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Abstract—We consider the problem of learning a graph from
a finite set of noisy graph signal observations, the goal of
which is to find a smooth representation of the graph signal.
Such a problem is motivated by the desire to infer relational
structure in large datasets and has been extensively studied
in recent years. Most existing approaches focus on learning a
graph on which the observed signals are smooth. However, the
learned graph is prone to overfitting, as it does not take the
unobserved signals into account. To address this issue, we propose
a novel graph learning model based on the distributionally
robust optimization methodology, which aims to identify a graph
that not only provides a smooth representation of but is also
robust against uncertainties in the observed signals. On the
statistics side, we establish out-of-sample performance guarantees
for our proposed model. On the optimization side, we show
that under a mild assumption on the graph signal distribution,
our proposed model admits a smooth non-convex optimization
formulation. We then develop a projected gradient method to
tackle this formulation and establish its convergence guarantees.
Our formulation provides a new perspective on regularization
in the graph learning setting. Moreover, extensive numerical
experiments on both synthetic and real-world data show that
our model has comparable yet more robust performance across
different populations of observed signals than existing models
according to various metrics.

Index Terms—Graph learning, network topology inference,
graph signal processing, distributionally robust optimization,
moment uncertainty

I. INTRODUCTION

A. Background and Motivation

With the widespread availability of large, complex but
structured datasets, one fundamental problem in contemporary
data processing and analysis is that of inferring relationships
among different entities using the data observed from them.
Such a problem arises in many different application areas,
including road traffic analysis, brain connectivity analysis,
and community detection in social networks, just to name a
few [1]. To tackle this problem, a common approach is to first
model the entities as nodes of an undirected, weighted graph
and the data observed from the entities as signals residing on
the nodes, and then to learn the edges of the graph together
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with their weights based on the observed signals. Clearly, in
order for the learning task to be well defined, it is necessary
to specify how the signals are related to the graph topology.
Towards that end, various models have been proposed in the
literature; see, e.g., [2], [3] and the references therein. One
representative model, which we shall refer to as the smooth
graph signal model and is motivated by considerations of
real-world graph-structured data, postulates that the observed
signals vary smoothly on the underlying graph—i.e., signal
values at nodes that are adjacent to each other should be
similar. In this model, a widely used measure of smoothness is
the Laplacian quadratic form. On one hand, the Laplacian qua-
dratic form can be viewed as a discrete analog of the Dirichlet
energy—a measure of variability for smooth functions—and
has been used early on as a regularizer for learning problems
on graphs [4], [5]. On the other hand, by drawing connections
to classic signal processing concepts, one can interpret the
eigenvectors of the Laplacian as frequency components and the
eigenvalues as frequencies of the underlying graph [1], [2]. As
such, the Laplacian quadratic form captures the variability of
a given signal over the different graph frequency components.
There has been a number of works that assume the smooth
graph signal model and propose to learn the graph topology by
solving a regularized Laplacian quadratic form minimization
problem, where the regularizer is used to induce certain struc-
ture in the learned graph. For instance, the works [6], [7] use a
squared Frobenius norm regularizer to control the distribution
of edge weights in the learned graph, while the work [8]
combines the squared Frobenius norm with a logarithmic
barrier to control both the sparsity and connectivity of the
learned graph. Recently, some extensions of these formulations
have been proposed, in which additional hard constraints are
imposed on the graph topology; see, e.g., [9]–[11].

In order to assess the performance of a graph learning
procedure, one possible approach is to first assume that the
graph signal follows certain statistical model—for example,
the Gaussian Markov random field (GMRF) or the factor
analysis model (see, e.g., [2], [3] and the references therein)—
and then evaluate the performance of the learned graph as a
statistical estimator of the underlying graph. In the context
of regularized Laplacian quadratic form minimization, if we
assume that the graph signal is generated according to a
ground-truth probability distribution (which in general is not
known and depends on the underlying graph), then many
existing formulations (such as those in [6], [7], [10], [11]) can
be viewed as minimizing a regularized empirical risk of the
observed signals, where the risk function is given precisely
by the Laplacian quadratic form. Such a viewpoint raises
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the interesting possibility of analyzing the performance of
these formulations using the vast array of tools developed
in the statistical learning community for studying regularized
empirical risk minimization (ERM) problems. Nevertheless, to
the best of our knowledge, such a possibility has barely been
pursued in the graph learning literature. In fact, two important
questions concerning the regularized Laplacian quadratic form
minimization approach remain unresolved:
• The approach essentially only uses the empirical distribu-

tion of the observed signals to learn the graph. As such,
it can be prone to overfitting. In other words, the graph
learned using the empirical distribution of the observed
signals may differ greatly from the one learned if the
ground-truth distribution of the graph signal were known.
Is it possible to develop an alternative approach that
can better exploit the information about the ground-truth
distribution contained in the observed signals, so as to
alleviate the effect of overfitting in the learned graph?

• The regularizers used in existing formulations are usually
ad-hoc in nature, and their impact on the quality of the
learned graph is not well understood theoretically. Is there
a more principled approach to regularization, so that one
can construct regularizers whose effects on the learned
graph can be rigorously explained?

B. Our Contributions

In this paper, we propose to take a distributionally ro-
bust optimization (DRO) approach to addressing the above
questions. Specifically, with the risk function given by the
Laplacian quadratic form, instead of minimizing the empirical
risk (i.e., expected risk with respect to (wrt) the empirical
distribution) of the observed signals as in existing formu-
lations, we minimize a worst-case expected risk, where the
worst-case expectation is taken wrt a set (called the ambiguity
set) of probability distributions that are consistent with certain
information obtained from the observed signals. Intuitively, if
the ambiguity set is chosen appropriately, then it contains the
ground-truth distribution of the graph signal, which suggests
that the graph learned by minimizing the worst-case expected
risk not only provides a smooth representation of the graph
signal but is also less susceptible to overfitting. Although there
is a host of recent works that develop DRO-based techniques to
tackle the issue of overfitting in statistical learning tasks (see,
e.g., [12]), our work is the first to pursue such an approach
in the graph learning setting. Interestingly, our technical deve-
lopments also lead to novel contributions to both the modeling
and algorithmic aspects of DRO. Let us now summarize the
main contributions of this paper.

1) Modeling: Using the fact that the risk function is
quadratic in the graph signal, it is straightforward to show
that for any given Laplacian, the expected risk depends only
on the first two moments of the graph signal probability
distribution. Based on this, we propose a novel moment-based
distributionally robust graph learning model, in which the
ambiguity set contains all distributions whose mean vectors
and covariance matrices are close to the empirical mean and
empirical covariance of the observed signals, respectively, and

the goal is to find a Laplacian that minimizes the worst-
case expected risk wrt such an ambiguity set. A notable
feature of our proposed ambiguity set is that it depends on the
decision variable of the model, namely the Laplacian. Such a
dependence is crucial in the context of graph learning, as the
probability distribution from which the observed signals are
generated should depend on the underlying graph. However,
the techniques currently available in the DRO literature for
tackling decision-dependent ambiguity sets are very limited
(see [13] and the references therein) and do not apply to the
setting considered in this work. This motivates us to develop
new techniques to handle the ambiguity set in our proposed
model; see “Performance Analysis and Reformulation” below
for further elaboration.

We remark that in view of the recent literature on DRO
approaches to statistical learning, one may be tempted to
consider a distributionally robust graph learning model similar
to ours but with a Wasserstein distance-based ambiguity set.
Such an approach has in fact been explored in the recent
work [14], which appeared on arXiv at almost the same time
as this work. However, the ambiguity set proposed in [14] does
not depend on the Laplacian. Thus, the model in [14] fails to
capture the interaction between the graph signal probability
distribution and the structure of the underlying graph. In
addition, since the expected risk does not distinguish between
distributions with the same first and second moments, the
Wasserstein distance-based ambiguity set carries much more
information than is necessary for the purpose of evaluating
the worst-case expected risk. This renders the subsequent
analysis of the model more challenging and less direct than
our moment-based model.

2) Performance Analysis and Reformulation: Under the
assumption that the ground-truth distribution of the graph
signal satisfies certain moment growth condition, we construct
confidence regions around its mean and covariance by invo-
king the appropriate concentration inequalities. These regions
not only provide a principled way of tuning the size of the
ambiguity set but also yield a bound on the expected risk
wrt the unknown ground-truth distribution of the graph signal
(also known as the out-of-sample risk). We then show that
the worst-case expected risk minimization problem in our
proposed model can be reformulated as a regularized ERM
problem, in which the regularizers serve to promote robustness
of the learned graph against the uncertainty described in
the ambiguity set and the regularization parameters control
the size of the ambiguity set. This establishes for the first
time a rigorous link between distributional robustness and
regularization in the graph learning setting.

3) Algorithm Design and Analysis: Although the afore-
mentioned regularized ERM formulation has nice theoretical
interpretations, it is computationally challenging to solve,
as its objective function is generally non-smooth and non-
convex. Nevertheless, we establish the curious result that as
long as the ground-truth distribution of the graph signal has
a probability density function, the objective function of the
said formulation, though still non-convex, will be smooth
almost surely. Consequently, we can apply a projected gradient
descent (PGD) method to tackle the formulation. We show that
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the iterates generated by the PGD method converge to a sta-
tionary point of the regularized ERM formulation. Moreover,
we prove that the same convergence result holds for various
extensions of the formulation, which could be of independent
interest. It is worth mentioning that our work contributes to
the emerging area of algorithm design and analysis for DRO;
for related works, see, e.g., [15], [16]. To verify the efficacy
of our proposed model and algorithm, we conduct extensive
numerical experiments on both synthetic and real-world data.
The results show that our proposed distributionally robust
graph learning model is competitive—as measured by stan-
dard performance metrics—with several representative graph
learning models in the literature. Moreover, when tested on
different populations of observed signals, the former generally
achieves a smaller variance in its performance than the latter.
This demonstrates the value of incorporating moment-based
distributional robustness in graph learning models.

C. Notation

The notation used in this paper is mostly standard. We use
Sm, Sm+ , and Sm++ to denote the set of m×m symmetric, sym-
metric positive semidefinite, and symmetric positive definite
matrices, respectively. We use 1 (resp. 0) to denote the all-one
(resp. all-zero) matrix, whose dimension will be clear from the
context, and Im to denote the m ×m identity matrix. Given
a matrix A ∈ Sm, we use Aij to denote its (i, j)-th element,
A† to denote its Moore–Penrose inverse (or pseudo-inverse),
and ‖A‖F (resp. ‖A‖) to denote its Frobenius (resp. spectral)
norm. Given a probability distribution Q, we write x ∼ Q
to mean that the random vector x is distributed according
to Q, Ex∼Q[·] and Covx∼Q(·) to denote the expectation
and covariance wrt Q, respectively. We use Pr(·) to denote
probability, the distribution wrt which it is evaluated will be
clear from the context. Given a vector µ ∈ Rm and a matrix
Σ ∈ Sm+ , we use N (µ,Σ) to denote the multivariate normal
distribution with mean µ and covariance Σ.

D. Paper Organization

The rest of this paper is organized as follows: In Section II,
we present our proposed moment-based distributionally robust
graph learning model and study its statistical and optimization
properties. Then, in Section III, we discuss how the PGD
method can be used to tackle our proposed model and analyze
its convergence behavior under various settings. Next, we
describe our experiment setups and report numerical results in
Section IV. Finally, we close with some concluding remarks
in Section V.

II. DISTRIBUTIONALLY ROBUST GRAPH LEARNING

A. Problem Formulation

Consider n given signals x1, . . . ,xn ∈ Rm, where xji ∈ R
(i = 1, . . . ,m; j = 1, . . . , n) denotes the j-th observed value
at node i of an unknown m-node, weighted, undirected graph
G. We view these signals as independent realizations of a
random vector that follows a probability distribution P∗ (called
the ground-truth distribution) associated with the graph G;

cf. the statistical models for graph signals discussed in [3]
and the references therein. To identify the graph topology
that yields a smooth representation of the graph signal, a
popular strategy (see, e.g., [6]–[8]) is to consider the following
regularized Laplacian quadratic form minimization problem:

inf
L∈Ls

{
1

n
tr(X>LX) + h(L)

}
. (1)

Here, X := [x1 · · · xn] ∈ Rm×n is the data matrix whose
columns are the observed signals,

Ls :=

L ∈ Sm :

Lij ≤ 0 for i 6= j,

L1 = 0,

tr(L) = 2s


is the set of m×m graph Laplacians whose scale is controlled
by the parameter s > 0, and h : Sm → R∪{+∞} is a convex
regularizer that aims to promote certain structure in the learned
Laplacian. Due to the presence of the scale parameter s > 0,
an optimal solution to Problem (1), whenever it exists, is a
Laplacian that is not identically zero by definition. Thus, it
can be used to construct the learned graph.

Although there have been extensive studies on the different
choices of regularizer for Problem (1) and their effects on
the learned graph, the ramifications of the fact that the graph
learned by solving (1) depends on the particular realizations
{xj}nj=1 are seldom addressed. To better understand the issue
at hand, it is instructive to view Problem (1) through the lens of
empirical risk minimization (ERM) in statistical learning. Spe-
cifically, let P̂n be the empirical distribution associated with
the data {xj}nj=1. Define Ls × Rn 3 (L,x) 7→ R(L,x) :=
x>Lx ∈ R+ to be the risk function. Since

Ex∼P̂n [R(L,x)] =
1

n

n∑
j=1

xj
>
Lxj =

1

n
tr(X>LX),

we see that Problem (1) is equivalent to the following ERM
problem:

inf
L∈Ls

{
Ex∼P̂n [R(L,x)] + h(L)

}
. (2)

Such a formulation reveals that an optimal solution L̂ to
Problem (1) may suffer from overfitting—it yields a graph
on which the observed signals {xj}nj=1 are smooth but some
unseen signals generated according to P∗ are not, so that the
gap between the in-sample risk Ex∼P̂n [R(L̂,x)] and out-of-
sample risk Ex∼P∗ [R(L̂,x)] is large. In principle, one can
mitigate the effect of overfitting by choosing a suitable regula-
rizer h. However, it is not easy to rigorously justify how a par-
ticular regularizer incorporates the information of the ground-
truth distribution P∗. Instead, we consider a DRO approach,
in which we replace the empirical risk Ex∼P̂n [R(L,x)] in (2)
by the worst-case expected risk

sup
Q∈D(P̂n)

Ex∼Q[R(L,x)],

where D(P̂n), the so-called ambiguity set, is a set of probabi-
lity distributions that are “close to” P̂n. Intuitively, if the set
D(P̂n) is small and contains P∗, then the solution L̃ obtained
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by minimizing the worst-case expected risk over Ls will not be
too conservative (i.e., it has a small worst-case expected risk)
and will be less sensitive to the unseen signals (as L̃ would
have taken the effect of P∗ into account). To construct an
ambiguity set with these desiderata, let us make the following
simple yet crucial observation:

Proposition 1. Let Q be a probability distribution on the Borel
σ-algebra in Rm with mean µ ∈ Rm and covariance Σ ∈ Sm+ ;
i.e., Ex∼Q[x] = µ and Ex∼Q[(x− µ)(x− µ)>] = Σ. Then,

Ex∼Q[R(L,x)] = tr(ΣL) + µ>Lµ.

Proof. The result follows from a simple computation:

Ex∼Q[R(L,x)] = Ex∼Q[tr(xx>L)]

= Ex∼Q
[
tr
(
(x− µ)(x− µ)>L+ 2xµ>L− µµ>L

)]
= tr(ΣL) + µ>Lµ.

Proposition 1 shows that the expected risk Ex∼Q[R(L,x)]
depends only on the mean and covariance of Q. In particular,
we have

Ex∼P̂n [R(L,x)] = tr(Σ̂nL) + µ̂>nLµ̂n, (3)

where

µ̂n :=
1

n

n∑
j=1

xj , Σ̂n :=
1

n

n∑
j=1

(xj − µ̂n)(xj − µ̂n)> (4)

are the empirical mean and empirical covariance of the ob-
served signals, respectively. By the law of large numbers, we
expect that as n→∞, the empirical mean µ̂n and the mean
µ∗ of P∗ will be close to each other, and the same is true for
the empirical covariance Σ̂n and the covariance Σ∗ of P∗. This
suggests we should consider an ambiguity set that contains
distributions whose mean vectors and covariance matrices are
close to µ̂n and Σ̂n, respectively.

Concretely, let P(µ,Σ) denote the set of probability dis-
tributions on the Borel σ-algebra in Rm with mean µ ∈ Rm
and covariance Σ ∈ Sm+ . Given a Laplacian L ∈ Ls and
parameters ρ1, ρ2 > 0, we define the following ambiguity set:

M(L,ρ1,ρ2):=

Q∈P(µ,Σ) :

(µ−µ̂n)>L(µ−µ̂n)≤ρ2
1,

‖Σ− Σ̂n‖F ≤ ρ2,

µ ∈ Rm, Σ ∈ Sm+

 .

In other words, every distribution in M(L, ρ1, ρ2) has its
mean lying in the ellipsoid E(µ̂n,L, ρ1) := {µ ∈ Rm :
(µ−µ̂n)>L(µ−µ̂n) ≤ ρ2

1} and its covariance lying in the ball
B(Σ̂n, ρ2) := {Σ ∈ Sm : ‖Σ−Σ̂n‖F ≤ ρ2}. On one hand, the
use of a Frobenius-norm ball to describe a neighborhood of the
empirical covariance Σ̂n is rather intuitive. On the other hand,
the use of an ellipsoid defined by L to describe a neighborhood
of the empirical mean µ̂n is motivated by the factor analysis
model proposed in [7] for smooth graph signals. Indeed,
suppose that the ground-truth Laplacian L∗ admits the eigen-
decomposition L∗ = χΛχ>, where Λ = Diag(λ1, . . . , λm)
is diagonal and χ = [u1 · · · um] is orthogonal. The factor

analysis model in [7] assumes that the graph signal x is
generated as

x = χr + µ∗ + δ, (5)

where r ∼ N (0,Λ†) is the latent variable that controls
the graph signal x, µ∗ ∈ Rm is the mean of x, and
δ ∼ N (0, ε2Im) is the noise with power ε2 > 0. Under this
model, we have x ∼ P∗ = N (µ∗,L∗† + ε2Im); see [7]. As
such, it includes another widely-studied graph signal model
in the literature, namely the GMRF model with a graph
Laplacian precision matrix, as special case (see, e.g., [17] and
the references therein). Since the observed signals {xj}nj=1

are assumed to be independent realizations of the Gaussian
random vector x, we see that µ̂n = 1

n

∑n
j=1 x

j is also a
Gaussian random vector with

Ex1,...,xn∼P∗ [µ̂n] =
1

n
· n · Ex∼P∗ [x] = µ∗,

Covx1,...,xn∼P∗(µ̂n)=
1

n2

n∑
j=1

Covxj∼P∗
(
xj
)
=

1

n
(L∗†+ε2Im),

so that µ̂n ∼ N
(
µ∗, 1

n (L∗† + ε2Im)
)

. Now, observe that for

i = 1, . . . ,m, the projection ui>(µ̂n − µ∗) of the deviation
µ̂n − µ∗ onto the i-th eigenbasis ui of L∗ is a mean-zero
Gaussian random variable with variance

σ2
i = E

[(
ui
>

(µ̂n − µ∗)
)2
]

= E
[
tr
(

(µ̂n − µ∗)(µ̂n − µ∗)>uiui
>
)]

=
1

n
tr
((
L∗† + ε2Im

)
uiui

>
)

=
1

n
(νi + ε2)‖ui‖22

=
1

n
(νi + ε2),

where νi = 1
λi

if λi > 0 and νi = 0 if λi = 0. In particular, if
λi > 0, then the larger the λi, the smaller the σ2

i and thus the
more concentrated ui>(µ̂n −µ∗) is around 0. Consequently,
we expect that

(µ̂n − µ∗)>L∗(µ̂n − µ∗) =

m∑
i=1

λi

(
ui
>

(µ̂n − µ∗)
)2

will be small with high probability (in fact, the above argument
can be not only made rigorous but also extended to more
general ground-truth distributions P∗; see Theorem 1). This
shows that given a Laplacian L ∈ Ls, we only need to take
into account those distributions Q whose mean vectors µ are
close to the empirical mean µ̂n under the covariance structure
induced by L. Such a consideration gives rise to the ellipsoidal
constraint (µ− µ̂n)>L(µ− µ̂n) ≤ ρ2

1 in the definition of the
ambiguity set M(L, ρ1, ρ2).

Based on the above development, we propose the following
distributionally robust counterpart of the ERM problem (2),
which robustifies the learned graph against uncertainties about
the ground-truth distribution P∗:

inf
L∈Ls

{
sup

Q∈M(L,ρ1,ρ2)

Ex∼Q[R(L,x)] + h(L)

}
. (6)
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Since we use the first moment µ̂n and second moment Σ̂n to
define the ambiguity set M(L, ρ1, ρ2), we shall refer to (6)
as the Moment-Uncertain Graph Learning (MUGL) model.
Note that we keep the regularizer h in the model, as it offers
a way to induce structures beyond those that provide distri-
butional robustness in the learned graph. A notable feature
of the formulation (6) is that the ambiguity set M(L, ρ1, ρ2)
depends on the decision variable L ∈ Ls. This ensures that
the distributions in M(L, ρ1, ρ2) reflect the graph structure
encoded in L. However, such a feature leads to reformulation
and computational challenges that have not been addressed in
the DRO literature before. As such, we need to develop new
machinery to tackle our proposed MUGL model (6).

B. Bound on Out-of-Sample Risk

Recall from our earlier discussion that it is desirable for an
ambiguity set to be small and contain the ground-truth distri-
bution P∗. We now show that the ambiguity setM(L, ρ1, ρ2)
will indeed possess such properties with high probability if the
ground-truth distribution P∗ satisfies certain moment growth
condition and we choose the parameters ρ1, ρ2 judiciously. To
begin, let us introduce the following definition:

Definition 1 (Moment growth condition; cf. [18]). A proba-
bility distribution Q on the Borel σ-algebra in Rm with mean
µ ∈ Rm is said to satisfy the moment growth condition if
there exists a constant c > 0 such that for all p ≥ 1,

Ex∼Q[‖x− µ‖p2] ≤ (cp)p/2.

The moment growth condition defined above is rather mild.
For instance, it is satisfied by any sub-Gaussian distribu-
tion [19]. In the remainder of this subsection, we make the
following assumption:

Assumption 1. The ground-truth distribution P∗ of the graph
signal x ∈ Rm has mean µ∗ ∈ Rm, covariance Σ∗ ∈ Sm+
and satisfies the moment growth condition. Let {xj}nj=1 be n
independent realizations of x and µ̂n, Σ̂n be given by (4).

Now, using the probabilistic techniques developed in [18],
we can establish the following confidence region for the mean
µ∗ of the ground-truth distribution P∗:

Theorem 1 (Confidence region for the mean). Suppose that
Assumption 1 holds. Let ξ ∈ (0, e−2) be the confidence level,
where e = 2.71828 . . . is Euler’s number. Then, there exists a
constant c0 > 0 such that for any L ∈ Ls,

(µ̂n − µ∗)>L(µ̂n − µ∗) ≤ ρ̂2
1 :=

4c0e
2 ln2(1/ξ)

n

will hold with probability at least 1− ξ.

Proof. Since Ls is compact, we have maxL∈Ls ‖L‖ < +∞.
This, together with the assumption that P∗ satisfies the moment
growth condition, implies the existence of a constant c0 > 0
such that for all p ≥ 1,

max
L∈Ls

{
Ex∼P∗

[
‖L1/2(x− µ)‖p2

]}
≤ (c0p)

p/2.

The desired result then follows by adapting the proof of [18,
Proposition 4].

Moreover, we can establish the following confidence region
for the covariance Σ∗ of the ground-truth distribution P∗:

Theorem 2 (Confidence region for the covariance). Suppose
that Assumption 1 holds and Σ∗ ∈ Sm++. Let ξ ∈ (0, e−2)
be the confidence level, where, as before, e = 2.71828 . . . is
Euler’s number. Then, there exist constants c1, c2 > 0 such
that

‖Σ̂n −Σ∗‖F ≤ ρ̂2

:=
4c1(2e/3)3/2 ln3/2(2m3/2/ξ)

n1/2
‖Σ∗‖+

4c2e
2 ln2(2/ξ)

n

will hold with probability at least 1− ξ.

The proof of the above result can be found in Appendix A.
Theorems 1 and 2 imply that given a confidence level

ξ ∈ (0, e−2) and a Laplacian L ∈ Ls, the ambiguity set
M(L, ρ̂1, ρ̂2) will contain the ground-truth distribution P∗
with probability at least 1 − 2ξ. Consequently, the out-of-
sample risk bound

Ex∼P∗ [R(L,x)] ≤ sup
Q∈M(L,ρ̂1,ρ̂2)

Ex∼Q[R(L,x)] (7)

will also hold with probability at least 1 − 2ξ. In particular,
suppose that L̂MUGL

n is an optimal solution to Problem (6).
Then, whenever the bound (7) holds, we have

Ex∼P∗
[
R(L̂MUGL

n ,x)
]
≤ sup

Q∈M(L,ρ̂1,ρ̂2)

Ex∼Q
[
R(L̂MUGL

n ,x)
]
,

which indicates that the out-of-sample risk achieved by L̂MUGL
n

is lower than the optimal worst-case expected risk.

C. Reformulation of the MUGL Model

Since M(L, ρ1, ρ2) is a set of probability distributions,
it may seem at first sight that the inner supremum in the
MUGL model (6) is an infinite-dimensional optimization pro-
blem. Nevertheless, using Proposition 1 and the definition of
M(L, ρ1, ρ2), we can reformulate (6) as the following finite-
dimensional optimization problem:

inf
L

{
sup
µ,Σ

{
tr(ΣL) + µ>Lµ

}
+ h(L)

}
s.t. (µ− µ̂n)>L(µ− µ̂n) ≤ ρ2

1,

‖Σ− Σ̂n‖F ≤ ρ2,

L ∈ Ls, µ ∈ Rm, Σ ∈ Sm+ .

(8)

Observe that for any given L ∈ Ls, the inner supremum in (8)
is separable in the variables µ ∈ Rm and Σ ∈ Sm+ . Hence, we
can express Problem (8) as

inf
L∈Ls

{ϕ1(L) + ϕ2(L) + h(L)},

where

ϕ1(L) := sup
µ∈Rm

µ>Lµ

s.t. (µ− µ̂n)>L(µ− µ̂n) ≤ ρ2
1

(9)
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and

ϕ2(L) := sup
Σ∈Sm+

tr(ΣL)

s.t. ‖Σ− Σ̂n‖F ≤ ρ2.

(10)

As it turns out, both optimal value functions ϕ1 and ϕ2 have
closed-form expressions.

Proposition 2. For any given L ∈ Ls, the optimal values of
Problems (9) and (10) are given by

ϕ1(L) =
(
‖L1/2µ̂n‖2 + ρ1

)2

,

ϕ2(L) = tr(Σ̂nL) + ρ2‖L‖F ,

respectively.

The proof of Proposition 2 can be found in Appendix B.
Using Proposition 2 and identity (3), we obtain the follo-

wing reformulation of the MUGL model (6):

inf
L∈Ls

{
1

n
tr(X>LX)+2ρ1‖L

1
2 µ̂n‖2+ρ2‖L‖F+h(L)

}
. (11)

Compared with the non-robust graph learning model (1), the
distributionally robust MUGL model (11) has two additional
regularizers h1(L) := 2‖L1/2µ̂n‖2 and h2(L) := ‖L‖F .
The regularizer h1 (resp. h2) can be understood as promoting
robustness of the learned graph against uncertainty about the
mean (resp. covariance) of the ground-truth distribution P∗,
with the size ρ1 (resp. ρ2) of the uncertainty region around the
empirical mean µ̂n (resp. empirical covariance Σ̂n) serving as
the regularization parameter. Although it is known that vari-
ous distributionally robust risk minimization problems with
φ-divergence-based or Wasserstein distance-based ambiguity
sets can be reformulated as regularized ERM problems [20],
[21], the reformulation of the distributionally robust MUGL
model (6) as the regularized ERM problem (11) does not
follow from existing results and is new. Moreover, our de-
velopment above suggests that the (non-squared) Frobenius
norm regularizer L 7→ h2(L) = ‖L‖F is more interpretable
than the commonly used squared Frobenius norm regularizer
L 7→ ‖L‖2F . Indeed, even though it is often argued that the
latter is used to control the sparsity in the learned graph (see,
e.g., [2], [7], [11]), such an argument has not been rigorously
justified. In addition, as pointed out in [8], it is not easy
to interpret the squared Frobenius norm regularizer, as the
elements of L are not only of different scales but also linearly
dependent.

Since the scale parameter s appears in the MUGL model
(11), a natural question is how it affects the learned Laplacian.
To address this, let us consider the following parametrized
version of the objective function of Problem (11):

f(ρ1,ρ2,ρ3)(L):=
1

n
tr(X>LX)+2ρ1‖L

1
2 µ̂n‖2+ρ2‖L‖F+ρ3h(L).

Clearly, the objective function of Problem (11) corresponds
to f(ρ1,ρ2,1), while the quantities ρ1, ρ2, ρ3 correspond to
the regularization parameters associated with the regularizers
h1, h2, h, respectively. Now, we have the following proposi-
tion:

Proposition 3. Suppose that for any κ > 0, the regularizer h
satisfies

h(κL) = h(L) + Cκ (12)

for some constant Cκ ∈ R. Suppose further that for some
s̄, ρ̄1, ρ̄2 > 0, the problem

inf
L∈Ls̄

f(ρ̄1,ρ̄2,1)(L)

has an optimal solution L∗. Then, 1
s̄L
∗ is an optimal solution

to the problem

inf
L∈L1

f(ρ̄1/
√
s̄,ρ̄2,1/s̄)

(L).

Proposition 3 shows that if the regularizer h satisfies
condition (12), then any Laplacian learned by the MUGL
model (11) with scale parameter s̄ and regularization para-
meters (ρ̄1, ρ̄2, 1) is a multiple of certain Laplacian learned
by the same model with scale parameter 1 and regularization
parameters

(
ρ̄1√
s̄
, ρ̄2,

1
s̄

)
. In particular, these Laplacians yield

graphs with the same set of edges. Hence, we do not need
to tune the parameter s and can simply set it to any positive
value.

Now, let s > 0 be arbitrary. It can be readily seen that
the zero regularizer Ls 3 L 7→ h(L) = 0 satisfies condition
(12). Moreover, the logarithmic barrier regularizer Ls 3 L 7→
hlog(L) := −α

∑m
i=1 ln(Lii) ∈ R with parameter α > 0,

which is introduced in [8] to improve the overall connectivity
of the learned graph, also satisfies condition (12). In what
follows, we refer to the MUGL models that arise from these
two choices of h as MUGL-o and MUGL-l, respectively.

III. SOLVING THE MUGL MODEL

Now, let us turn to the algorithmic aspects of the MUGL
model (11). Observe that since L 7→ ‖L1/2µ̂n‖2 =

√
µ̂>nLµ̂n

is non-convex and even non-Lipschitz at any L satisfying
L1/2µ̂n = 0, the MUGL model (11) gives rise to a challen-
ging non-smooth non-convex optimization problem. Our goal
in this section is to develop a PGD method that can efficiently
tackle Problem (11) and establish its convergence guarantee.

A. Vectorized MUGL Formulation

Since every Laplacian L ∈ Ls is symmetric and satisfies
L1 = 0, it can be completely specified by, say, the entries
below the main diagonal. This motivates us to vectorize
Problem (11) to get a more compact formulation. Specifically,
let m̄ := m(m−1)

2 be the number of entries below the main
diagonal of an m ×m matrix and define the linear operator
F : Rm̄ → Sm that maps a vector to a Laplacian matrix [22],
which is given by

[F(w)]ij :=


−wi−j+ j−1

2 (2m−j), if i > j,

[F(w)]ji , if i < j,

−
∑
k 6=i [F(w)]ik , if i = j.
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More explicitly, given a vector w ∈ Rm̄, the entries below the
main diagonal of the matrix F(w) are given by

∗ ∗ ∗ · · · ∗
−w1 ∗ ∗ · · · ∗
−w2 −wm ∗ · · · ∗

...
...

...
. . .

...
−wm−1 −w2m−3 −w3m−6 · · · ∗

 .
Furthermore, define

∆s :=
{
w ∈ Rm̄ : 1>w = s, w ≥ 0

}
.

It is not hard to show that w ∈ ∆s if and only if F(w) ∈ Ls.
Now, let F∗ : Sm → Rm̄ be the adjoint operator of F ; i.e.,
F∗ satisfies tr(F(w)M) = w>F∗(M) for all w ∈ Rm̄ and
M ∈ Sm. It can be verified that for 1 ≤ j < i ≤ m,

[F∗(M)]i−j+ j−1
2 (2m−j) = Mii −Mij −Mji +Mjj . (13)

With the above preparations, we deduce that for any L ∈ Ls,
we can find a w ∈ ∆s such that

tr(X>LX) = tr(F(w)XX>) = w>F∗
(
Σ̂n + µ̂nµ̂

>
n

)
,

‖L1/2µ̂n‖2 =
√

tr (F(w)µ̂nµ̂>n ) =
√
w>F∗(µ̂nµ̂>n ).

This, together with the fact that F(w) ∈ Ls for any w ∈ ∆s,
implies that Problem (11) admits the vectorized formulation

inf
w∈∆s

g(w) := φ1(w) + φ2(w) + h(F(w)), (14)

where

φ1(w) :=
1

n
w>F∗

(
Σ̂n + µ̂nµ̂

>
n

)
+ ρ2‖F(w)‖F ,

φ2(w) :=
√
a>w, a := 4ρ2

1F∗
(
µ̂nµ̂

>
n

)
.

To have a better understanding of the structure of Pro-
blem (14), we first observe that w 7→ ‖F(w)‖F is smooth
over ∆s. This follows since w ∈ ∆s implies that F(w) ∈ Ls,
which in turn implies that ‖F(w)‖F > 0. Next, consider the
function w 7→ φ2(w) =

√
a>w. Using (13), we deduce that

for 1 ≤ j < i ≤ m,

ai−j+ j−1
2 (2m−j)

= 4ρ2
1

(
(µ̂n)2

i − (µ̂n)i(µ̂n)j − (µ̂n)j(µ̂n)i + (µ̂n)2
j

)
= 4ρ2

1 ((µ̂n)i − (µ̂n)j)
2 ≥ 0; (15)

i.e., a ≥ 0. Thus, the function φ2 is well defined on ∆s and
is non-smooth at any w ∈ Zs := ∆s ∩ {w ∈ Rm̄ : a>w =
0}. Now, observe that Zs 6= ∅ if and only if there exists a
k ∈ {1, . . . , m̄} such that ak = 0, as w ∈ ∆s implies that
w ≥ 0 and w 6= 0. By (15), such an event occurs when at
least two coordinates of µ̂n are equal. Intuitively, however, if
the ground-truth distribution P∗ of the graph signal x ∈ Rm is
continuous and {xj}nj=1 are n independent realizations of x,
then the probability that µ̂n has at least two equal coordinates
should be zero. In other words, the function φ2 should be
smooth on ∆s almost surely (i.e., with probability 1). It turns
out that such an intuition is almost correct and can be made
precise as follows:

Theorem 3 (Smoothness of MUGL objective). Let P∗ be the
ground-truth distribution of the graph signal x ∈ Rm and
{xj}nj=1 be n independent realizations of x. Suppose that
P∗ is absolutely continuous wrt the m-dimensional Lebesgue
measure ν (denoted by P∗ � ν); i.e., for any measurable set
A ⊆ Rm, P∗(A) = 0 whenever ν(A) = 0. Then, the event
Zs = ∅ will occur almost surely. Consequently, the function
φ2 will be smooth on ∆s almost surely.

Proof. For k = 1, . . . , m̄, define Vk := {u ∈ Rm̄ : uk = 0}.
Recall that Zs 6= ∅ if and only if there exists a k ∈ {1, . . . , m̄}
such that ak = 0. Moreover, note that a depends on
x1, . . . ,xn, which are identical and independently distributed
according to P∗. Thus, we have

Pr(Zs 6= ∅) = Pr

(
a ∈

m̄⋃
k=1

Vk

)
≤

m̄∑
k=1

Pr(a ∈ Vk), (16)

where the probability is evaluated wrt the product measure
P∗n.

Now, consider a fixed k ∈ {1, . . . , m̄}. Then, we can find
i, j ∈ {1, . . . ,m} with 1 ≤ j < i ≤ m such that k = i− j +
j−1

2 (2m− j). Using (15), we deduce that

Pr(a ∈ Vk) = Pr(nµ̂n ∈ Πij), (17)

where Πij := {v ∈ Rm : vi = vj} is an (m− 1)-dimensional
linear subspace in Rm. Since nµ̂n = x1 + · · · + xn is the
sum of n independent random vectors that are identically
distributed according to P∗, its distribution is given by the
n-fold convolution of P∗, denoted by P∗~n (cf. [23, Section
20]). Moreover, since P∗ � ν, we have P∗~n � ν (cf. [23,
Exercise 31.14(b)]). This, together with the well-known fact
that ν(Πij) = 0, implies that

Pr(nµ̂n ∈ Πij) = P∗~n(Πij) = 0. (18)

Upon noting that the above argument holds for arbitrary k ∈
{1, . . . , m̄} and combining (16)–(18), we conclude that

Pr(Zs 6= ∅) ≤
m̄∑
k=1

Pr(a ∈ Vk) =
∑

1≤j<i≤m

P∗~n(Πij) = 0.

This completes the proof.

By the Radon–Nikodym theorem [23, Section 32], the
probability distributions that are absolutely continuous wrt the
Lebesgue measure are precisely those that have probability
density functions wrt the Lebesgue measure. Thus, Theorem 3
applies to a wide range of ground-truth distributions. In what
follows, we assume that P∗ � ν.

B. PGD Method for MUGL and Its Convergence Analysis
Theorem 3 implies that the gradient of φ2 at any w ∈ ∆s

will be well defined almost surely. Thus, for any given w ∈
∆s, as long as the gradient of the regularizer h at F(w) ∈ Ls
is well defined, we can compute the gradient of the objective
function g of Problem (14) at w as follows:

∇g(w) =
1

n
F∗
(
Σ̂n + µ̂nµ̂

>
n

)
+ ρ1

F∗
(
µ̂nµ̂

>
n

)√
w>F∗ (µ̂nµ̂>n )

+ ρ2
F∗ (F(w))

‖F(w)‖F
+ F∗(∇h(F(w))).
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This suggests that Problem (14) can be tackled by the PGD
method, whose update formula is given by

wk+1 ←− Π∆s
(wk − ηk∇g(wk)), k = 0, 1, . . . . (19)

Here, ηk > 0 is the step size and Π∆s(w) :=
argminv∈∆s

‖v −w‖2 is the projection of w onto ∆s. It is
well known that the projection of a vector w ∈ Rm̄ onto the
simplex ∆s can be computed in O(m̄+nnz(Π∆s

(w)) · log m̄)
time, where nnz(u) denotes the number of non-zero elements
in u; see, e.g., [24] and the references therein. Moreover, the
gradient ∇g(w) can be computed in O(m̄) time. Thus, the
update (19) can be implemented efficiently.

Since Problem (14) is non-convex in general, one does not
expect that the PGD method (19) will find an optimal solution
to the problem. Nevertheless, under some mild assumptions,
it is possible to establish the convergence of the PGD met-
hod (19) to a stationary point of Problem (14). Recall that
a point w̄ ∈ Rm̄ at which the function g is continuously
differentiable is a stationary point of Problem (14) if there
exists a vector of dual multipliers (d̄0, d̄) ∈ Rm̄+1 such
that (w̄; (d̄0, d̄)) satisfies the following Karush–Kuhn–Tucker
(KKT) conditions:

∇g(w̄) + d̄01 ≥ 0,

1>w̄ = s, w̄ ≥ 0,

w̄>(∇g(w̄) + d̄01) = 0.

For notational simplicity, define g̃ := g + I∆s , where I∆s is
the indicator function associated with ∆s; i.e., I∆s

(w) = 0 if
w ∈ ∆s and I∆s

(w) = +∞ otherwise. We can now state and
prove our first convergence result.

Theorem 4 (Global convergence of PGD under Lipschitz con-
tinuous gradient). Suppose that the regularizer h : Sm → R
is continuously differentiable and its gradient is Lipschitz
continuous on Ls. Then, the following will hold almost surely:

(a) The function g is continuously differentiable and its
gradient is Lipschitz continuous for some parameter
`g > 0 on ∆s.

(b) If the function g̃ possesses the Kurdyka-Łojasiewicz
(KŁ) property (see [25, Section 2] for the definition
and a brief discussion of its significance) and the step
sizes {ηk}k≥0 satisfy ηk ∈ (0, 1/`g) for all k ≥ 0, then
for any initial point w0 ∈ ∆s, the sequence {wk}k≥0

generated by the PGD method (19) converges to a
stationary point of Problem (14).

Proof. Since ‖F(w)‖F > 0 for all w ∈ ∆s and ∆s is
compact, it is straightforward to show that φ1 is continuously
differentiable and its gradient is Lipschitz continuous on ∆s.
On the other hand, we have P∗ � ν by assumption, so that
Theorem 3 applies. In particular, we will have φ2(w) > 0
for all w ∈ ∆s almost surely, which, together with the
compactness of ∆s, implies that φ2 will be continuously
differentiable and its gradient will be Lipschitz continuous
on ∆s almost surely. These results and the assumption on
h immediately yield the result in (a). The result in (b) then
follows from a direct application of [25, Theorem 5.3].

As discussed in [25], [26], the assumption that g̃ possesses
the KŁ property is a rather mild one. In particular, since
∆s is polyhedral and both φ1, φ2 are actually analytic on
∆s,1 if h is also analytic on ∆s (which implies that it
satisfies the assumption on h in Theorem 4), then g̃ possesses
the KŁ property; see, e.g., the discussion in [26, Section
4.3]. An important consequence of the KŁ property of g̃ is
that it ensures the convergence and not just subsequential
convergence of the sequence {wk}k≥0 generated by the PGD
method (19).

It is worth noting that h does not have to be convex in
order for Theorem 4 to hold. On the other hand, if h is
convex and ρ1 = 0 (i.e., there is essentially no uncertainty
about the mean of the ground-truth distribution), then (14) is a
convex optimization problem. In this case, the KKT conditions
associated with Problem (14) are necessary and sufficient for
optimality. Thus, if in addition the assumptions on h and g̃
in Theorem 4 hold, then the iterates generated by the PGD
method (19) converge to an optimal solution to Problem (14).

The convergence result in Theorem 4 relies crucially on
the Lipschitz continuity of ∇g on ∆s. However, for certain
choices of the regularizer h, the resulting function g may
not have such a property. A case in point is the logarithmic
barrier regularizer L 7→ hlog(L) = −α

∑m
i=1 ln(Lii) with

parameter α > 0. Indeed, for any sequence {wk}k≥0 in ∆s

such that [F(wk)]ii → 0 for some i ∈ {1, . . . ,m}, we have
‖∇hlog(F(wk))‖2 → +∞. This implies that the function g
cannot have a Lipschitz continuous gradient on ∆s.

As it turns out, it is possible to ensure the convergence of the
PGD method (19) under weaker smoothness assumptions on
g if the step sizes {ηk}k≥0 are chosen via an appropriate line
search strategy. Specifically, let 0 < ηmin ≤ ηmax < +∞ and
β, γ ∈ (0, 1) be given parameters. Given a sequence {ηk}k≥0

satisfying ηk ∈ [ηmin, ηmax], consider a line search-based PGD
method (LS-PGD) with the following update scheme:

For k = 0, 1, . . ., do the following:
1) (Projected gradient step). Compute

w̃k ←− Π∆s(w
k − ηk∇g(wk)), (20a)

vk ←− w̃k −wk. (20b)

2) (Armijo-type line search). Compute the least non-
negative integer t such that

g̃(wk + γtvk) ≤ g̃(wk) + βγtΓk, (20c)

where Γk := ∇g(wk)>vk + 1
2ηk
‖vk‖22.

3) (Update). Set

wk+1 ←− wk + γtvk. (20d)

The method described above is a particular instantiation of
the one studied in [27]. However, the convergence guarantees
established in [27] for the method assume that the function
g is continuously differentiable on an open set Ωg ⊆ Rm̄
containing ∆s. As such, they cannot be directly applied to
the setting where the logarithmic barrier regularizer hlog is

1A real-valued function f : Rp → R is said to be analytic on a set
S ⊆ Rp if it is infinitely differentiable at and agrees with its Taylor series in
a neighborhood of every point in S.
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used. Nevertheless, a closer inspection of [27] reveals that the
convergence results therein are still valid if the open set Ωg
merely satisfies Ωg∩∆s 6= ∅ and the initial point w0 is chosen
to lie in Ωg∩∆s. This leads to our second convergence result.

Theorem 5 (Global convergence of LS-PGD under locally
Lipschitz continuous gradient). Let h : Sm → R ∪ {+∞} be
a regularizer whose domain dom(h) := {L ∈ Sm : h(L) <
+∞} is open and satisfies dom(h)∩Ls 6= ∅. In addition, sup-
pose that h is continuously differentiable on dom(h) and its
gradient ∇h is locally Lipschitz continuous on dom(h) (i.e.,
for every compact set B ⊆ dom(h), there exists a constant
`B > 0 such that ‖∇h(L) −∇h(L′)‖F ≤ `B‖L − L′‖F for
all L,L′ ∈ B). Then, the following will hold almost surely:

(a) The function g is continuously differentiable on an open
set Ωg ⊆ Rm̄ with Ωg ∩∆s 6= ∅ and its gradient ∇g is
locally Lipschitz continuous on Ωg .

(b) If the function g̃ possesses the KŁ property, then for
any initial point w0 ∈ Ωg ∩∆s, the sequence {wk}k≥0

generated by the LS-PGD method (20) converges to a
stationary point of Problem (14).

Proof. For any U ⊆ Sm, define F−1(U) := {w ∈ Rm̄ :
F(w) ∈ U}. Observe that

F−1(dom(h) ∩ Ls) = F−1(dom(h)) ∩ F−1(Ls)
= F−1(dom(h)) ∩∆s.

This, together with the assumption on h and the continuity of
F , implies that w 7→ h(F(w)) is continuously differentiable
on the open set F−1(dom(h)) with F−1(dom(h))∩∆s 6= ∅.
On the other hand, note that the function φ1 is continuously
differentiable on a bounded open set Ξ1 that contains ∆s.
Moreover, since P∗ � ν by assumption, Theorem 3 implies
that almost surely, the function φ2 will be continuously
differentiable on a bounded open set Ξ2 that contains ∆s.
By taking Ωg = F−1(dom(h)) ∩ Ξ1 ∩ Ξ2, we see that
Ωg is open and g is continuously differentiable on Ωg with
Ωg ∩∆s = F−1(dom(h)) ∩∆s 6= ∅. Lastly, the assumption
that ∇h is locally Lipschitz continuous on dom(h), together
with the fact that ∇φ1 and ∇φ2 are Lipschitz continuous on
Ξ1 and Ξ2, respectively due to the boundedness of Ξ1 and Ξ2,
implies that ∇g is locally Lipschitz continuous on Ωg . This
establishes the result in (a).

Now, let us prove by induction that wk ∈ Ωg ∩∆s for all
k ≥ 0. The base case follows from our assumption. For the
inductive step, we first note that by the convexity of ∆s, we
havewk+γtvk = (1−γt)wk+γtw̃k ∈ ∆s for all t ≥ 0. This,
together with the fact that ∆s ⊂ Ξi for i = 1, 2, implies that if
wk+γt

′
vk 6∈ Ωg for some t′ ≥ 0, then g̃(wk+γt

′
vk) = +∞;

i.e., condition (20c) is not satisfied. Next, note that since Ωg
is open with wk ∈ Ωg and γ ∈ (0, 1), there exists an integer
T ≥ 0 such that wk + γtvk ∈ Ωg for all t ≥ T . Since the
line search in the LS-PGD method (20) terminates in a finite
number of steps (see the discussion in [27, Section 3.1]), we
conclude that wk+1 ∈ Ωg∩∆s, which completes the inductive
step. The result in (b) can then be obtained by following the
development in [27, Section 3.3].

The assumption on the regularizer h in Theorem 5 is much
milder than that in Theorem 4. In particular, Theorem 5
applies to the setting where the logarithmic barrier regularizer
hlog is used. Under such a setting, the KŁ property of g̃
follows from the analyticity of w 7→ hlog(F(w)) on the
open set F−1(dom(hlog)) = {w ∈ Rm̄ : [F(w)]ii >
0for i = 1, . . . ,m}, the analyticity of φ1, φ2 on a bounded
open set containing ∆s, and the polyhedrality of ∆s. As an
aside, let us point out that the LS-PGD method (20) can
also be used to solve the non-robust graph learning model
proposed in [8], which is an instance of Problem (1) with
h(L) = −α

∑m
i=1 ln(Lii) + β

2

∑
1≤i 6=j≤m L

2
ij and can be

equivalently written as

inf
w∈∆s

{φ(w) + hlog(F(w))} (21)

with φ(w) :=w>F∗
(
Σ̂n+µ̂nµ̂

>
n

)
+ β

2

∑
1≤i 6=j≤m[F(w)]2ij .

Since Problem (21) has a strongly convex objective function
and a convex feasible set, Theorem 5 guarantees that the
iterates generated by the method converge globally to its
unique optimal solution. Interestingly, in the context of solving
the non-robust graph learning model (21), both the proposed
LS-PGD method (20) and its convergence guarantee given in
Theorem 5 are new and can be of independent interest; cf. [28].

IV. NUMERICAL RESULTS

In this section, we study the performance of two distri-
butionally robust and several representative non-robust graph
learning models via numerical experiments on both synthetic
and real-world data. Specifically, for the distributionally robust
models, we consider our proposed MUGL formulation (11)
with s = m, h(L) = 0 (i.e., MUGL-o) and s = m, h(L) =
−α

∑m
i=1 ln(Lii) (i.e., MUGL-l), as well as the following

formulation:
• Wasserstein robust graph learning (WRGL) model [14]

with parameters β, γ > 0:

inf
L∈Lm

{
1

n
tr(X>LX) + β‖L‖F + γ‖L‖2F

}
.

For the non-robust graph learning models, we consider the
following formulations:
• Vanilla smooth graph learning (VSGL) model:

inf
L∈Lm

tr(X>LX).

• GL-SigRep model [7] with parameters β, γ > 0:

inf
L∈Lm,Y ∈Rm×n

{
‖X − Y ‖2F + β tr(Y >LY ) + γ‖L‖2F

}
.

• Log-barrier model [8], [10] with parameters β, γ > 0:

inf
W∈Sm

1

2
tr(ZW )− β

m∑
i=1

ln

 m∑
j=1

Wij

+
γ

2
‖W ‖2F


s.t. W ≥ 0, Wii = 0 for i = 1, . . . ,m,

where Z ∈ Sm is the pairwise distance matrix given by
Zjk = ‖xj − xk‖22 for j, k = 1, . . . ,m.
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Fig. 1: Prediction performance of MUGL-o with different values of ρ1, ρ2, and n

We use the following metrics to evaluate the performance of
the different models (see, e.g., [29]):

F-measure =
2TP

2TP + FN + FP
,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

Normalized Mutual Information (NMI)

=
2× I(TP + FN;TP + FP)

H(TP + FN) +H(TP + FP)
.

Here, TP, FP, and FN denote the number of true positives,
false positives, and false negatives, respectively; H(TP+FN)
and H(TP + FP) denote the entropy of the edges in the
underlying graph and in the learned graph, respectively;
I(TP+FN;TP+FP) denotes the mutual information between
the edges in the underlying graph and those in the learned
graph. The metrics precision and recall measure the fraction
of correctly retrieved edges among all the edges in the learned
graph and in the true graph, respectively. It should be noted
that a high value in just one of these two metrics does not
imply the graph is accurately learned. This motivates the
metric F-measure, which is the harmonic mean of precision
and recall. The metric NMI measures the mutual dependence
between the learned graph and the ground-truth graph from an
information-theoretic viewpoint, normalized by their entropy.
A learning algorithm is deemed good if it achieves a high
F-measure or NMI value.

Both the MUGL-o and VSGL models can be solved using
the PGD method (19), while the MUGL-l model can be
solved using the LS-PGD method (20). We initialize both the
PGD (19) and LS-PGD (20) methods by the centroid of ∆m.
Our code is available at https://github.com/xwangcu/mugl. We

n F-measure MU CU ρ1 ρ2

50 0.542±7.62% 0.356 5.039 0.12 3.0
200 0.573±6.74% 0.093 4.713 0.09 2.7
800 0.610±3.66% 0.022 4.650 0.02 2.2

TABLE I: Prediction performance of MUGL-o with best-tuned
values of ρ1 and ρ2 under different sample sizes n (MU (resp.
CU) denotes the average value of the mean uncertainty (µ̂n−
µ∗)>L∗(µ̂n−µ∗) (resp. covariance uncertainty ‖Σ̂−Σ∗‖F ))

use the code provided by the authors of [7] at http://web.media.
mit.edu/∼xdong/code/graphlearning.zip, which implements an
alternating minimization method, to solve the GL-SigRep
model. We use the code provided in the Graph Signal Pro-
cessing Toolbox [30] at https://epfl-lts2.github.io/gspbox-html/
doc/demos/gsp demo learn graph large.html, which imple-
ments a primal-dual method with the tricks given in [10], to
solve the Log-barrier model. Lastly, we use the projected gra-
dient method with backtracking line search [14, Algorithm 4]
to solve the reformulation [14, Eq. (44)] of the WRGL model.
All reported results are obtained using the best-tuned model
parameters, so that the learned graphs have the highest quality
in terms of F-measure or Rand index. The hyperparameter
values used in our MUGL models for generating the results
in Tables II–IV are provided in the supplementary material.

A. Experiments on Synthetic Data

We conduct experiments on three types of synthetic graphs,
namely, the Gaussian graph, the Erdős-Rényi (ER) graph, and
the preferential attachment (PA) graph. The Gaussian graphs
used in our experiments are generated as follows: First, the
nodes are placed uniformly at random in a unit square. Then,

https://github.com/xwangcu/mugl
http://web.media.mit.edu/~xdong/code/graphlearning.zip
http://web.media.mit.edu/~xdong/code/graphlearning.zip
https://epfl-lts2.github.io/gspbox-html/doc/demos/gsp_demo_learn_graph_large.html
https://epfl-lts2.github.io/gspbox-html/doc/demos/gsp_demo_learn_graph_large.html
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F-measure Precision Recall NMI
G

au
ss

ia
n

VSGL 0.411±9.87% 0.963±5.07% 0.262±12.46% 0.212±17.57%
GL-SigRep 0.740±4.99% 0.593±8.00% 0.988±1.30% 0.401±13.39%
Log-barrier 0.756±5.53% 0.850±5.14% 0.683±8.01% 0.396±16.05%
WRGL 0.739±6.76% 0.861±6.55% 0.649±8.67% 0.344±22.96%
MUGL-o 0.779±5.21% 0.831±5.38% 0.734±7.05% 0.415±16.26%
MUGL-l 0.785±5.70% 0.816±6.46% 0.758±6.91% 0.418±19.08%

E
R

VSGL 0.413±14.95% 0.663±13.77% 0.302±17.33% 0.146±33.57%
GL-SigRep 0.580±7.26% 0.462±8.84% 0.784±7.99% 0.213±22.77%
Log-barrier 0.620±8.28% 0.550±9.21% 0.712±9.23% 0.248±23.77%
WRGL 0.553±6.43% 0.394±8.80% 0.931±3.90% 0.209±21.17%
MUGL-o 0.554±6.45% 0.416±8.34% 0.832±5.99% 0.195±20.63%
MUGL-l 0.570±6.49% 0.424±8.35% 0.876±5.34% 0.223±20.73%

PA

VSGL 0.546±7.46% 0.386±9.76% 0.938±5.16% 0.294±17.61%
GL-SigRep 0.556±7.75% 0.414±10.02% 0.851±7.43% 0.271±18.11%
Log-barrier 0.654±7.86% 0.679±10.09% 0.636±9.87% 0.359±17.06%
WRGL 0.572±5.19% 0.401±7.20% 1.000±0.01% 0.354±8.11%
MUGL-o 0.567±6.68% 0.400±9.28% 0.981±2.82% 0.337±13.00%
MUGL-l 0.571±6.50% 0.405±9.15% 0.972±4.13% 0.336±13.63%

(a) m = 20, n = 30, ε = 0.1

F-measure Precision Recall NMI

G
au

ss
ia

n

VSGL 0.473±8.51% 0.987±2.63% 0.312±11.24% 0.264±12.55%
GL-SigRep 0.791±5.78% 0.788±3.65% 0.799±10.66% 0.423±16.21%
Log-barrier 0.773±5.23% 0.879±4.03% 0.692±7.98% 0.430±14.16%
WRGL 0.788±3.33% 0.671±5.35% 0.958±1.64% 0.390±13.40%
MUGL-o 0.830±3.08% 0.856±2.46% 0.807±4.45% 0.497±9.75%
MUGL-l 0.840±3.84% 0.842±3.91% 0.842±7.33% 0.517±12.20%

E
R

VSGL 0.493±11.27% 0.763±10.22% 0.366±13.88% 0.216±25.59%
GL-SigRep 0.512±9.19% 0.767±11.55% 0.387±11.54% 0.228±23.01%
Log-barrier 0.560±8.83% 0.591±9.13% 0.535±10.85% 0.201±23.68%
WRGL 0.512±4.37% 0.344±5.87% 0.999±0.38% 0.218±10.58%
MUGL-o 0.545±9.49% 0.752±8.07% 0.429±12.39% 0.241±20.14%
MUGL-l 0.584±8.90% 0.560±9.45% 0.613±11.01% 0.214±26.01%

PA

VSGL 0.715±7.39% 0.994±2.27% 0.561±10.99% 0.541±10.98%
GL-SigRep 0.557±5.19% 0.561±11.25% 0.562±10.09% 0.249±12.06%
Log-barrier 0.747±4.72% 0.765±6.27% 0.732±5.86% 0.477±10.57%
WRGL 0.783±4.66% 0.645±7.59% 0.998±1.04% 0.591±8.71%
MUGL-o 0.826±5.35% 0.905±6.17% 0.764±8.83% 0.620±11.64%
MUGL-l 0.893±5.44% 0.963±3.71% 0.834±7.80% 0.747±12.50%

(b) m = 20, n = 80, ε = 0.1

F-measure Precision Recall NMI

G
au

ss
ia

n

VSGL 0.222±21.30% 0.867±14.30% 0.128±23.33% 0.092±44.54%
GL-SigRep 0.653±18.30% 0.521±25.83% 0.919±6.98% 0.241±59.03%
Log-barrier 0.626±8.37% 0.730±8.76% 0.550±10.32% 0.225±28.22%
WRGL 0.643±6.66% 0.524±8.00% 0.834±6.50% 0.135±44.85%
MUGL-o 0.661±8.20% 0.670±10.62% 0.656±8.03% 0.231±30.33%
MUGL-l 0.700±7.09% 0.608±9.86% 0.831±7.11% 0.272±27.34%

E
R

VSGL 0.182±34.18% 0.461±29.80% 0.115±37.22% 0.037±68.13%
GL-SigRep 0.354±11.66% 0.257±16.71% 0.645±29.52% 0.035±55.10%
Log-barrier 0.490±8.50% 0.342±9.68% 0.863±8.06% 0.148±31.94%
WRGL 0.432±12.31% 0.328±13.59% 0.634±11.75% 0.063±54.91%
MUGL-o 0.438±5.50% 0.355±14.98% 0.576±11.51% 0.091±46.28%
MUGL-l 0.510±9.67% 0.408±13.21% 0.692±10.04% 0.139±33.37%

PA

VSGL 0.297±40.12% 0.558±37.85% 0.205±43.42% 0.120±72.23%
GL-SigRep 0.365±22.03% 0.418±25.05% 0.328±22.33% 0.109±51.04%
Log-barrier 0.424±21.77% 0.426±20.12% 0.424±20.26% 0.139±42.90%
WRGL 0.418±11.06% 0.274±12.99% 0.886±7.72% 0.168±31.69%
MUGL-o 0.436±15.82% 0.331±17.56% 0.643±15.09% 0.141±40.08%
MUGL-l 0.460±25.93% 0.490±19.72% 0.434±21.59% 0.180±54.72%

(c) m = 20, n = 30, ε = 1

F-measure Precision Recall NMI

G
au

ss
ia

n

VSGL 0.279±20.63% 0.929±8.62% 0.165±23.85% 0.133±34.70%
GL-SigRep 0.772±8.21% 0.757±7.46% 0.794±12.25% 0.393±23.90%
Log-barrier 0.718±7.02% 0.817±6.66% 0.641±8.85% 0.340±21.29%
WRGL 0.712±5.35% 0.590±6.96% 0.899±4.69% 0.240±28.23%
MUGL-o 0.756±4.98% 0.637±8.67% 0.938±4.38% 0.387±16.27%
MUGL-l 0.856±2.46% 0.807±4.45% 0.830±3.08% 0.497±9.75%

E
R

VSGL 0.265±27.30% 0.573±23.03% 0.174±30.03% 0.074±56.41%
GL-SigRep 0.373±6.95% 0.252±12.70% 0.752±14.49% 0.042±34.87%
Log-barrier 0.446±18.05% 0.554±18.68% 0.375±19.05% 0.133±46.00%
WRGL 0.495±7.67% 0.351±8.92% 0.495±7.67% 0.128±34.24%
MUGL-o 0.441±15.8% 0.541±15.32% 0.376±18.36% 0.125±39.25%
MUGL-l 0.508±9.18% 0.410±13.30% 0.676±8.80% 0.135±31.58%

PA

VSGL 0.454±23.57% 0.827±15.89% 0.320±29.69% 0.261±37.10%
GL-SigRep 0.494±15.17% 0.762±16.97% 0.369±17.62% 0.263±31.47%
Log-barrier 0.534±12.43% 0.579±12.88% 0.497±13.05% 0.236±27.16%
WRGL 0.489±7.21% 0.329±9.09% 0.962±4.69% 0.256±17.52%
MUGL-o 0.537±18.57% 0.789±17.31% 0.413±22.07% 0.304±34.17%
MUGL-l 0.557±11.09% 0.476±13.41% 0.678±12.71% 0.247±26.52%

(d) m = 20, n = 80, ε = 1

TABLE II: Prediction performance on synthetic data with different values of m, n, and ε

an edge is placed between nodes i and j (i 6= j) if the weight
determined by the radial basis function exp

(
−d(i, j)2/2σ2

)
,

where d(i, j) is the Euclidean distance between nodes i and
j and σ = 0.5 is the kernel width parameter, is at least 0.75.
The ER graphs are generated by placing an edge between
each pair of nodes independently with probability p = 0.2.
The PA graphs are generated by having θ0 = 2 connected
nodes initially and then adding new nodes one at a time, where
each new node is connected to exactly θ = 1 previous node
that is randomly chosen with a probability proportional to its
degree at the time. The edges in the Gaussian graph have
weights given by the radial basis function, while those in the
ER and PA graphs are set to 1. After obtaining the synthetic
graphs, we use the factor analysis model introduced in [7] to
generate the graph signals on them. Specifically, given a graph,
let L∗ be its Laplacian whose eigen-decomposition is given
by L∗ = χΛχ>. The graph signal x ∈ Rm is then generated

according to (5), where the entries of µ∗ are independently
generated according to the uniform distribution on the interval
(0, 1).

1) Ablation Study: We first conduct an ablation study on
how the parameters ρ1 and ρ2 in the MUGL-o model, which
control the size of the ambiguity set M(L, ρ1, ρ2), affect
its performance. We take an ER graph with m = 20 and
consider the noise level ε = 0.01 in (5). We use MUGL-
o with different choices of ρ1 and ρ2 to recover the graph.
The experiment results are reported in Figure 1, where each
red asterisk (resp. blue box) represents the average F-measure
(resp. interval between the 25th and 75th percentiles) over 50
runs with n = 50, 200, or 800 independently generated noisy
graph signals.

Figures 1a–1c show how fixing ρ2 = 0 and changing
ρ1 affects the F-measure of the learned graphs. Similarly,
Figures 1d–1f show how fixing ρ1 = 0 and changing ρ2 affects
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the F-measure of the learned graphs. We observe from the
sub-figures that as ρ1 or ρ2 increases (i.e., the ambiguity set
M(L, ρ1, ρ2) becomes bigger), the percentile box becomes
smaller. Moreover, viewing Figure 1 row-by-row, we see that
the larger the number of observed graph signals (which we
shall refer to as the sample size) n, the smaller the percentile
box. These results suggest that the prediction performance
becomes more consistent across different populations of graph
signals when the ambiguity set enlarges or the sample size
increases. However, it should be noted that the average F-
measure of the learned graphs eventually decreases as the size
of the ambiguity set increases. This is due in part to the fact
that MUGL-o becomes more conservative when the ambiguity
set becomes larger. We can also observe from Figure 1 that the
larger the sample size n, the smaller the optimal ρ1 and ρ2 that
achieve the highest average F-measure. This can be attributed
to the fact that when the sample size n increases, there is
less uncertainty about the ground-truth distribution and thus
smaller ρ1 and ρ2 suffice for the ambiguity set to contain the
ground-truth distribution; see Theorems 1 and 2. In summary,
Figure 1 demonstrates that with suitable choices of ρ1 and ρ2,
the MUGL model can yield graphs that have a high prediction
performance not just on a single population but consistently
across different populations of observed signals.

Next, we examine how the sample size n affects the
performance of MUGL-o. For n = 50, 200, or 800, we simul-
taneously tune the hyperparameters ρ1 and ρ2 of MUGL-o so
that it yields the graph with the highest average F-measure.
Table I presents the average F-measure and the associated
normalized standard deviations, the average values of the
mean uncertainty (µ̂n − µ∗)>L∗(µ̂n − µ∗) and covariance
uncertainty ‖Σ̂−Σ∗‖F , and the best-tuned values of ρ1 and
ρ2. As the sample size n increases, the average F-measure
increases and the normalized standard deviations decreases.
Analogous to the pattern shown in Figure 1, the larger the n,
the smaller the mean and covariance uncertainties, thus smaller
ρ1 and ρ2 are required.

2) Model Performance: Let us now compare the efficacy
of different graph learning models. We consider two noise
levels ε = 0.1 and 1 in (5). We examine the performance
of the graphs learned from n = 30 or 80 independently
generated noisy graph signals, averaged over 50 runs. The
results are reported in Table II, where the entries give the
average performance as measured by the stated metrics and
the associated normalized standard deviations. We observe that
VSGL always yields the highest precision values, since this
vanilla model usually produces very sparse graphs. Moreover,
MUGL-o exhibits significant performance gain over VSGL in
terms of F-measure and NMI. This demonstrates the advan-
tage of robustifying the vanilla graph learning model against
moment uncertainties about the ground-truth distribution.

As can also be observed from the results, when the noise
level is low (ε = 0.1) and the sample size is small (n = 30),
the distributionally robust models do not have a clear advan-
tage over the non-robust GL-SigRep and Log-barrier models.
On one hand, the low noise level results in less uncertainty
about the ground-truth distribution of the graph signal, so that
the performance of non-robust models is less affected by the

F-measure Precision Recall NMI
VSGL 0.771 0.637 0.976 0.418
GL-SigRep 0.791 0.828 0.757 0.415
Log-barrier 0.812 0.749 0.887 0.441
WRGL 0.619 0.527 0.749 0.145
MUGL-o 0.827 0.736 0.943 0.488
MUGL-l 0.837 0.802 0.875 0.504

TABLE III: Prediction performance on real temperature data

use of the empirical distribution as a surrogate of the ground-
truth distribution. On the other hand, the distributionally robust
models, which need to take into account the ambiguity in the
ground-truth distribution caused by both the graph signal noise
and limited sample size, tend to produce more conservative
solutions. Still, MUGL-l achieves the highest F-measure and
NMI values in most cases. Moreover, the normalized standard
deviation of MUGL is generally lower than those of the
other three non-robust methods, particularly in the experiments
involving Gaussian graphs with relatively noisy (ε = 1) graph
signals. This indicates that our proposed MUGL model is
able to achieve its main aim of attaining a more consistent
performance across different populations of observed signals.

B. Experiments on Real Temperature Data

We conduct experiments on the real-world temperature data
provided in [7]. The dataset consists of monthly temperature
data from 1981 to 2010 collected by 89 measuring stations
in Switzerland. We construct a graph in which the nodes
correspond to the measuring stations and the edges correspond
to two stations whose altitude difference is less than 300
meters. Furthermore, we assign a weight of 1 to each edge.
Such a construction is motivated by the fact that temperature
difference is highly related to altitude difference. For each sta-
tion, we compute the average temperature of each month over
the 30-year period. Thus, each month yields a graph signal,
and we have 12 graph signals in total. Given these signals, we
aim to recover the graph that reflects the altitude relationships
between the stations. We then evaluate the learned graph using
the same metrics as those in the previous subsection. The
results are reported in Table III. VSGL performs fairly well in
this scenario, but MUGL-o performs even better in terms of
F-measure and NMI. Among the six considered approaches,
MUGL-l achieves the highest F-measure and NMI values.

C. Experiments on Real Image Data

We further evaluate the efficacy of the different models by
applying them to learn the similarity graph of real images and
using the learned graph to perform spectral clustering [31]. We
consider two different image datasets, namely, USPS [32] and
COIL-20 [33]. The former consists of 7291 training images
and 2007 test images, each of which is a 16 × 16 grayscale
handwritten digit from 0 to 9. The latter consists of 1440
images of 20 different objects, each of which is downsampled
to a size of 32 × 32. In the context of clustering, these two
image datasets contain 10 and 20 clusters, respectively.
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RI JC FMI
VSGL 0.512±20.56% 0.138±21.78% 0.321±13.99%
Log-barrier 0.476±12.48% 0.100±3.99% 0.243±6.30%
GL-SigRep 0.782±2.03% 0.066±6.89% 0.124±7.30%
WRGL 0.803±9.48% 0.299±33.80% 0.487±20.51%
k-NNG 0.689±9.31% 0.156±19.19% 0.307±15.66%
MUGL-o 0.892±1.67% 0.333±15.18% 0.498±11.33%
MUGL-l 0.896±1.64% 0.341±16.45% 0.507±12.25%

(a) USPS

RI JC FMI
VSGL 0.412±11.97% 0.881±3.66% 0.226±19.22
Log-barrier 0.616±3.44% 0.113±30.69% 0.221±19.75%
GL-SigRep 0.578±5.73% 0.167±25.04 % 0.290±19.32%
WRGL 0.955±0.55% 0.412±10.56% 0.584±7.44%
k-NNG 0.761±9.35% 0.107±27.21% 0.252±16.35%
MUGL-o 0.964±0.67% 0.485±12.65% 0.651±8.83%
MUGL-l 0.964±0.65% 0.490±11.93% 0.657±8.36%

(b) COIL-20

TABLE IV: Spectral clustering performance on image datasets

To perform spectral clustering, we use the algorithm in [34],
which involves (i) constructing a graph based on the simi-
larity matrix W of the dataset, (ii) finding the Laplacian
L = Diag(W1)−W and computing the normalized random-
walk Laplacian Lrw = (Diag(W1))−1L, (iii) finding the
k leading eigenvectors of Lrw, and (iv) splitting the graph
by applying the standard k-means algorithm on the rows of
the k eigenvectors. The similarity matrix captures the relative
similarity of each pair of points in the dataset in a quantitative
manner, and its quality will influence the performance of
spectral clustering. Given an image dataset, we postulate that
there is an unknown complete m-node graph in which (i)
each node corresponds to an image in the dataset and (ii) the
weight of an edge between two nodes represents the similarity
between the two corresponding images. Each pixel of an image
gives an observed value at the node corresponding to that
image. The collection of all such values constitutes our graph
signals. In particular, if there are m images of the same size
nr×nc in a dataset, then there are n = nr×nc graph signals,
each of which has dimension m. Our goal then is to learn a
similarity matrix from these graph signals, so as to facilitate
the subsequent clustering task.

In each run of the experiment, we randomly pick 100
images from the USPS dataset and 200 images from the
COIL-20 dataset, which give rise to graphs with m = 100
and m = 200 nodes, respectively. According to the sizes of
the images in the USPS and COIL-20 datasets, we obtain
n = 16 × 16 = 256 graph signals from the former and
n = 32 × 32 = 1024 graph signals from the latter. As a
baseline, we construct a k-nearest neighbor graph (k-NNG)
associated with the images as follows. For each node i (which
corresponds to an image), we connect it node j (i 6= j) and
assign the weight exp

(
−d(i, j)2/0.5

)
to the edge if the Eucli-

dean distance d(i, j) is among the k smallest distances from i
to all other nodes. By ignoring the directions of the edges,

we obtain an undirected graph, which yields a symmetric
similarity matrix. We choose k = 8 in our experiments since
it exhibits the best empirical clustering performance on both
datasets. Given the graphs learned by different models and the
k-NNG, we run the spectral clustering algorithm in [34] and
evaluate the results using the following common clustering
performance metrics: Rand index (RI), Jaccard coefficient
(JC), and Fowlkes and Mallows index (FMI) [29], [35]. These
metrics measure the similarity between the partition returned
by a clustering algorithm and the true data partition. Suppose
that the clustering algorithm partitions a set of m images
C = {a1, . . . ,am} into k disjoint subsets C1, . . . , Ck, and the
true partition of C is C∗1 , . . . , C∗s . Let `, `∗ ∈ Rm be the data
label vectors associated with C and C∗, respectively. If we
define the sets SS := {(ai,aj) : `i = `j , `

∗
i = `∗j , i < j},

SD := {(ai,aj) : `i = `j , `
∗
i 6= `∗j , i < j}, DS := {(ai,aj) :

`i 6= `j , `
∗
i = `∗j , i < j}, and DD := {(ai,aj) : `i 6= `j , `

∗
i 6=

`∗j , i < j}, then the metrics RI, JC, and FMI can be defined
in terms of the cardinalities of the these sets as follows:

RI =
|SS|+ |DD|
m(m− 1)/2

, JC =
|SS|

|SS|+ |SD|+ |DS|
,

FMI =

√
|SS|

|SS|+ |SD|
· |SS|
|SS|+ |DS|

.

In particular, RI measures the percentage of correct decisi-
ons made by the algorithm, which is simply the clustering
accuracy. All the above metrics yield values that lie in [0, 1],
and a higher value indicates better performance in principle.
The results are presented in Table IV, where the entries give
the average performance as measured by the stated metrics
and the associated normalized standard deviations over 10
runs. Among the compared approaches, MUGL-o and MUGL-
l achieve better and more consistent performance in terms of
all three aforementioned metrics in both the USPS and COIL-
20 datasets. This indicates the high quality and robustness of
the learned graphs produced by the MUGL model.

V. CONCLUSION

We have developed a novel DRO-based approach to graph
learning, which provides a way to identify a graph that not
only yields a smooth representation of the observed signals
but is also robust against uncertainties about the ground-truth
distribution of the graph signal. We have demonstrated how to
construct the ambiguity set in our distributionally robust graph
learning model by exploiting the structure of the Laplacian
quadratic form and establishing confidence regions for the
mean and covariance of the ground-truth distribution. We have
also shown that whenever the ground-truth distribution has
a probability density function, our proposed model admits
a smooth non-convex optimization formulation. Interestingly,
such a formulation provides a new perspective on regulariza-
tion in the graph learning setting. Then, we have presented
a PGD method to numerically tackle the formulation and
established its convergence guarantees. Through extensive nu-
merical experiments, we have shown that our proposed model
improves the quality of the learned graphs and robustifies the
performance across different populations of observed signals.
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One promising future direction is to extend our proposed
approach to tackle more general graph learning scenarios.

APPENDIX

A. Proof of Theorem 2

To set the stage, let us introduce some additional notation.
Given a real number p ≥ 1 and a q1 × q2 matrix A, we use
‖A‖Sp to denote the Schatten p-norm of A; i.e., ‖A‖Sp :=

‖σ(A)‖p, where σ(A) ∈ Rmin{q1,q2}
+ is the vector of singular

values ofA and ‖·‖p is the usual vector p-norm. By definition,
we have ‖A‖S2

= ‖A‖F .
We begin by establishing a relationship between the matrix

Σ̃n :=
1

n

n∑
j=1

(xj − µ∗)(xj − µ∗)>

and the covariance matrix Σ∗ of the ground-truth distribution
P∗. Note that the matrix Σ̃n is not the same as the empirical
covariance matrix Σ̂n defined in (4), as the former is defined
using µ∗ and not µ̂n. Nevertheless, as we shall see, we can use
the relationship between Σ̃n and Σ∗ to establish the desired
relationship between Σ̂n and Σ∗.

Proposition 4. Under the setting of Theorem 2, there exists a
constant c1 > 0 such that

‖Σ̃n −Σ∗‖F ≤
4c1(2e/3)3/2 ln3/2(4m3/2/ξ)

n1/2
‖Σ∗‖

will hold with probability at least 1− ξ/2.

Proof. For j = 1, . . . , n, define

Qj := Σ∗−1/2(xj − µ∗)(xj − µ∗)>Σ∗−1/2 − Im.

A straightforward calculation shows that Exj∼P∗ [Qj ] = 0 for
j = 1, . . . , n. Moreover, since P∗ satisfies the moment growth
condition, there exists a constant c′ > 0 such that for all p ≥ 1,

Ex∼P∗
[
‖Σ∗−1/2(x− µ)‖p2

]
≤ (c′p)p/2. (22)

By combining (22) with the argument in the proof of [18,
Proposition 5], we deduce that for any p ≥ 1,

Ex1,...,xn∼P∗


∥∥∥∥∥∥
n∑
j=1

Qj

∥∥∥∥∥∥
p

Sp

 ≤ 2pnp/2pp/2(m+ (2c′p)p).

Now, using the fact that ‖v‖2 ≤ q1/2‖v‖p for any v ∈ Rq
and p ∈ [2,+∞] 2 and applying Markov’s inequality, we have,
for any p ≥ 2 and t > 0, that

Pr

∥∥∥∥∥∥ 1

n

n∑
j=1

Qj

∥∥∥∥∥∥
F

> t

 = Pr

∥∥∥∥∥∥ 1

n

n∑
j=1

Qj

∥∥∥∥∥∥
p

S2

> tp


≤ 2ppp/2m1/2(m+ (2c′p)p)

tpnp/2
.

In particular, by setting c1 = max{c′, 1/4},

t =
4c1(2e/3)3/2 ln3/2(4m3/2/ξ)

n1/2
, p =

(
tn1/2

4c1e3/2

)2/3

2The stated bound is not sharp but is sufficient for our purposes. Readers
who are interested in the sharp bound can refer to, e.g., [36, Lemma 1].

and noting that ξ ≤ e−2, we have p = 2 ln(4m3/2/ξ)/3 ≥ 2
and

2ppp/2m1/2(m+ (2c′p)p)

tpnp/2
=
m3/2 +m1/2(2c′p)p

e3p/2(2c1p)p
≤ ξ

2
.

This, together with

‖Σ̃n −Σ∗‖F =

∥∥∥∥∥∥Σ∗1/2
 1

n

n∑
j=1

Qj

Σ∗1/2

∥∥∥∥∥∥
F

,

implies the desired result.

To proceed, observe that

Σ̃n =
1

n

n∑
j=1

(xj − µ̂n + µ̂n − µ∗)(xj − µ̂n + µ̂n − µ∗)>

= Σ̂n +
1

n

n∑
j=1

(xj − µ̂n)(µ̂n − µ∗)>

+
1

n

n∑
j=1

(µ̂n − µ∗)(xj − µ̂n)> + (µ̂n − µ∗)(µ̂n − µ∗)>

= Σ̂n + (µ̂n − µ∗)(µ̂n − µ∗)>.

Hence, we have

‖Σ̂n −Σ∗‖F ≤ ‖Σ̂n − Σ̃n‖F + ‖Σ̃n −Σ∗‖F
= (µ̂n − µ∗)>(µ̂n − µ∗) + ‖Σ̃n −Σ∗‖F .

Since P∗ satisfies the moment growth condition, by taking
c2 to be the constant c in Definition 1 and adapting the proof
of [18, Proposition 4], we deduce that with probability at least
1− ξ/2,

(µ̂n − µ∗)>(µ̂n − µ∗) ≤
4c2e

2 ln2(2/ξ)

n
.

This, together with Proposition 4, implies that ‖Σ̂n−Σ∗‖F ≤
ρ̂2 will hold with probability at least 1− ξ, as desired.

B. Proof of Proposition 2

We first consider Problem (9). Upon letting µ̃ = L1/2µ,
we can rewrite Problem (9) as

sup
µ̃∈Rm

‖µ̃‖22

s.t. ‖µ̃−L1/2µ̂n‖22 ≤ ρ2
1,

(23)

whose associated Lagrangian function can be written as
L (µ̃, λ) = −‖µ̃‖22 + λ(‖µ̃ − L1/2µ̂n‖22 − ρ2

1). Since Pro-
blem (23) satisfies the linear independence constraint qualifi-
cation, its associated KKT conditions, which are given by

−µ̃+ λ(µ̃−L1/2µ̂n) = 0,

λ
(
‖µ̃−L1/2µ̂n‖22 − ρ2

1

)
= 0,

λ ≥ 0,

‖µ̃−L1/2µ̂n‖22 ≤ ρ2
1,

are necessary for optimality. We consider the following two
possibilities for the dual multiplier λ:
Case I: λ = 0. The KKT conditions reduce to

µ̃ = 0, ‖L1/2µ̂n‖22 ≤ ρ2
1.
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The objective value of Problem (23) associated with the
solution µ̃ = 0 is 0, which is obviously not the maximum.
Case II: λ > 0. The KKT conditions become

−µ̃+ λ(µ̃−L1/2µ̂n) = 0, (24a)

‖µ̃−L1/2µ̂n‖22 = ρ2
1, (24b)

λ > 0. (24c)

Let null(L1/2) denote the nullspace of L1/2. Consider the
following two subcases:

(i) If µ̂n ∈ null(L1/2), then µ̃ satisfies ‖µ̃‖22 = ρ2
1 > 0

by (24b), which yields the objective value ρ2
1.

(ii) If µ̂n /∈ null(L1/2), then λ 6= 1. By (24a), we have
µ̃ = λ

λ−1L
1/2µ̂n. Substituting this into (24b) yields

λ = 1± ‖L
1/2µ̂n‖2
ρ1

.

If λ = 1− ‖L
1/2µ̂n‖2
ρ1

and λ > 0, then ρ1 > ‖L1/2µ̂n‖2
and

µ̃ = µ̃− :=

(
1− ρ1

‖L1/2µ̂n‖2

)
L1/2µ̂n.

The objective value of Problem (23) associated with the
solution µ̃− is

‖µ̃−‖22 =

(
1− ρ1

‖L1/2µ̂n‖2

)2

‖L1/2µ̂n‖22

=
(
‖L1/2µ̂n‖2 − ρ1

)2

.

On the other hand, if λ = 1 + ‖L1/2µ̂n‖2
ρ1

, then

µ̃ = µ̃+ :=

(
1 +

ρ1

‖L1/2µ̂n‖2

)
L1/2µ̂n,

which yields the objective value

‖µ̃+‖22 =
(
‖L1/2µ̂n‖2 + ρ1

)2

.

Summarizing the above cases, we conclude that µ̃+ is an
optimal solution to Problem (23). This implies that ϕ1(L) =(
‖L1/2µ̂n‖2 + ρ1

)2
, as desired.

Next, we consider Problem (10). By dropping the constraint
Σ ∈ Sm+ from Problem (10), we obtain the following relaxa-
tion:

sup
Σ∈Sm

tr(ΣL)

s.t. ‖Σ− Σ̂n‖2F ≤ ρ2
2.

(25)

The Lagrangian function associated with Problem (25) is given
by L (Σ, τ) = − tr(ΣL) + τ(‖Σ − Σ̂n‖2F − ρ2

2). Since
Problem (25) is convex and satisfies the Slater condition, its
associated KKT conditions, which are given by

−L+ 2τ(Σ− Σ̂n) = 0, (26a)

‖Σ− Σ̂n‖2F ≤ ρ2
2, (26b)

τ
(
‖Σ− Σ̂n‖2F − ρ2

2

)
= 0, τ ≥ 0, (26c)

are necessary and sufficient for optimality. Now, observe that
we must have τ > 0, for otherwise L = 0 by (26a), which

contradicts the fact that L ∈ Ls satisfies tr(L) = 2s > 0.
Consequently, we have ‖Σ − Σ̂n‖2F = ρ2

2 by (26c). This,
together with (26a), implies that

Σ = Σ∗ := Σ̂n +
ρ2

‖L‖F
L

is an optimal solution to Problem (25). Since Σ̂n,L ∈ Sm+ and
ρ2 > 0, we have Σ∗ ∈ Sm+ . It follows that Σ∗ is also optimal
for Problem (10) and

ϕ2(L) = tr(Σ∗L) = tr(Σ̂nL) + ρ2‖L‖F .

C. Proof of Proposition 3

Using the definition of L∗, for any κ > 0, we compute

L∗ = argmin
L∈Ls̄

{
1

n
tr(X>LX) + 2ρ̄1‖L1/2µ̂n‖2

+ ρ̄2‖L‖F + h(L)

}
= κ · argmin

L′∈ 1
κLs̄

{
1

n
tr(X>(κL′)X) + 2ρ̄1‖(κL′)1/2µ̂n‖2

+ ρ̄2‖κL′‖F + h(κL′)

}
= κ · argmin

L′∈Ls̄/κ

{
κ

n
tr(X>L′X) + 2

√
κρ̄1‖(L′)1/2µ̂n‖2

+ κρ̄2‖L′‖F + h(L′)

}
(27)

= κ · argmin
L′∈Ls̄/κ

{
1

n
tr(X>L′X) + 2

ρ̄1√
κ
‖(L′)1/2µ̂n‖2

+ ρ̄2‖L′‖F +
1

κ
h(L′)

}
,

where (27) follows from (12) and the fact that

1

κ
Ls̄ =

 1

κ
L ∈ Sm :

Lij ≤ 0 for i 6= j,

L1 = 0,

tr(L) = 2s̄


=

L′ ∈ Sm :

L′ij ≤ 0 for i 6= j,

L′1 = 0,

tr(L′) = 2s̄/κ

 = Ls̄/κ.

Upon setting κ = s̄, the desired result follows.
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Tables 1, 2, and 3 below contain the hyperparameter values used in our MUGL models for generating the
results in Tables V, VI, and VII, respectively.

ρ1 ρ2 α

G
a
u
ss
ia
n

MUGL-o 0.1 3.0 −

MUGL-l 0.1 2.9 1.0

E
R

MUGL-o 0.05 0.2 −

MUGL-l 0.05 0.8 0.15

P
A

MUGL-o 0.04 0.1 −

MUGL-l 0.6 0.1 0.01

(a) m = 20, n = 30, ε = 0.1

ρ1 ρ2 α

G
a
u
ss
ia
n

MUGL-o 0.02 1.5 −

MUGL-l 0.01 1.4 2.0

E
R

MUGL-o 0.01 0.5 −

MUGL-l 0.01 0.5 0.1

P
A

MUGL-o 0.01 1.0 −

MUGL-l 0.01 0.05 0.1

(b) m = 20, n = 80, ε = 0.1

ρ1 ρ2 α

G
a
u
ss
ia
n

MUGL-o 0.2 6.0 −

MUGL-l 0.24 6.9 6.5

E
R

MUGL-o 0.05 5.0 −

MUGL-l 0.02 3.5 0.8

P
A

MUGL-o 0.01 4.0 −

MUGL-l 0.01 0.05 0.1

(c) m = 20, n = 30, ε = 1

ρ1 ρ2 α

G
a
u
ss
ia
n

MUGL-o 0.15 5.6 −

MUGL-l 0.2 6.6 7.0

E
R

MUGL-o 0.01 1.2 −

MUGL-l 0.1 1.3 3.0

P
A

MUGL-o 0.01 0.4 −

MUGL-l 0.1 0.5 2.0

(d) m = 20, n = 80, ε = 1

Table 1: MUGL parameters used for Table II

ρ1 ρ2 α

MUGL-o 20 600 −

MUGL-l 1.7 630 360

Table 2: MUGL parameters used for Table III

1



ρ1 ρ2 α

MUGL-o 0.1 0.2 −

MUGL-l 1.0 20 110

(a) USPS

ρ1 ρ2 α

MUGL-o 0.1 0.2 −
MUGL-l 0.11 0.18 0.001

(b) COIL-20

Table 3: MUGL parameters used for Table IV

2


