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ABSTRACT

We consider the problem of identifying the graph topology
from a set of smooth graph signals. A well-known approach
to this problem is minimizing the Dirichlet energy accompa-
nied with some Frobenius norm regularization. Recent works
have incorporated the logarithmic barrier on the node degrees
to improve the overall graph connectivity without compro-
mising graph sparsity, which is shown to be quite effective
in enhancing the quality of the learned graphs. Although a
primal-dual algorithm has been proposed in the literature to
solve this type of graph learning formulations, it lacks a ri-
gorous convergence analysis and appears to have a slow em-
pirical performance. In this paper, we cast the graph learning
formulation as a nonsmooth, strictly convex optimization pro-
blem and develop an efficient alternating direction method of
multipliers to solve it. We show that our algorithm conver-
ges to the global minimum with arbitrary initialization. We
conduct extensive experiments on various synthetic and real-
world graphs, the results of which show that our method exhi-
bits sharp linear convergence and is substantially faster than
the commonly adopted primal-dual method.

Index Terms— Graph Learning, Graph Signal Proces-
sing, ADMM, Optimization Algorithms

1. INTRODUCTION
Graphs play a central role in characterizing the structural in-
formation of data. Various types of data from real-world ap-
plications, including social networks, brain signal analysis,
urban traffic flows, etc., can be regarded as signals that reside
on graphs [1, 2]. The edge weights of the graph capture the
inter-node relationships. Numerous algorithms in signal pro-
cessing and machine learning have been developed to cope
with graph-structured data [3]. Nevertheless, in many scena-
rios, the concrete graph connectivities and edge weights are
not known a priori. This hinders further representation, pro-
cessing, and analysis of the graph data. In some other appli-
cations, such as brain networks [4], the graph structure itself
is the sought information. Therefore, it is crucial to infer the
graph from a given set of observed signals.

A graph signal is usually represented by a common s-
dimensional vector while its entries are closely related to

the hidden graph. In order to discover the graph topology
from the observed graph signals, it is often assumed that the
signals vary across the graph smoothly [5]. This is a reasona-
ble abstraction of many real-world graph-supported signals,
which means that when two nodes are connected with a large
edge weight, their corresponding node values tend to be close
to each other. Various formulations of graph learning from
smooth signals have been proposed [5–9]. Among them,
the model proposed in [6], which combines the smoothness-
promoting Dirichlet energy with a logarithmic barrier on the
node degrees, exhibits superior performance in learning high-
quality graphs. This convex formulation improves the overall
graph connectivity without involving any spectral properties
of the Laplacian matrix. Thus, it is possible to obtain the glo-
bally optimal solution by algorithms with low per-iteration
computational cost.

A type of primal-dual method is generally adopted to
solve the graph learning formulation in [7] and other related
variants [10, 11]. However, the convergence of the adopted
primal-dual algorithm has not been rigorously established.
More critically, the iterative procedures do not guarantee the
node degrees to lie in the domain of the logarithm barrier in
the formulation. In practice, we observe that the primal-dual
algorithm appears to converge rather slowly in many cases.
Hence, there is a strong motivation for developing an efficient
algorithm with provable convergence guarantee to solve this
concise yet effective graph learning formulation.

In this paper, we cast the graph learning problem as a
nonsmooth, strictly convex optimization problem with an
equality constraint. We develop an efficient linearized al-
ternating direction method of multipliers (ADMM) [12] to
solve the problem, which can be much faster than the traditi-
onal primal-dual algorithms. Our theoretical analysis shows
that the proposed ADMM converges to the global minimum
from an arbitrary initial point. Sharp linear convergence of
the ADMM is observed from our experiments. The conver-
gence and runtime comparisons indicate that our method is
significantly superior to the existing primal-dual method.

2. PROBLEM FORMULATION
Let x ∈ Rs be a graph signal, whose relations between dif-
ferent entries are characterized by an undirected graph G =



〈V, E〉, where V denotes the set of nodes with |V| = s and E
denotes the set of edges. Let W ∈ Rs×s denote the weight
matrix of G, whereWij ≥ 0 represents the weight of the edge
(i, j) ∈ E . Suppose that we have observed n (possibly noisy)
graph signals x1, . . . , xn ∈ Rs that reside on G. We denote
the data matrix by X := [x1, . . . , xn] = [x̃>1 , . . . , x̃

>
s ]> ∈

Rs×n. We want to recover the underlying graph G, or equiva-
lently, the weight matrix W , from the given set of graph sig-
nals X . For this goal, it is generally assumed that the graph
signal varies smoothly across the graph. More precisely, the
following Dirichlet energy is used to measure the smoothness
of the set of graph signals X:

s∑
i=1

s∑
j=1

Wij ‖x̃i − x̃j‖22 = ‖W ◦D‖1,1,

where Dij = ‖x̃i − x̃j‖22 is the squared pairwise distance of
node vectors x̃i and x̃j , ◦ denotes the Hadamard product, and
‖ ·‖1,1 is the element-wise `1 norm. Based on the smoothness
assumption, the following formulation originally proposed in
[7] has been widely used for learning the weight matrix of the
graph:

min
W∈Rs×s

‖W ◦D‖1,1 − α1> log(W1) +
β

2
‖W‖2F

s.t. W ≥ 0, W = W>, diag(W ) = 0.

(1)

Since problem (1) does not involve any spectral structure of
the matrix variables, it is convenient to convert it into the vec-
tor form:

min
w∈Rm

2b>w − α1> log(Qw) + β‖w‖22

s.t. w ≥ 0,
(2)

where m = s(s − 1)/2, b (resp. w) is the vector that stacks
all entries above the main diagonal of D (resp. W ), and Q ∈
{0, 1}s×m is a sparse binary matrix that satisfies Qw = W1.

Instead of using the primal-dual algorithm proposed in
[7] to solve (2), we resort to the more efficient ADMM. Let
Qw = v. By penalizing the non-negative constraint in (2), we
obtain the following reformulation, which falls into a standard
form that ADMM can deal with:

min
w∈Rm,v∈Rs

f(w) + g(v)

s.t. Qw − v = 0,
(3)

where f(w) = 2b>w + β‖w‖22 + I{w≥0} with I{w≥0} ={
0, w ≥ 0

+∞, otherwise
, and g(v) = −α1> log(v). Note that

w 7→ f(w) is strongly convex in w but nonsmooth due to
the indicator function. Besides, v 7→ g(v) is strictly convex
in v, since ∇2g(v) = Diag

(
1
v21
, . . . , 1

v2m

)
� 0 for all v > 0.

In summary, problem (3) is a nonsmooth, strictly convex op-
timization problem with a linear equality constraint. It can be
shown that the problem has a unique global minimizer.

3. OPTIMIZATION ALGORITHM

In this section, we develop the detailed procedures of the line-
arized ADMM for solving problem (3). We first provide the
following two propositions as a preparation.

Proposition 1. If f(w) = 2b>w+β‖w‖22 + I{w≥0}, then for
τ1 > 0, the closed-form proximal mapping of f is given by

proxτ1f (w) = max

{
1

2τ1β + 1
w − 2τ1

2τ1β + 1
b,0

}
.

Proposition 2. If g(v) = −α1> log(v), then for τ2 > 0, the
closed-form proximal mapping of g is given by

proxτ2g(v) =
v +
√
v2 + 4ατ21

2
,

where the square and the square root are both taken element-
wise.

Introducing the dual variable λ ∈ Rs for the equality con-
straint in (3), we have the augmented Lagrangian function
with penalty parameter t > 0 as follows:

Lt(w, v;λ) =f(w) + g(v)− 〈λ,Qw − v〉+
t

2
‖Qw − v‖22

=2b>w + β‖w‖22 + I{w≥0} − α1> log(v)

− 〈λ,Qw − v〉+
t

2
‖Qw − v‖22.

Fixing vk and λk in the k-th iteration, the subproblem for w
is

min
w

f(w)−
〈
Q>λk, w

〉
+
t

2

∥∥Qw − vk∥∥2
2

⇔min
w

f(w) +
t

2

∥∥∥∥Qw − vk − λk

t

∥∥∥∥2
2

. (4)

In view of Proposition 1, we linearize the quadratic term in
(4) to perform one step of the proximal gradient iteration to
update w:

wk+1 = proxτ1f

(
wk − τ1Q>

(
Qwk − vk − λk

t

))
= max

{
w̃k+1,0

}
, (5)

where

w̃k+1 =
wk − τ1Q>

(
Qwk − vk − λk

t

)
− 2τ1b

2τ1β + 1
.

Fixing λk and the newly updated wk+1, the subproblem for v
is

min
v

g(v) +
〈
λk, v

〉
+
t

2

∥∥Qwk+1 − v
∥∥2
2

⇔min
v

g(v) +
t

2

∥∥∥∥Qwk+1 − v − λk

t

∥∥∥∥2
2

. (6)



Algorithm 1 ADMM for Graph Learning

1: Input: penalty parameter t, step sizes τ1 and τ2, primal
residual tolerance εp, dual residual tolerance εd

2: Initialize: k = 0, randomly pickw0, v0, and λ0, and pick
sufficiently large rp, rd

3: while rp > εp or rd > εd do
4: update w according to (5)
5: update v according to (7)
6: update λ according to (8)
7: set primal residual rp = ‖tQ>

(
vk+1 − vk

)
‖2

8: set dual residual rd = ‖Qwk − vk‖2
9: k ← k + 1

10: end while

Now, in view of Proposition 2, we perform a similar proximal
gradient iteration to update v in (6):

vk+1 = proxτ2g

(
vk + τ2

(
Qwk+1 − vk − λk

t

))

=
ṽk+1 +

√
(ṽk+1)

2
+ 4ατ21

2
, (7)

where ṽk+1 = (1 − τ2t)vk + τ2tQw
k+1 − τ2λk/t. Subse-

quently, the dual variable λ is updated as

λk+1 = λk − t
(
Qwk+1 − vk+1

)
. (8)

The overall description of our linearized ADMM is pre-
sented in Algorithm 1. The stopping criterion is that the pri-
mal and dual residuals attain certain pre-specified toleran-
ces. The per-iteration computational cost of our linearized
ADMM is O(m), which is comparable to that of the primal-
dual method in [7].

4. CONVERGENCE ANALYSIS

Suppose that α, β > 0. As discussed in Section 2, problem
(3) has a unique globally optimal solution (w∗, v∗). In this
section, we establish the global iterate convergence of Algo-
rithm 1 following the techniques in [13]. To proceed, we first
state the following lemma.

Lemma 1. Suppose that (w∗, v∗) is the optimal solution of
problem (3) and λ∗ is the corresponding optimal dual varia-
ble. If the step sizes satisfy τ1 < 1

σmax(Q) and τ2 < 1, then
there exists

c = min

{
t

τ1
− tσmax (Q) ,

t

τ2
− γ, 1

t
− 1

γ

}
> 0

such that the sequence
{(
wk, vk, λk

)}∞
k=0

generated by Al-
gorithm 1 satisfies

‖zk − z∗‖2M − ‖zk+1 − z∗‖2M ≥ c‖zk − zk+1‖22,

where σmax(·) denotes the largest singular value, zk =wkvk
λk

, z∗ =

w∗v∗
λ∗

, M =

 1
τ1
I− tQ>Q

1
τ2
I

1
t I

,

and ‖u‖M =
√
u>Mu for u ∈ Rm+2s.

Lemma 1 indicates that the distances of the iterates to the
optimal solution decrease monotonically, and it further im-
plies that the iterates lie in a bounded set. Equipped with
Lemma 1, we can obtain the following theorem, which re-
veals the global convergence of Algorithm 1.

Theorem 1. Suppose that the step sizes satisfy τ1 < 1
σmax(Q)

and τ2 < 1. Then, the sequence
{
zk =

(
wk, vk, λk

)}∞
k=0

generated by Algorithm 1 converges for all t > 0, and the
limit point is optimal for problem (3).

Due to space limitation, the proofs of all the aforementio-
ned results are deferred to the full version of this paper.

5. NUMERICAL RESULTS

In this section, we present the numerical performance of our
linearized ADMM and compare it with that of the primal-
dual method [7]. All algorithms are implemented in MAT-
LAB. In particular, we test the primal-dual algorithm based
on the Graph Signal Processing toolbox [14] and use the sca-
ling trick given in [9, Proposition 1] to accelerate the con-
vergence. All reported results are based on the best-tuned
α and β so that the learned graphs have the highest quality
in terms of the F-measure [5, 15]. Moreover, the parame-
ters t, τ1, τ2 in the ADMM, and the step sizes in the primal-
dual algorithm, are also best-tuned to achieve the best possi-
ble convergence results. We follow [5] to generate the graph
signals. Suppose that the Laplacian matrix of the ground-
truth graph is L = Diag(W1) − W and admits the eigen-
decomposition L = χΛχ>. Then, the graph signal is gene-
rated as x = χh + δ, where δ ∼ N (0, εI) is the Gaussian
noise with noise level ε and h ∼ N

(
0,Λ†

)
, where Λ† is the

pseudo-inverse of Λ.

5.1. Experiments on Synthetic Graphs

We first carry out experiments on three types of synthetic
graphs, namely, Gaussian graph, ER graph, and PA graph.
For the Gaussian graph, the coordinates of the nodes are sam-
pled uniformly from the unit square, and the edge weights are
determined by the radial basis function exp

(
−d(i, j)2/2ρ2

)
,

where d(i, j) is the Euclidean distance between node i and
node j and ρ = 0.5 is the kernel width parameter. All edges
whose weights are smaller than 0.75 are removed. The ER
graph is generated according to the Erdős-Rényi (ER) mo-
del [16], where each possible edge is independently added to
the graph with probability 0.2. The PA graph is generated ac-
cording to the preferential attachment (PA) model [17], where



(a) Gaussian (s = 20, n = 100) (b) Gaussian (s = 50, n = 400)

(c) ER (s = 20, n = 100) (d) ER (s = 50, n = 400)

(e) PA (s = 20, n = 100) (f) PA (s = 50, n = 400)

Fig. 1: Convergence performance on synthetic graphs

one new node is added to the graph at a time and connected to
an existing node. We generate different sets of graph signals
with the same noise level ε = 0.5.

Figure 1 illustrates the suboptimality gap ‖wk − w∗‖2 in
logarithmic scale against the number of iterations k of the
two algorithms with different s and n. It is observed that the
ADMM always exhibits notably sharper linear convergence
rates than the primal-dual algorithm. For some cases, e.g.,
Figure 1c, the primal-dual algorithm converges rather slowly,
while the ADMM still performs quite well.

We also compare the runtime of the ADMM and the
primal-dual algorithm by stopping them when the residuals
are less than 10−10. Since problem (1) is convex, we input it
into the convex optimization package CVX [18] by using the
default SDPT3 solver with the “highest” precision (provided
by CVX). The runtime of CVX is provided as a baseline.
The runtime comparison is reported in Table 1. In all ca-
ses, the ADMM consumes considerably less time than the
primal-dual algorithm to achieve the common precision.

5.2. Experiments on Real-World Graphs

We also test the numerical performance on several real-world
graphs from the SuiteSparse Matrix Collection [19]. In parti-

Graph s CVX Primal-Dual ADMM

Gaussian 20 1.94 0.04 0.01
50 13.00 0.06 0.03

ER 20 3.57 0.23 0.02
50 12.42 0.44 0.04

PA 20 2.03 0.07 0.004
50 11.98 0.63 0.06

Table 1: Comparison of runtime (in seconds)

(a) bcspwr (s = 118, n = 100) (b) lshp (s = 1561, n = 2000)

Fig. 2: Convergence performance on real-world graphs

cular, we select the bcspwr graph with s = 118 from power
network problems and the lshp graph with s = 1561 from
thermal problems. We generate 100 and 2000 graph signals
for them, respectively.

Figure 2 shows the numerical results. For these sparse
real-world graphs, the ADMM still converges much faster
than the primal-dual algorithm. Especially for the relati-
vely large lshp graph, the primal-dual algorithm can hardly
obtain a desirable suboptimal solution, while ADMM can
still achieve 10−5 precision within thousands of iterations.

We do not provide any runtime comparison in this sub-
section, since learning graphs beyond medium scale by CVX
or the primal-dual algorithm takes too long.

6. CONCLUSION AND FUTURE WORK

In this paper, we developed an efficient linearized ADMM al-
gorithm to solve a popular graph learning formulation. The
global convergence is guaranteed in theory, and superb per-
formance is verified by numerical experiments. We note that
the objective function in (3) has no Lipschitz gradient due to
the logarithmic term, which brings difficulty in analyzing the
convergence rate of Algorithm 1. Nevertheless, our numerical
experiments suggest that Algorithm 1 may enjoy linear con-
vergence. Besides, it is interesting to extend the algorithmic
framework in this paper to a wider range of graph learning
scenarios, such as learning time-varying graphs [10, 11]. We
leave these theoretical and algorithmic issues as future work.
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A. SUPPLEMENTARY PROOFS

A.1. Proof of Proposition 1

Proof. Note that f(w) is separable in each dimension of w, i.e., f(w) =
∑m
i=1 fi(wi) where fi(wi) = 2biwi+βw2

i + I{wi≥0}.
Then, for i = 1, . . . ,m,

proxτ1fi(wi)

= argminv∈R

{
fi(v) +

1

2τ1
(v − wi)2

}
= argminv∈R

{
2biv + βv2 + I{v≥0} +

1

2τ1
(v − wi)2

}
= max

{
wi − 2τ1bi
2τ1β + 1

,0

}
,

Thus, we have

proxτ1f (w) = argminv

{
τ1f(v) +

1

2
‖v − w‖22

}
= max

{
1

2τ1β + 1
w − 2τ1

2τ1β + 1
b,0

}
.

A.2. Proof of Proposition 2

Proof. Note that g(v) is separable in each dimension of v, i.e., g(v) =
∑s
j=1 gj(vj) where gj(vj) = −α log(vj). Then, for

j = 1, . . . , s,

proxτ2gj (vj)

= argminν∈R

{
gj(ν) +

1

2τ2
(ν − vj)2

}
= argminν∈R

{
−α log(vj) +

1

2τ2
(ν − vj)2

}

=
vj +

√
v2j + 4ατ2

2
.

Combining all dimensions gives

proxτ2g(v) =
v +
√
v2 + 4ατ21

2
.

A.3. Proof of Lemma 1

Proof. The optimal solution (w∗, v∗, λ∗) satisfies the following KKT conditions

0 ∈ ∂f(w∗)−Q>λ∗, (9)
0 = ∇g(v∗) + λ∗, (10)
0 = Qw∗ − v∗. (11)

The optimality condition for the subproblem (5) is

0 ∈ τ1∂f(wk+1) + wk+1 − wk + τ1Q
>
(
Qwk − vk − λk

t

)
. (12)



Plugging (8) into (12) gives

0 ∈ τ1∂f(wk+1) + wk+1 − wk + τ1Q
>
(
Qwk − vk − λk+1

t
−Qwk+1 + vk+1

)
= τ1∂f(wk+1) + wk+1 − wk + τ1Q

>Q(wk − wk+1)− τ1Q>(vk − vk+1)− τ1
t
Q>λk+1

⇔ 1

τ1

(
wk − wk+1

)
−Q>Q(wk − wk+1) +Q>(vk − vk+1) +

1

t
Q>λk+1 ∈ ∂f(wk+1). (13)

Since ∂f is a monotone operator, combining (13) with Q>λ∗ ∈ ∂f(w∗) by (9) yields〈
1

τ1

(
wk − wk+1

)
−Q>Q

(
wk − wk+1

)
+Q>

(
vk − vk+1

)
+

1

t
Q>

(
λk+1 − λ∗

)
, wk+1 − w∗

〉
≥ 0. (14)

The optimality condition for the subproblem (7) is

0 = τ2∇g(vk+1) + vk+1 − vk − τ2
(
Qwk+1 − vk − λk

t

)
. (15)

Plugging (8) into (15) gives

0 = τ2∇g(vk+1) + vk+1 − vk − τ2
(
vk+1 − vk − λk+1

t

)
⇔ 1

τ2

(
vk − vk+1

)
−
(
vk − vk+1

)
− λk+1

t
= ∇g(vk+1). (16)

∇g is a monotone operator due to the convexity of g, thus combining (16) with −λ∗ = ∇g(v∗) by (10), we have〈
1

τ2

(
vk − vk+1

)
−
(
vk − vk+1

)
− 1

t

(
λk+1 − λ∗

)
, vk+1 − v∗

〉
≥ 0. (17)

Summing (14) and (17) gives

1

τ1

(
wk − wk+1

)> (
wk+1 − w∗

)
−
(
wk − wk+1

)>
Q>Q

(
wk+1 − w∗

)
+
(
vk − vk+1

)> (
Qwk+1 −Qw∗

)
+

1

τ2

(
vk − vk+1

)> (
vk+1 − v∗

)
−
(
vk − vk+1

)> (
vk+1 − v∗

)
+

1

t

(
λk+1 − λ∗

)> (
Qwk+1 − vk+1 −Qw∗ + v∗

)
≥ 0.

(18)

Then by using (8) λk+1 = λk − t
(
Qwk+1 − vk+1

)
and (11) Qw∗ − v∗ = 0, we have

1

τ1

(
wk − wk+1

)> (
wk+1 − w∗

)
−
(
wk − wk+1

)>
Q>Q

(
wk+1 − w∗

)
+

1

t

(
vk − vk+1

)> (
λk − λk+1

)
+

1

τ2

(
vk − vk+1

)> (
vk+1 − v∗

)
+

1

t2
(
λk+1 − λ∗

)> (
λk − λk+1

)
≥ 0

⇔
(
wk − wk+1

)>( t

τ1
I− tQ>Q

)(
wk+1 − w∗

)
+

t

τ2

(
vk − vk+1

)> (
vk+1 − v∗

)
+

1

t

(
λk+1 − λ∗

)> (
λk − λk+1

)
≥ −

(
vk − vk+1

)> (
λk − λk+1

)
, (19)

which can be written in the matrix form as

((
wk − wk+1

)>
,
(
vk − vk+1

)>
, (λk − λk+1)>

) 1
τ1
I− tQ>Q

1
τ2
I

1
t I

wk+1 − w∗
vk+1 − v∗
λk+1 − λ∗


≥−

(
vk − vk+1

)> (
λk − λk+1

)
. (20)



Using notations zk, z∗ and M , we have〈
zk − zk+1, zk+1 − z∗

〉
M
≥ −

〈
vk − vk+1, λk − λk+1

〉
⇔
〈
zk − zk+1, zk − z∗

〉
M
≥ ‖zk − zk+1‖2M −

〈
vk − vk+1, λk − λk+1

〉
.

Therefore,

‖zk − z∗‖2M − ‖zk+1 − z∗‖2M
=2
〈
zk − zk+1, zk − z∗

〉
M
− ‖zk+1 − zk‖2M

≥2
(
‖zk − zk+1‖2M −

〈
vk − vk+1, λk − λk+1

〉)
− ‖zk+1 − zk‖2M

=‖zk − zk+1‖2M − 2
〈
vk − vk+1, λk − λk+1

〉
≥‖zk − zk+1‖2M − 2‖vk − vk+1‖2‖λk − λk+1‖2

≥‖zk − zk+1‖2M − γ‖vk − vk+1‖22 −
1

γ
‖λk − λk+1‖22

=
(
wk − wk+1

)>( t

τ1
I− tQ>Q

)(
wk − wk+1

)
+
(
vk − vk+1

)>( t

τ2
− γ
)
I
(
vk − vk+1

)
+
(
λk − λk+1

)>(1

t
− 1

γ

)
I
(
λk − λk+1

)
≥
(
t

τ1
− tσmax (Q)

)
‖wk − wk+1‖22 +

(
t

τ2
− γ
)
‖vk − vk+1‖22 +

(
1

t
− 1

γ

)
‖λk − λk+1‖22

≥min

{
t

τ1
− tσmax (Q) ,

t

τ2
− γ, 1

t
− 1

γ

}(
‖wk − wk+1‖22 + ‖vk − vk+1‖22 + ‖λk − λk+1‖22

)
=c‖zk − zk+1‖22
≥0,

where the second last inequality is because τ1 < 1
σmax(Q) , and by letting letting γ = 1+τ2

2τ2
t and τ2 < 1 we have t

τ2
− γ > 0 and

1
t −

1
γ > 0.

A.4. Proof of Theorem 1

Proof. 1◦ Firstly, we show that any limit point of
{
zk
}∞
k=0

is an optimal solution to (3). By Lemma 1, we know that

‖zk − z∗‖2M ≥ ‖zk+1 − z∗‖2M ≥ 0, (21)

which indicates that the sequence
{
‖zk − z∗‖2M

}∞
k=0

is monotonically non-increasing and lower bounded, and thus converges.
Hence by

0 ≤ ‖zk − zk+1‖2M ≤
1

c

(
‖zk − z∗‖2M − ‖zk+1 − z∗‖2M

)
→ 0,

we have wk −wk+1 → 0, vk − vk+1 → 0, and λk − λk+1 → 0. Then by (8) we have the feasibility Qwk − vk → 0. Besides,

‖zk‖M ≤ ‖zk − z∗‖M + ‖z∗‖M ≤ ‖z0 − z∗‖M + ‖z∗‖M ,

which means that the sequence
{
zk
}∞
k=0

is bounded. Thus,
{
zk
}∞
k=0

contains a subsequence
{
uk`
}∞
l=0

that converges to the

limit point ẑ =
(
ŵ, v̂, λ̂

)
. Taking limit for both sides of (13) and (16), we have

1

t
Q>λ̂ ∈∂f(ŵ),

−1

t
λ̂ =∇g(v̂).

Combined with the feasibility Qŵ − v̂ = 0, we know that ẑ =
(
ŵ, v̂, λ̂

)
is a KKT point of problem (3) and thus it is optimal.



2◦ It suffices to further prove that the limit point of
{
zk
}∞
k=0

is unique. Suppose there are two subsequences {zp`}∞l=0 and
{zq`}∞l=0 that converge to limit points ẑ1 and ẑ2, respectively. Similarly, we can show that ẑ1 and ẑ2 are both KKT points of
(3). Analogous to (21), we have

‖zk − ẑ1‖2M ≥ ‖zk+1 − ẑ1‖2M ≥ 0,

‖zk − ẑ2‖2M ≥ ‖zk+1 − ẑ2‖2M ≥ 0,

which implies that there exist ξ1 and ξ2 such that

lim
k→∞

‖zk − ẑ1‖2M = ξ1, (22)

lim
k→∞

‖zk − ẑ2‖2M = ξ2. (23)

Besides, we have the identity

‖zk − ẑ1‖2M − ‖zk − ẑ2‖2M = −2
〈
zk, ẑ1 − ẑ2

〉
M

+ ‖ẑ1‖2M − ‖ẑ2‖2M . (24)

Taking limits for both sides of (24) with regard to subsequences {zp`}∞`=0 and {zq`}∞`=0 respectively, we have

lim
`→∞

(
‖zp` − ẑ1‖2M − ‖zp` − ẑ2‖2M

)
= lim
`→∞

−2 〈zp` , ẑ1 − ẑ2〉M + ‖ẑ1‖2M − ‖ẑ2‖2M ,

lim
`→∞

(
‖zq` − ẑ1‖2M − ‖zq` − ẑ2‖2M

)
= lim
`→∞

−2 〈zq` , ẑ1 − ẑ2〉M + ‖ẑ1‖2M − ‖ẑ2‖2M .

Together with (22) and (23), we have

ξ1 − ξ2 = −2 〈ẑ1, ẑ1 − ẑ2〉M + ‖ẑ1‖2M − ‖ẑ2‖2M = −‖ẑ1 − ẑ2‖2M ,
ξ1 − ξ2 = −2 〈ẑ2, ẑ1 − ẑ2〉M + ‖ẑ1‖2M − ‖ẑ2‖2M = ‖ẑ1 − ẑ2‖2M ,

which implies that ‖ẑ1−ẑ2‖2M = 0, i.e., ẑ1 = ẑ2. Thus, the bounded sequence
{
zk
}∞
k=0

has a unique limit point. Consequently,{
zk
}∞
k=0

converges to that unique limit point.
Combining 1◦ and 2◦, we conclude that

{
zk
}∞
k=0

converges, and the limit point is optimal to (3).


