
A FAST PROXIMAL POINT ALGORITHM FOR
GENERALIZED GRAPH LAPLACIAN LEARNING

Zengde Deng Anthony Man-Cho So

Department of Systems Engineering and Engineering Management, CUHK, Hong Kong

ABSTRACT

Graph learning is one of the most important tasks in machine
learning, statistics and signal processing. In this paper, we
focus on the problem of learning the generalized graph Lapla-
cian (GGL) and propose an efficient algorithm to solve it. We
first fully exploit the sparsity structure hidden in the objective
function by utilizing soft-thresholding technique to transform
the GGL problem into an equivalent problem. Moreover, we
propose a fast proximal point algorithm (PPA) to solve the
transformed GGL problem and establish the linear conver-
gence rate of our algorithm. Extensive numerical experiments
on both synthetic data and real data demonstrate that the soft-
thresholding technique accelerates our PPA method and PPA
can outperform the current state-of-the-art method in terms of
speed.

Index Terms— Graph learning, generalized graph Lapla-
cian, augmented Lagrangian, sparsity structure, linear conver-
gence

1. INTRODUCTION

Graphs are mathematical structures that are composed of ver-
tices and edges. In machine learning, statistics and signal
processing areas, graphs are often used to analyze the structure
of high-dimensional data. It assigns scalars to nodes and edges
to form weighted graphs where nodes can represent the objects
of interest and edges represent the relationships between ob-
jects. These weighted graphs arise from different fields such
as brain networks [2], image and video coding [23] and also
have many applications in transportation, sensor networks [5],
and so on. For instance, in operations research, we usually
use weighted graphs to define problems such as shortest path
and network flow [8]. In image processing, the correlation
of neighboring pixel values can be represented by weighted
graphs [10]. Moreover, the graph-based model is widely used
in machine learning areas such as semi-supervised learning
[26], where the goal is to classify data using a few labeled
samples. We refer the reader to the recent surveys [12, 4] for
other examples and applications.

In this paper, we focus on the problem of learning the
generalized graph Laplacian (GGL). The basic goal of graph
learning is to optimize a weighted graph with a given structure

based on observed data. Given a data matrix C (e.g. empirical
covariance) and a penalty matrix H , we aim to minimize the
following objective function:

tr(CX)− log det(X) + ‖H ◦X‖1, (1)
where ◦ is the element-wise product and ‖ · ‖1 is the element-
wise l1 penalty. The first two terms give a log-determinant
divergence whose minimizer is the maximum likelihood esti-
mator of the inverse covariance matrix, while the last term is
a sparse regularization term that controls the sparsity of the
desired graph.

In our problem, we consider specific Laplacian structural
constraints that encode the information about the graph. Graph
Laplacian matrices have many applications such as spectral
partitioning [13], text mining [11], and filtering [15]. We
consider the following generalized graph Laplacian [6] for a
given connectivity matrix A (all elements are 0 or 1):

Q(A) =

{
X � 0

∣∣∣∣Xij ≤ 0 if Aij = 1
Xij = 0 if Aij = 0

for i 6= j

}
. (2)

Thus, our GGL problem is given as follows:
min

X∈Q(A)
tr(CX)− log det(X) + ‖H ◦X‖1, (O)

where H = α(I− 11T ) denotes the off-diagonal l1 penalty, I
and 1 are the identity matrix and all ones vector respectively.

There are other ways to identify the graph matrix of a graph
model. A problem that is closely related to GGL is sparse
inverse covariance estimation (SICE). The most well-known
algorithm to solve this problem is the graphical Lasso proposed
by Friedman [7]. Subsequently, there are other algorithms
for solving this problem such as PPA [22], ALM [20], and
QUIC [9]. The main difference between inverse covariance
estimation and our GGL problem lies in that the former allows
both negative and positive edge weights, while we focus on
graphs with nonnegative edge weights due to the nature of
the Laplacian matrix [6]. It has been shown in [6] that when
signals/data have the property that each entry can be estimated
by the nonnegative linear combination of other entries, GGL
can provide more accurate graph estimation than covariance
inverse estimation.

Recently, there is a line of works that focus on graph Lapla-
cian problems such as GGL, combinatorial graph Lapalcian
(CGL), and diagonally dominant graph Laplacian (DDGL). For
the GGL problem, Slawaski [21] proposed a primal algorithm



that applies to symmetric M-matrices. Pavez [16] constructed
an efficient dual block coordinate descent (BCD) algorithm by
analyzing the KKT conditions of the GGL problem. Egilmez
[6] later extended this method to build a general framework
of BCD, which can handle GGL, CGL, and DDGL problems.
In this paper, we will compare with this BCD method on the
GGL problem. The most time-consuming part of the BCD
algorithm lies in solving a quadratic programming (QP) sub-
problem, which can be expensive in large-scale settings. Note
that in both [16] and [6], the authors only showed the con-
vergence of their algorithms but no convergence rates were
provided.

We propose an efficient algorithm to solve the GGL prob-
lem in this paper and our major contributions are two-fold: 1)
We use the soft-thresholding technique to transform the GGL
problem into an equivalent problem that exploits the sparsity
structure of the objective function. Moreover, extensive numer-
ical experiments demonstrate that this transformation speeds
up the algorithm as it results in more sparsity constraints. 2)
We propose a fast proximal point algorithm (PPA) to solve
the transformed GGL problem. In the inner iteration, we
use the preconditioned conjugate gradient (PCG) to solve the
subproblem inexactly. Furthermore, we establish the linear
convergence of our PPA method.

Due to limited space, we defer the proofs of the lemmas
and theorems to the full version of our paper.

2. SOFT-THRESHOLDING TECHNIQUE

We introduce the soft-thresholding function

(Cα)ij =


Cij , i = j,

Cij − α, if i 6= j and Cij > α,

0, otherwise,
(3)

and set G = {(i, j)|(Cα)ij = 0}. Theorem 1 shows that the
original problem (O) can be transformed into the equivalent
problem (4) via the soft-thresholding function (3).

Theorem 1. The following problem
min

X�0,Xij≤0,i6=j
tr(CαX)− log det(X)

s.t. Xij = 0, (i, j) ∈ G ∪ V,
(4)

where V = {(i, j), i 6= j|Aij = 0} is equivalent to the origi-
nal problem (O).

Theorem 1 shows that we can exploit the sparsity structure
in G using our soft-thresholding function, in addition to the ba-
sic sparsity constraint in V obtained from connectivity matrix
A. As we shall see, this allows us to speed up computation.

3. PROXIMAL POINT ALGORITHM METHOD

Utilizing the soft-thresholding technique proposed in the Sec-
tion 2, we obtain Problem (4). We now introduce the slack

variable x to transform (4) into following problem:
min

X�0,x≥0
tr(CαX)− log det(X)

s.t. Xij = 0, (i, j) ∈ G ∪ V,
Xij + xij = 0, i 6= j and (i, j) /∈ G ∪ V.

(5)

Note that Problem (5) can be compactly represented as
min

X�0, x≥0
tr(CX)− log det(X)

s.t. A(X) +Bx = 0,
(P)

where C := Cα, B ∈ Rm×l, A : Sn → Rm is a lin-
ear mapping and AT : Rm → Sn. Note that A(X) =

[〈A1, X〉, . . . , 〈Am, X〉]T and AT (y) =
∑m
i=1 yiAi. We can

rewrite the constraints in (5) in the form of (P) and omit the
details here. Now, we define the feasible set of (P) as

FP = {X ∈ Sn++, x ∈ Rl+ : A(X) +Bx = 0}.
Before we proceed, let us state the following lemma, which
will be used to derive our proximal point algorithm (PPA).

Lemma 1 ([22, Lem. 2.1]). Let X ∈ Sn with X = UDUT

where D = diag(d) with d = (d1, . . . , dn) are the eigenval-
ues of X . Assume d1 ≥ · · · ≥ dr > 0 ≥ dr+1 ≥ · · · ≥ dn.
For given γ ≥ 0, set ψ+

γ (x) = (
√
x2 + 4γ + x)/2 and

ψ−γ (x) = (
√
x2 + 4γ − x)/2. We define X1 = ψ+

γ (X) =

Udiag(ψ+
γ (d))UT and X2 = ψ−γ (X) = Udiag(ψ−γ (d))UT .

Then, ψ+
γ is differentiable and the derivative (ψ+

γ )′(X)[H] at
X for any H ∈ Sn is given by

(ψ+
γ )′(X)[H] = U(Ω ◦ (UTHU))UT ,

where Ω ∈ Sn is Ωij =
ψ+
γ (di)+ψ

+
γ (dj)√

d2i+4γ+
√
d2j+4γ

with i, j =

1, . . . , n.

We define the Lagrangian function of Problem (P) by

L(X,x; y)

=

 〈C,X〉 − log detX
−〈y,A(X) +Bx〉, (X,x) ∈ Sn+ × Rl+,

∞, otherwise.

Thus, the essential objective function of (P) is

f(X,x) = max
y∈Rm

L(X,x; y) =

{
〈C,X〉 − log detX, (X,x) ∈ FP ,
∞, otherwise.

Using Moreau-Yosida regularization, we have

Fλ(X,x) = min
Y ∈Sn++,z∈Rl+

{
f(Y, z) +

1

2λ
(‖Y −X‖2 + ‖z − x‖2)

}
= min
Y ∈Sn++,z∈Rl+

sup
y∈Rm

{
L(Y, z; y) +

1

2λ
‖Y −X‖2 +

1

2λ
‖z − x‖2

}
= sup
y∈Rm

Θλ(X,x, y),

where λ > 0, the interchange of min and sup comes from [19],
and Θλ(X,x, y) = minz∈Rl+

{
−〈BT y, z〉+ 1

2λ‖z − x‖
2
}

+

minY ∈Sn++

{
〈C −AT y, Y 〉 − log detY + 1

2λ‖Y −X‖
2
}

.
To calculate Θλ(X,x, y), we have the following lemma:



Algorithm 1 Inexact Proximal Point Algorithm (PPA)

1: Input: X0 ∈ Sn++, x
0 ∈ Rl+, γk = 0 for all k, stopping

criterion ε.
2: for k = 0, 1, . . . do
3: Get an approximate solution

yk+1 ≈ argmax
y∈Rm

{
Θλk(Xk, xk, y)

}
. (6)

4: Update X and x by
Xk+1 = ψ+

λk
(Wλk(Xk, yk+1)),

xk+1 = ψ+
γk

(Wλk(xk, yk+1)).
(7)

5: Check the stopping criterion
‖Xk+1−Xk‖F /‖Xk‖F ≤ ε, ‖xk+1−xk‖/‖xk‖ ≤ ε.
If it is not satisfied, set λk+1 = 2λk.

6: end for

Lemma 2. For any Y ∈ Sn and λ > 0, we have

min
X�0

{
− log detX +

1

2λ
‖X − Y ‖2

}
=

1

2λ
‖ψ−λ (Y )‖2 − log det(ψ+

λ (Y )).

where ψ+
λ (·) and ψ−λ (·) are defined in Lemma 1.

Utilizing Lemma 2 and performing some routine calcula-
tions, we obtain

Θλ(X,x, y) =
1

2λ
‖X‖2 − 1

2λ
‖ψ+

λ (Wλ(X, y))‖2 +
1

2λ
‖x‖2

− 1

2λ
‖ψ+

γ (Wλ(x, y))‖2 − log detψ+
λ (Wλ(X, y)) + n,

whereWλ(X, y) = X−λ(C−AT y),Wλ(x, y) = x+λBT y,
and γ = 0. Moreover, we give the first- and second-order
derivatives of Θλ(X,x, y) w.r.t. y in the following lemma.

Lemma 3 ([22, Lem. 3.2]). For any y ∈ Rm and X � 0, x ≥
0, we have
∇yΘλ(X,x, y) = −Aψ+

λ (Wλ(X, y))−Bψ+
γ (Wλ(x, y)),

∇2
yyΘλ(X,x, y) = − λ(A(ψ+

λ )′(Wλ(X, y))AT

+B(ψ+
γ )′(Wλ(x, y))BT ),

where (ψ+
λ )′(·) is defined in Lemma 1.

Denote yλ(X,x) = argmaxy∈Rm Θλ(X,x, y), we see
that ψ+

λ (Wλ(X, yλ(X,x))) and ψ+
γ (Wλ(x, yλ(X,x)) are op-

timal solutions to Fλ(X,x) w.r.t. Y and z from our earlier
discussions. Hence, Fλ(X,x) = Θλ(X,x, yλ(X,x)). More-
over, by Danskin’s Theorem [1], we have

∇XFλ(X,x) =
1

λ
(X − ψ+

λ (Wλ(X, yλ(X,x)))),

∇xFλ(X,x) =
1

λ
(x− ψ+

γ (Wλ(x, yλ(X,x)))).

(8)

Then, we use the PPA method to solve Problem (P); i.e.,
(Xk+1, xk+1) = argminY ∈Sn++,z∈Rl+{f(Y, z) + 1

2λk
‖Y −

Xk‖2 + 1
2λk
‖z − xk‖2}. Hence, we get the following up-

Algorithm 2 Newton-CG method

1: Input: Given α ∈ (0, 12 ), β ∈ (0, 1) and τ1, τ2 ∈ (0, 1).
Choose y0 ∈ Rm.

2: for i = 0, 1, . . . do
3: Use PCG method to get an ascent direction di:

(∇2
yyθk(yi)− κiI)d = −∇yθk(yi), (9)

where κi = τ1 min{τ2, ‖∇yθk(yi)‖}.
4: By linesearch, µi = βmi , where mi is the first nonneg-

ative integer m such that
θk(yi + βmdi) ≥ θk(yi) + αβm〈∇yθk(yi), di〉.

5: Set yi+1 = yi + µid
i.

6: end for

date rule from [18, Thm 2.26]:

Xk+1 = Xk − λk∇XFλ(Xk, xk) = ψ+
λk

(Wλk(Xk, yλk(Xk, xk))),

xk+1 = xk − λk∇xFλ(Xk, xk) = ψ+
γk

(Wλk(xk, yλk(Xk, xk))).

Note that in practice it is computationally expensive to get the
maximizer yλ(X,x) of Θλ(X,x, y). Hence, we propose an
efficient inexact proximal point algorithm in Algorithm 1.

To solve the subproblem (6), we introduce a Newton-CG
method in Algorithm 2. For simplicity, we denote θk(y) =
Θλk(Xk, xk, y). The stopping criterion to solve the subprob-
lem (6) follows that given in Rockafellar [17]:

sup θk(y)− θk(yk+1) ≤ ν2k/2λk, (A)

sup θk(y)− θk(yk+1) ≤ δ2k/2λk‖Xk+1 −Xk‖2, (B)

where
∑∞
k=0 νk <∞ and

∑∞
k=0 δk <∞.

From Lemma 3 and the positive definiteness property [14]
of (ψ+

λ )′(Wλ(X, y)) , we get that−∇2
yyθk(yi) is positive def-

inite, hence−∇2
yyθk(yi)+κiI is also positive definite as long

as∇yθk(yi) 6= 0 from (9). Then, we apply preconditioned CG
(PCG) to solve the linear system and di is an ascent direction.
The global convergence and local quadratic convergence of
Algorithm 2 can be established using the techniques in [25].

4. CONVERGENCE ANALYSIS

In this section, we establish the convergence of our proximal
point algorithm and provide its linear convergence rate.

Theorem 2. If we choose stopping criterion (A) in Algorithm 1
and the dual of (P) is feasible, then the sequence {Xk, xk} ⊂
Sn++ × Rl+ is bounded and converges to a unique optimal
solution (X∗, x∗) of Problem (P).

Theorem 3. If we choose stopping criterion (B) and both
(P) and its dual are feasible, then the sequence {Xk, xk} ⊂
Sn++ × Rl+ is bounded and converges to a unique optimal
solution (X∗, x∗) of Problem (P) linearly.



Table 1: Comparison of running time (seconds) for PPA and BCD on real datasets with (a) the fully connected graph and (b) the
sparsity structural constraints and we set α = 0.02.

(a)

dataset size PPA BCD O-PPA O-BCD

freeFlyingRobot-1 798 13 31 35 37

freeFlyingRobot-2 1338 43 146 124 181

bcsstk08 1074 23 77 96 95

jagmesh4 1440 48 182 82 223

lshp1561 1561 65 233 116 286

(b)

dataset size PPA BCD O-PPA O-BCD

freeFlyingRobot-1 798 13 30 25 30

freeFlyingRobot-2 1338 38 144 80 144

bcsstk08 1074 19 57 71 58

jagmesh4 1440 48 182 63 182

lshp1561 1561 63 230 89 231

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our algorithm
and the BCD method in [6] on both synthetic and real datasets.
Note that we do not compare with the well-known graphical
Lasso method [7], as it has been shown in [6] that BCD is ten
times faster than graphical Lasso. We denote by PPA and BCD
(resp. O-PPA and O-BCD) the algorithms for solving Problem
(P) (resp. Problem (O)).

The stopping criterion for our PPA method is stated in
Algorithm 1, while for the BCD method we use ‖Xk+1 −
Xk‖F /‖Xk‖F ≤ ε. We set ε = 10−6 for both PPA and BCD.
The codes were written in MATLAB and run on a PC with
i5-4590 CPU at 3.3 GHz with 8 GB memory.

For synthetic data, we generate a positive definite matrix
Σ−1 ∈ Sn++ with density = 0.3 of nonzero entries in the
same way as in [22]. For real data, we use actual graphs from
SuiteSparse Matrix Collection [3] to design Σ−1 as in [24].
The details of the procedure for generating Σ−1 are omitted
here. Then, we sample kn instances from the multivariate
Gaussian distributionN(0,Σ) to generate a sample covariance
matrix C. In all experiments ,we just set k = 100.

We consider the following scenarios in our tests: (a) The
fully connected graph, which means that we set all off-diagonal
elements of A to be 1. This is a reasonable setting if we do not
know any sparsity information of X . (b) Σ−1 has the sparsity
structure Aij = 0 if Σ−1ij = 0, which means that we want our
estimator to have the same sparsity pattern as Σ−1.

We plot the running time vs different synthetic data size n,
which varies from 500 to 1000 in Fig. 1 on both scenarios, and
set penalty parameter α = 0.02. We can observe that our pro-
posed PPA method, which solves the transformed problem (P),
can be much faster than BCD, O-PPA, and O-BCD. It is inter-
esting to see that PPA can be much faster than O-PPA, although
they are the same methods that solve the equivalent problems
(P) and (O), respectively. Hence, the soft-thresholding tech-
nique, which exploits more sparsity information hidden in (O)
to construct (P), can truly accelerates our PPA method.

For real data, we report the running time of PPA and BCD
on both problems (P) and (O) with 2 scenarios in Table 1 and
set α = 0.02. Our PPA method for (P) is again several times

500 600 700 800 900 1000

Dimension n

0

10

20

30

40

50

60

T
im

e

PPA

BCD

O-PPA

O-BCD

(a)

500 600 700 800 900 1000

Dimension n

0

10

20

30

40

50

60

T
im

e

PPA

BCD

O-PPA

O-BCD

(b)

Fig. 1: Running time (seconds) on synthetic datasets with
n = 500, . . . , 1000 for (a) the fully connected graph and (b)
the sparsity structural constraints and we set α = 0.02.

0 5 10 15 20 25 30 35 40

Time

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

PPA

O-PPA

BCD

O-BCD

(a)

0 5 10 15 20 25 30 35

Time

10
-15

10
-10

10
-5

10
0

PPA

O-PPA

BCD

O-BCD

(b)

Fig. 2: Convergence result with running time (seconds) on the
freeFlyingRobot-1 dataset for (a) the fully connected graph
and (b) the sparsity structural constraints and we set α = 0.02.

faster than other methods. Moreover, we plot the convergence
curves on the freeFlyingRobot-1 dataset in Fig. 2. It is clear
that the soft-thresholding technique greatly accelerates our
PPA method when comparing the curves of PPA and O-PPA.
For the BCD method, it is interesting to observe that sometimes
it also has the acceleration effect.

6. CONCLUSION

In this paper, we utilized a soft-thresholding function to trans-
form the generalized graph Laplacian (GGL) problem into
an equivalent problem and proposed a fast proximal point al-
gorithm (PPA) to solve the transformed problem with linear
convergence guarantee. By exploiting the sparsity structure
via the soft-thresholding function, our PPA method for the
transformed problem can be much faster than the current state-
of-the-art method. The future work would be to extend our
algorithmic framework to handle other graph-based problems.



7. REFERENCES

[1] Dimitri P Bertsekas. Nonlinear Programming. Athena scientific
Belmont, 1999.

[2] Ed Bullmore and Olaf Sporns. Complex brain networks: Graph
theoretical analysis of structural and functional systems. Nature
Reviews Neuroscience, 10(3):186, 2009.

[3] Timothy A Davis and Yifan Hu. The University of Florida
sparse matrix collection. ACM Transactions on Mathematical
Software (TOMS), 38(1):1, 2011.

[4] Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal
Frossard. Learning graphs from data: A signal representation
perspective. IEEE Signal Processing Magazine, 36(3):44–63,
2019.

[5] Hilmi E Egilmez and Antonio Ortega. Spectral anomaly detec-
tion using graph-based filtering for wireless sensor networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 1085–1089. IEEE, 2014.

[6] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega.
Graph learning from data under Laplacian and structural con-
straints. IEEE Journal of Selected Topics in Signal Processing,
11(6):825–841, 2017.

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse
inverse covariance estimation with the graphical lasso. Bio-
statistics, 9(3):432–441, 2008.

[8] Frederick S Hillier. Introduction to Operations Research.
McGraw-Hill Education, 2012.

[9] Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S Dhillon, and Pradeep
Ravikumar. QUIC: Quadratic approximation for sparse inverse
covariance estimation. Journal of Machine Learning Research,
15(1):2911–2947, 2014.

[10] Anil K Jain. Fundamentals of Digital Image Processing. Engle-
wood Cliffs, NJ: Prentice Hall,, 1989.

[11] Stephane Lafon and Ann B Lee. Diffusion maps and coarse-
graining: A unified framework for dimensionality reduction,
graph partitioning, and data set parameterization. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 28(9):1393–
1403, 2006.

[12] Gonzalo Mateos, Santiago Segarra, Antonio G. Marques, and
Alejandro Ribeiro. Connecting the dots: Identifying network
structure via graph signal processing. IEEE Signal Processing
Magazine, 36(3):16–43, 2019.

[13] Frank McSherry. Spectral partitioning of random graphs. In
Foundations of Computer Science, 2001. Proceedings. 42nd
IEEE Symposium on, pages 529–537. IEEE, 2001.

[14] Fanwen Meng, Defeng Sun, and Gongyun Zhao. Semismooth-
ness of solutions to generalized equations and the Moreau-
Yosida regularization. Mathematical programming, 104(2-
3):561–581, 2005.

[15] Peyman Milanfar. A tour of modern image filtering: New
insights and methods, both practical and theoretical. IEEE
Signal Processing Magazine, 30(1):106–128, 2013.

[16] Eduardo Pavez and Antonio Ortega. Generalized Laplacian
precision matrix estimation for graph signal processing. In
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pages 6350–6354. IEEE, 2016.

[17] R Tyrrell Rockafellar. Augmented Lagrangians and applica-
tions of the proximal point algorithm in convex programming.
Mathematics of Operations Research, 1(2):97–116, 1976.

[18] R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis,
volume 317. Springer Science & Business Media, 2009.

[19] Ralph Tyrell Rockafellar. Convex Analysis. Princeton university
press, 2015.

[20] Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse
inverse covariance selection via alternating linearization meth-
ods. In Advances in Neural Information Processing Systems,
pages 2101–2109, 2010.

[21] Martin Slawski and Matthias Hein. Estimation of positive defi-
nite m-matrices and structure learning for attractive Gaussian
Markov random fields. Linear Algebra and its Applications,
473:145–179, 2015.

[22] Chengjing Wang, Defeng Sun, and Kim-Chuan Toh. Solving
log-determinant optimization problems by a Newton-CG pri-
mal proximal point algorithm. SIAM Journal on Optimization,
20(6):2994–3013, 2010.

[23] Cha Zhang and Dinei Florêncio. Analyzing the optimality of
predictive transform coding using graph-based models. IEEE
Signal Processing Letters, 20(1):106–109, 2013.

[24] Richard Y Zhang, Salar Fattahi, and Somayeh Sojoudi. Linear-
time algorithm for learning large-scale sparse graphical models.
arXiv preprint arXiv:1802.04911, 2018.

[25] Xin-Yuan Zhao, Defeng Sun, and Kim-Chuan Toh. A Newton-
CG augmented Lagrangian method for semidefinite program-
ming. SIAM Journal on Optimization, 20(4):1737–1765, 2010.

[26] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-
supervised learning using Gaussian fields and harmonic func-
tions. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 912–919, 2003.


	 Introduction
	 Soft-thresholding Technique
	 Proximal Point Algorithm Method
	 Convergence Analysis
	 Numerical Experiments
	 Conclusion
	 References

