case where F > 1 in the sequel and incorporate
the constraints βi ∈ [0, βU1 ] for i = 1, . . . ,M into the ML
formulation (3). Since βi is a function of x by (3a), we can
eliminate the variable β from (3) and consider the equivalent
problem

min
x

θ(x) = φ(β(x))

s.t. L ≤ ‖Si − x‖ ≤ U, i = 1, . . . ,M, (4a)
‖x‖ = r0, (4b)

where L,U > 0 are bounds obtained from the constraint βi ∈
[0, βU1 ] and can be calculated from (1) and (3a). Although
the constraints (4a) may seem non-convex at first sight, by
observing that ‖Si‖ = ‖x‖ = r0 for i = 1, . . . ,M , they can
be simplified to

2r20 − U2 ≤ 2STi x ≤ 2r20 − L2, i = 1, . . . ,M, (5)

which are linear inequality constraints. Hence, the main diffi-
culty of problem (4) lies in the non-convexity of the objective
function θ and the constraint (4b).

To the best of our knowledge, the formulation (4) is the first
to explicitly incorporate the constraints βi ∈ [0, βU1 ] on the
flying angles. Previously, Wang et al. [3] tried to control the
flying angles by adding a penalty term to the objective function
in (3). However, it is not clear how to choose the penalty
parameter so that the flying angles will lie in the desired range.
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In particular, given a current iterate x̄, if there are two flying
angles β−i , β

+
i , where 0 ≤ β−i < βU1 < β+

i < βU2 (see
Fig. 2), that could satisfy the i-th constraint in (3a) with x =
x̄, the algorithm proposed by Wang et al. [3] may not rule out
β+
i . As we shall see in Section IV, this can often cause the

algorithm to fail to geolocate the emitter.

B. Generalized Projected Gradient Descent Method

Given the success of the semidefinite relaxation techni-
que [15] in dealing with a wide range of localization pro-
blems [16], [17], it is tempting to apply the technique to tackle
problem (4). However, a quick inspection of the structure of
the objective function θ suggests that such an approach is
not straightforward. Hence, we propose to tackle problem (4)
directly using a projected gradient-type method. To begin,
observe that by using the chain rule and applying implicit
differentiation on (3a), we have

∇θ(x) = 2

(
G
∂P

∂β

∂β

∂x

)T
Σ−1(GP − π), (6)

where
∂P

∂β
= Diag

(
dP1

dβ1
, · · · , dPM

dβM

)
∈ RM×M ,

∂β

∂x
=


−
(
r0 sin

(
D1

r0

)
dD1

dβ1

)−1
ST1

...

−
(
r0 sin

(
DM

r0

)
dDM

dβM

)−1
STM

 ∈ RM×3.

Let X be the feasible region of problem (4). Then, we can
solve problem (4) via the following algorithm:

Algorithm 1 Generalized Projected Gradient Descent (GPGD)
for Solving (4)

1: Initialization: initial iterate x0 ∈ X ; bounds L,U > 0
in (4a); maximum number of iterations T .

2: for k = 0, 1, 2, . . . , T do
3: Set x = xk in (3a) and find the solutions

β1,k, . . . , βM,k.
4: Take the gradient step

x̄k+1 = xk − αk · ∇θ(xk),

where αk > 0 is the step size and ∇θ(xk) is computed
via (6) using xk, β1,k, . . . , βM,k.

5: Perform the projection

xk+1 = ProjX (x̄k+1).

6: end for

Before we proceed further, some discussion on the imple-
mentation details of Algorithm 1 is in order. First, line 3 can be
implemented using an one-dimensional search [13]. Second,
the step size αk in line 4 can be determined by a backtracking
line search [13]. Third, although line 5 involves projecting a
point onto the non-convex set X , it can be tackled using an
alternating projection strategy. Specifically, observe that X can
be expressed as X = P ∩ M, where P is the polyhedron
defined by (5) and M is the sphere defined by (4b). On

one hand, the projection ProjP(y) of the point y onto the
polyhedron P is a well-studied problem and can be efficiently
solved using Hildreth’s algorithm; see [18]. On the other hand,
the projection ProjM(y) of the point y onto the sphereM is
simply given by ProjM(y) = r0 · y

‖y‖ . Hence, starting at the
point y0 = y, we can generate a sequence of points {yj}j
via the alternating projections

y2j+1 = ProjP(y2j), y2j+2 = ProjM(y2j+1), j = 0, 1, . . . .

It has been shown that the sequence {yj}j will locally
converge to a point ȳ ∈ X at a linear rate [19].

Unlike the algorithm proposed in [3], our proposed GPGD
method does not require the tuning of a penalty parameter. As
we shall see in Section IV, the GPGD method is more robust
and can yield higher geolocation accuracy than the algorithm
in [3].

Next, let us study the convergence behavior of our proposed
GPGD method.

C. Convergence Analysis of GPGD

Although problem (4) is non-convex, its objective function
and constraint set have nice structures. These structures would
allow us to establish the convergence of the GPGD method
(Algorithm 1). Specifically, we have the following result:

Theorem 1. Let X̄ be a compact subset of int(P)∩M, where
int(P) denotes the interior of P . Then, there exists a constant
B > 0 such that if the step sizes {αk}k satisfy αk ∈ (0, B)
for k = 0, 1, . . . and the iterates x0,x1, . . . , generated by
Algorithm 1 all lie in X̄ , then every limit point of the sequence
{xk}k is a critical point of problem (4).

Proof. Using the definition of θ and the expressions for Di

and Pi in (1) and (2), respectively, we see that θ is twice
differentiable and lower bounded by 0 on X̄ . This implies
that θ has a Lipschitz continuous gradient on X̄ . Hence, by
the results in [20, Section 5], there exists a constant B > 0,
which depends on the Lipschitz constant of ∇θ, such that if
the step sizes {αk}k satisfy αk ∈ (0, B) for k = 0, 1, . . . and
the iterates x0,x1, . . . , generated by Algorithm 1 all lie in X̄ ,
then the sequence {θ(xk)}k is monotonically decreasing and
tends to a limit. This, together with the Lipschitz continuity of
∇θ, implies that every limit point of {xk}k is a critical point
of problem (4).

It is worth noting that our proposed GPGD method is the
first to have a convergence guarantee for solving the TDOA-
based geolocation problem under the QP ionosphere model.

IV. NUMERICAL RESULTS

A. Setup

In this section, we present numerical results to demonstrate
the efficacy of our proposed approach. The setting of our
experiments is as follows. The default ionosphere parameters
are rm = 6650km, ym = 100km, and fc = 10MHz. The
operating frequency is set at f = 15MHz, while the locations
of the emitter and sensors are given in Table I. With this
setup, we have L = 849km and U = 3059km for each
sensor. The distance between the emitter (in Hong Kong) and
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TABLE I
LOCATIONS OF EMITTER AND SENSORS

Emitter Hong Kong 114.16◦, 22.28◦ βi
Sensor 1 Beijing 116.41◦, 39.90◦ 6.59◦

Sensor 2 Wuhan 114.31◦, 30.59◦ 25.75◦

Sensor 3 Shanghai 121.47◦, 31.23◦ 15.90◦

Sensor 4 Tokyo 139.69◦, 35.69◦ 0.96◦

Sensor 5 Seoul 126.58◦, 37.33◦ 5.93◦

the furthest sensor (in Tokyo) is 2884km. The measurement
noise vector n = [n21, . . . , nM1]T is generated according
to the Gaussian distribution with mean zero and covariance
matrix Σ = 0.5σ2(IM−1 + eM−1e

T
M−1), where σ2 is the

noise power. We consider two scenarios in our experiments.
In the first scenario, we use all five sensors to perform the
geolocation, while in the second, we use only sensors 1–4.
We evaluate the performance of our proposed approach and
compare it with that of the approach proposed in [3]. The for-
mer applies the GPGD method to problem (4), which explicitly
takes the constraints on the flying angles (i.e., βi ∈ [0, βU1 ]
for i = 1, . . . ,M ) into account. The latter applies a quasi-
Newton (QN) method to a penalized version of problem (3),
which attempts to control the flying angles via the penalized
objective function φ(β)+δ ·eTMP (β). Here, δ > 0 is a penalty
parameter. We set δ = 0.0001 in our experiments, as this gives
the best performance of the QN method. Both the GPGD and
QN methods are run for a maximum of T = 105 iterations.
We have created a graphical user interface to demonstrate the
ray paths between the emitter and sensors and the sequence
generated by our proposed GPGD method. The source code
used to generate the results in this paper can be downloaded
at https://github.com/samwong1993/OTHR.

B. Geolocation Performance

Since both problems (3) and (4) are non-convex, the per-
formance of the GPGD and QN methods will in principle
depend on the choice of the initial iterate. To study the effect
of initialization on the performance of these two methods, we
perform two sets of experiments. In the first set, for each noise
level σ ∈ {0, 100, 200, . . . , 1000}, we generate 100 instances
of the geolocation problem with different noise realizations.
Then, we initialize both the GPGD and QN methods using the
warm-start strategy in [3] and apply these methods to solve the
generated instances. The root-mean-square errors (RMSEs) of
the two methods are shown in Fig. 3. As can be seen from the
figure, our proposed GPGD method not only is more efficient
but also achieves a higher geolocation accuracy than the QN
method in [3]. For reference, we also include the Cramér-
Rao lower bound (CRLB) of the problem in the figure. The
derivation of the CRLB can be found in [3].

In the second set, we consider a random initializa-
tion strategy. Specifically, for each noise level σ ∈
{0, 100, 200, . . . , 1000}, we generate an instance of the geolo-
cation problem and 100 random points to initialize the GPGD
and QN methods. Then, we apply the methods to solve the
generated instance. The RMSEs of the two methods are shown
in Fig. 4. Observe that the RMSE of the GPGD method is
comparable to that in Fig. 3. However, the QN method fails
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to geolocate the emitter in this setting (the RMSE is on the
order of 106m). In Fig. 5, we record the number of initial
points (out of the 100 generated) for which the QN method
outputs a solution that has an error of more than 50km (i.e.,
50, 000m). From the figure, we see that the QN method fails to
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geolocate the emitter for more than half of the generated initial
points. As pointed out in Section III-A, this can be attributed
to the ambiguity in the choice of the flying angles during the
course of the QN method. We should also remark that the QN
method does not have any convergence guarantee. In summary,
our proposed GPGD method is much more reliable than the
QN method in [3].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an efficient projected gradient-
type method for tackling the TDOA-based geolocation pro-
blem under the QP model. The proposed method not only
has a provable convergence guarantee but also demonstrates
numerical superiority over the existing algorithm in [3]. An
interesting future direction is to study the geolocation problem
under more realistic ionosphere models.

https://github.com/samwong1993/OTHR
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