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ABSTRACT

Unlike dimensionality reduction (DR) tools for single-view data,
e.g., principal component analysis (PCA), canonical correlation
analysis (CCA) and generalized CCA (GCCA) are able to integrate
information from multiple feature spaces of data. This is critical
in multi-modal data fusion and analytics, where samples from a
single view may not be enough for meaningful DR. In this work,
we focus on a popular formulation of GCCA, namely, MAX-VAR
GCCA. The classic MAX-VAR problem is optimally solvable via
eigen-decomposition, but this solution has serious scalability issues.
In addition, how to impose regularizers on the sought canonical
components was unclear – while structure-promoting regularizers
are often desired in practice. We propose an algorithm that can eas-
ily handle datasets whose sample and feature dimensions are both
large by exploiting data sparsity. The algorithm is also flexible in
incorporating regularizers on the canonical components. Conver-
gence properties of the proposed algorithm are carefully analyzed.
Numerical experiments are presented to showcase its effectiveness.

Index Terms— Generalized canonical correlation analysis,
MAX-VAR, multi-view analysis

1. INTRODUCTION
In signal processing and data analytics, dimensionality reduction
(DR) is usually the first step after signal and data acquisition. Princi-
pal component analysis (PCA) is arguably the most popular DR tool.
However, PCA is designed to handle data that is acquired from a
single feature domain. In modern data science, there are many cases
where data have multiple representations in different domains – e.g.,
a word can be represented as an audio segment, an image, and some
video frames. To integrate information from different feature spaces
and extract informative low-dimensional representations, canonical
correlation analysis (CCA) [1, 2] and generalized canonical correla-
tion analysis (GCCA) [3, 4] are often applied. CCA is widely used
in signal processing and data analytics; see [5–9].

Classical CCA considers two views (feature spaces) and for-
mulates the corresponding DR problem as a generalized eigen-
decomposition problem. On the other hand, GCCA considers more
than two views, and various different formulations exist. Unlike
CCA, most GCCA problems (e.g., the sum-of-correlations (SUM-
COR) formulation) are NP-hard [10], and so approximations have
been proposed to handle them. In the era of Big Data, both GCCA
and plain CCA have serious scalability problems, since the compu-
tation involves inversion and square-root decomposition of cross-
correlation matrices of the views – which is also referred to as the
whitening process. Whitening destroys the sparsity of the views,
which is often relied upon for dealing with big data, and also creates

huge dense matrices that can hardly be stored and greatly increase
the computational complexity of subsequent processing.

In recent years, scalability issues of CCA have drawn much at-
tention, but most work focused on the two-view case [11–13]. In this
work, we are interested in a popular formulation of GCCA, namely,
the MAX-VAR GCCA. Unlike other GCCA formulations, MAX-
VAR amounts to computing the leading eigenvectors of an aggre-
gated and whitened correlation matrix of the views – and thus is
optimally solvable. MAX-VAR GCCA has gained renewed inter-
est in multilingual word embedding [14] and speech recognition [8],
where it has demonstrated promising performance. However, MAX-
VAR GCCA has the same scalability issues as the other formulations
of (G)CCA. Another challenge of MAX-VAR GCCA is how to in-
corporate regularizers for promoting presumed or desired structure
of the canonical components. Many regularizers are of interest; e.g.,
sparse canonical components can help discard outlying or irrelevant
features, which is useful in gene studies [15–17]. Nonnegativity is of
interest in video processing since nonnegative canonical components
produce interpretable reduced-dimension data [18, 19].

To address the above challenges, we formulate structure-
regularized MAX-VAR GCCA as a non-convex optimization prob-
lem and propose an alternating optimization (AO)-based algorithm
to handle it. The algorithm alternates between a regularized least
squares subproblem and a manifold-constrained non-convex sub-
problem. This way, the whitening matrices never need to be in-
stantiated and the sparsity of the views is maintained – and thus the
algorithm is highly scalable. Analogous to the proximal gradient, the
algorithm can handle a variety of structure-promoting regularizers
easily. We also carefully study the convergence properties of the pro-
posed algorithm. We show that even when the two subproblems are
inexactly solved, the algorithm converges to a critical point globally
at a sublinear rate. When the classic MAX-VAR GCCA (without
regularization) is considered, we further show that the algorithm in
fact approaches a global minimum at a linear rate. Simulations show
that the algorithm can easily scale up to views with ∼ 100, 000
samples and features, which is a substantial improvement from the
classic solution that is only suitable for problem sizes of ∼ 1, 000.

2. BACKGROUND AND PROBLEM STATEMENT
The classic two-view CCA can be expressed as follows [1]:

min
Q1,Q2

‖X1Q1 −X2Q2‖2F (1a)

s.t.QT
i

(
XT
i Xi

)
Qi = I, i = 1, 2, (1b)

where Xi ∈ RL×Mi represents the ith view, Xi(`, :) is the high-
dimensional data representation of entity (e.g., word) ` in view i, L
and Mi denote the number of entities and the dimension of the ith



feature space, respectively, Qi ∈ RMi×K contains the canonical
components of the ith view that we aim at finding, and K is the di-
mension of the reduced-dimension views. Note that (1) essentially
aims at maximizing the correlation of X1Q1 and X2Q2, which is
the reason why the problem is called “correlation analysis”. Prob-
lem (1) can be solved via the generalized eigen-decomposition, but
this only applies to the two-view case. For dealing with I ≥ 2 views,
GCCA cost functions such as

∑I−1
i=1

∑I
j=i+1 ‖XiQi −XjQj‖2F

(subject to QT
i X

T
i XiQi = I) are considered in the literature. Un-

like the two-view case, such a pairwise matching criterion has been
shown to be NP-hard [10]. Another formulation of GCCA is more
tractable [3, 4, 8, 14, 20]:

min
{Qi}Ii=1,G

TG=I

I∑
i=1

(1/2) ‖XiQi −G‖2F , (2)

where G ∈ RL×K is a common latent representation of the differ-
ent views. Problem (2) also aims to find highly correlated reduced-
dimension views but a “bridging variable” G is introduced for “co-
alescing” the multiple difficult constraints QT

i X
T
i XiQi = I to a

single constraint GTG = I . By doing so, the above problem admits
a conceptually simple algebraic solution.

Problem (2) is referred to as the MAX-VAR formulation of
GCCA in the literature [14]. To see the solution, let us first assume
that Xi has full column rank and solve (2) with respect to (w.r.t.)
Qi; i.e., Qi = X†iG, where X†i = (XT

i Xi)
−1XT

i . By substi-
tuting it back to (2), we see that an optimal solution Gopt can be
obtained via solving the following:

Gopt = arg max
GTG=I

Tr(GTMG), (3)

where M =
∑I
i=1 XiX

†
i . Then, an optimal solution is the first K

principal eigenvectors of M [21].
Although the above solution to Problem (2) is seemingly easy,

implementing it has two major challenges. First, there are serious
scalability issues. Instantiating M =

∑I
i=1 Xi(X

T
i Xi)

−1XT
i

is not doable when L and the Mi’s are large. The matrix M is
an L × L dense matrix since (XT

i Xi)
−1 is typically dense even

when Xi is sparse. In applications like word embedding [14], L
and Mi are both the vocabulary size of a language, which can eas-
ily exceed 100, 000. This means that the memory for simply in-
stantiating M or (XT

i Xi)
−1 can reach 75GB. Since sparsity is de-

stroyed at the very beginning, the computational complexity of sub-
sequent processing is also very high. Second, it is unclear how to
incorporate regularization on Qi, since Qi has been marginalized.
Note that finding structured Qi is well-motivated in practice. For
example, when Xi has some outlying features (columns), a more
appealing formulation may include a row sparsity-promoting regu-
larization on Qi so that those outlying columns in Xi can be dis-
counted/downweighted when seeking Qi. Sparse (G)CCA is de-
sired in many applications such as gene analytics and fMRI predic-
tion [15–17,22,23]. Other structural constraints such as nonnegativ-
ity of Qi is useful in data analytics for maintaining interpretability
and enhancing performance; see [18, 19].

3. PROPOSED ALGORITHM
In this work, we consider a scalable and flexible algorithmic frame-
work for handling MAX-VAR GCCA and its variants with structure-
promoting regularizers on Qi. Specifically, we consider

min
{Qi},GTG=I

I∑
i=1

(1/2) ‖XiQi −G‖2F +
I∑
i=1

gi (Qi) , (4)

where gi(·) is a regularizer that imposes a certain structure on Qi.
In the literature, popular regularizers include gi(Qi) = µi · ‖Qi‖2F ,
gi(Qi) = µi · ‖Qi‖2,1 = µi

∑M
m=1 ‖Qi(m, :)‖2, gi(Qi) = µi ·

‖Qi‖1,1 = µi
∑M
m=1

∑K
k=1 |Qi(m, k)|, and gi(Qi) = 1+(Qi);

i.e., the indicator function of the nonnegative orthant, where µi ≥
0 is a regularization parameter. We are particularly interested in
gi(Qi) = µi‖Qi‖2,1, since it has the ability of promoting rows of
Qi to be zero and thus can suppress the impact of the corresponding
columns (features) in Xi – which effectively amounts to automatic
joint feature selection together with GCCA. In this section, we pro-
pose an algorithm that can deal with the regularized and the original
version of MAX-VAR GCCA under a unified framework.

3.1. Alternating Optimization
To deal with Problem (4), we build upon an alternating optimization
(AO) framework. As we will see, this simple foundation enables us
to design highly scalable algorithms in terms of both memory and
computational cost, which also features great flexibility in incorpo-
rating regularization penalties.

Let us assume that after r iterations the current iterate is
({Q(r)

i },G
(r)). The subproblem w.r.t. Qi is as follows:

min
Qi

(1/2)
∥∥∥XiQi −G(r)

∥∥∥2
F
+ gi(Qi), ∀i. (5)

When Xi is large and sparse, many efficient algorithms can be
considered to solve the above – e.g., the alternating direction
method of multipliers (ADMM) [24]. However, ADMM does
not guarantee monotonic decrease of the objective value if the
subproblem is not optimally solved. We wish to maintain mono-
tonicity of the outer loop even when the subproblems are inex-
actly solved – note that inexact conditional updates are practi-
cally unavoidable when dealing with very large problems, for
computational complexity considerations. This is an important
difference when analyzing big sparse data. Hence, we propose
to employ the proximal gradient (PG) method for handling Prob-
lem (5). Let us define fi(Qi,G

(r)) = 1
2
‖XiQi − G(r)‖2F and

∇Qifi(Qi,G
(r)
i ) = XT

i XiQi − XT
i G

(r). Then, by PG, we
update Qi by the following update rule:

Q
(r,t+1)
i ← proxgi

(
Q

(r,t)
i − αi∇Qifi

(
Q

(r,t)
i ,G

(r)
i

))
, (6)

where proxgi(Y ) = argminX ‖X − Y ‖22 + gi(X), Q(r,t+1)
i

and Q
(r,t)
i denote Qi at iteration t + 1 and t when G(r) is fixed,

t = 0, 1, . . . , T−1, and Q
(r,0)
i = Q

(r)
i and Q

(r,T )
i = Q

(r+1)
i under

this notation. Note that we may choose a small T for efficiency. For
many gi(·)’s including the aforementioned ones, the operator in (6)
has closed-form or admits lightweight computation [25].

Next, we consider solving the subproblem w.r.t. G when fixing
{Qi}Ii=1. Instead of dealing with the original G-subproblem, we
propose to solve the following augmented form:

min
GTG=I

I∑
i=1

1/2
∥∥∥XiQ

(r+1)
i −G

∥∥∥2
F
+ ω‖G−G(r)‖2F , (7)

where we define ω = (1−γ)I/2γ for 0 < γ ≤ 1. Note that when γ =
1, the above boils down to the original G-subproblem. Adding the
proximal term has the effect of controlling step size, which can lead
to convergence rate guarantees as will be shown shortly. Expanding
the above and dropping the constants, the solution amounts to the



following: Let R = γ
∑I
i=1 XiQ

(r+1)
i /I+(1−γ)G(r). Then, an

optimal solution of Problem (7) is

G(r+1) ← URV
T
R , (8)

where URΣRV
T
R = svd (R, ′econ′), and svd (·, ′econ′) denotes

the economy-size SVD that produces UR ∈ RL×K , ΣR ∈ RK×K ,
and V T

R ∈ RK×K . The above solution is based on the well-known
Procrustes projection [26].

We call the proposed algorithm in Eqs (6) and (8) alternating
optimization-based MAX-VAR GCCA (AltMaxVar). As one can
see, the algorithm does not instantiate any large dense matrix dur-
ing the procedure and thus is highly efficient in terms of memory.
Also, the procedure does not destroy sparsity of the data, and thus
the computational burden is light when the data is sparse – which is
often the case in large-scale learning applications.

3.2. Computational and Memory Complexities
If the views Xi for i = 1, . . . , I are sparse, the PG updates are easy
to compute. Specifically, when computing ∇Qifi(Qi,Gi), XiQi

is calculated first, which has a complexity order of O(nnz(Xi) ·
K) flops, where nnz(·) counts the number of non-zeros. The next
multiplication, i.e., XT

i (XiQi), has the same complexity order.
The same applies to the operation of XT

i G. For solving the G-
subproblem, since only an economy-size SVD of a very thin matrix
(since L � K) is required, the step only costs O(LK2) flops [21],
which is linear in L.

In terms of memory, all the terms involved (i.e., Qi, Gi, XiQi,
XT
i XiQi and XT

i Gi) only require O(LK) memory or less, but
the eigen-decomposition-based solution needs O(M2

i ) and O(L2)
memory to store (XT

i Xi)
−1 and M , respectively. Note that K is

usually very small compared to L and Mi.

3.3. Convergence Properties
In this subsection, we present the results of convergence analysis of
the proposed AltMaxVar algorithm. Due to space limitations, we
must relegate all proofs to the forthcoming journal version 1. Note
that the algorithm alternates between a (possibly) non-smooth sub-
problem and a manifold-constrained subproblem, and the subprob-
lems may or may not be solved to optimality. Existing convergence
analyses for exact and inexact block coordinate descent such as those
in [27–30] cannot be directly applied to analyze AltMaxVar, and
thus its convergence properties are not obvious. We first establish
convergence to a Karush-Kuhn-Tucker (KKT) piont of Problem (4).
A KKT point (G∗, {Q∗i }i) satisfies the following first-order opti-
mality conditions: 0 ∈ ∇Qi fi(Q

∗
i ,G

∗) + ∂Qig(Q
∗
i ), ∀i and

0 =
∑I
i=1∇Gfi({Q∗i }i,G∗)+GΛ∗, (G∗)TG∗ = I , where Λ

is a Lagrangian multiplier associated with the constraint GTG = I ,
and ∂Qigi(Qi) denotes a set of subgradients of the (possibly) non-
smooth function gi(Qi). We first show the following:

Proposition 1 Assume that αi ≤ 1/Li for all i, where Li =
λmax(X

T
i Xi) is the largest eigenvalue of XT

i Xi. Also assume
that gi(·) is a closed convex function, T ≥ 1, and γ ∈ (0, 1]. Then,
the following hold: (a) Every limit point of the solution sequence is
a KKT point of Problem (2). (b) If Xi and Q

(0)
i for i = 1, . . . , I are

bounded and rank(Xi) = Mi, then the whole solution sequence
converges to the set K that consists of all the KKT points.

Proposition 1 (a) characterizes the limit points of the solution se-
quence: Even if only one proximal gradient step is performed in each

1A longer version of the paper with more detailed proofs is available at
http://arxiv.org/abs/1605.09459.

iteration r, every convergent subsequence of {G(r), {Q(r)
i }i}r at-

tains a KKT point of Problem (4). Part (b) shows a stronger result
regarding convergence of the whole sequence. The assumptions, on
the other hand, are also more restrictive; i.e., rank(Xi) =Mi.

It is also meaningful to estimate the number of iterations that is
needed for the algorithm to reach a neighborhood of a KKT point.
To this end, we show the following:

Theorem 1 Assume that αi < 1/Li, 0 < γ < 1, and T ≥ 1. Let
δ > 0 and J be the number of iterations needed so that Z(r+1) ≤ δ
holds for the first time, where

Z(r+1) =

T−1∑
t=0

I∑
i=1

∥∥∥∇̃QiFi(Q
(r,t)
i ,G(r))

∥∥∥2
F

+
∥∥∥G(r) −

∑I
i=1 XiQ

(r+1)
i /I +G(r+1)Λ(r+1)

∥∥∥2
F
,

in which ∇̃QiFi(Q
(r,t)
i ,G(r)) = 1

αi
(Q

(r+1,t)
i −proxgi(Q

(r,t)
i −

αi∇Qif(Q
(r,t)
i ,G(r)))) is the proximal gradient at Q

(r,t)
i w.r.t.

Qi, and Λ(r+1) is the Lagrangian multiplier associated with
G(r+1). Then, there exists a constant v ≥ 0 such that δ ≤ v/J−1.
In Theorem 1, the Z-function serves as a measure of the optimality
gap between the current iterate and a KKT point since one can show
that Z(r+1) → 0 implies that a KKT point is attained. By Theo-
rem 1, AltMaxVar reduces the (measure of the) optimality gap to
O(1/r) after r iterations – at least a sublinear rate is guaranteed.
One subtle point worth mentioning is that the analysis in Theorem 1
holds when γ < 1, which corresponds to the case where ω > 0 in
the G-subproblem and the solution is controlled to be not far away
from G(r). This reflects an interesting fact in AO – when the sub-
problems are handled in a conservative way using a controlled step
size, a certain convergence rate property may be guaranteed.

Note that when gi(·) = µi‖ · ‖2F for µi ≥ 0, this case is op-
timally solvable (i.e., the solution is the K leading eigenvectors of
M =

∑I
i=1 Xi(X

T
i Xi+µiI)

−1XT
i for µi ≥ 0 [14]). Therefore,

it is natural to ask if AltMaxVar loses optimality under such cases
by gaining scalability? To address this question, we denote U1 and
U2 as theK principal eigenvectors of M and the eigenvectors span-
ning its orthogonal complement, respectively. Recall that our goal is
to find G such thatR(G) = R(U1). We adopt the definition of sub-
space distance in [21], i.e., dist(R(G(r)),R(U1)) = ‖UT

2 G(r)‖2,
where ‖X‖2 denotes the matrix 2-norm, and show the following:

Theorem 2 Denote the eigenvalues of M ∈ RL×L by λ1, . . . , λL
in descending order. Consider gi(·) = µi‖ · ‖2F for µi ≥ 0
and let γ = 1. Assume that rank(Xi) = Mi , λK > λK+1,
and R(G(0)) is not orthogonal to any component in R(U1); i.e.,

cos(θ) = minu∈R(U1),v∈R(G(0))
|uT v|

(‖u‖2‖v‖2)
> 0. Also assume

that each subproblem in (5) is solved to accuracy ε; i.e., ‖Q(r+1)
i −

Q̃
(r+1)
i ‖2 ≤ ε, where Q̃

(r+1)
i = (XT

i Xi + µiI)
−1XiG

(r). Then,
after r iterations,

dist
(
R(G(r)),R(U1)

)
≤ tan(θ) (λK+1/λK)r + C

holds, where C = O
(∑I

i=1 λmax(Xi)ε
)

is a constant.

Theorem 2 ensures that if a T suffices for the Q-subproblem to ob-
tain a good enough approximation to its optimal solution, the al-
gorithm converges linearly to a global optimal solution up to some
accuracy loss. In our simulations, we observe that using T = 1 al-
ready gives very satisfactory results (as will be shown in the next
section), which leads to computationally very cheap updates.



4. SIMULATIONS AND CONCLUSIONS
We generate the views by Xi = ZAi + σNi where Z ∈ RL×N is
common to all views, Ai ∈ RN×M is a “mixing matrix” whose ef-
fect is supposed to be suppressed by Qi, Ni ∈ RL×M is noise,
and σ ≥ 0. Z, Ai, and Ni are large sparse matrices and the
non-zero elements follow the zero-mean unit-variance i.i.d. Gaus-
sian distribution. Xi is sparse and its density level ρi is definied as
ρi = nnz(Xi)/LM. In the simulations, we let ρ = ρi for all i. We use
the eigen-decomposition based solution of MAX-VAR GCCA as a
benchmark when applicable. Another algorithm called multiview la-
tent semantic analysis (MVLSA) is also employed as a baseline [14].
MVLSA truncates the rank of the views using PCA as pre-processing
and then applies the eigen-decomposition based solution.

In Fig. 1, we show the runtime performance of the algorithms
for various sizes of the views, where density of the views is con-
trolled so that ρ ≈ 10−3. The regularization gi(·) = 0.1‖ · ‖2F is
employed by all algorithms. We let M = L × 0.8, M = N and
change M from 5, 000 to 50, 000. To run MVLSA, we truncate the
ranks of views to P = 100, P = 500 and P = 1, 000, respec-
tively. We use MVLSA with P = 100 to initialize AltMaxVar and
let T = 1 and γ = 1. We stop the proposed algorithm when the
absolute change of the objective value is smaller than 10−4. Ten
random trials are used to obtain the results. One can see that the
eigen-decomposition based algorithm does not scale well since the
matrix (XT

i Xi + µiI)
−1 is dense. In particular, the algorithm

exhausts the memory quota (32GB RAM) when M = 30, 000.
MVLSA with P = 100 and the proposed algorithm both scale very
well from M = 5, 000 to M = 50, 000: When M = 20, 000,
brute-force eigen-decomposition takes almost 80 minutes, whereas
MVLSA (P = 100) and AltMaxVar both use less than 2 minutes.
Note that the runtime of the proposed algorithm already includes the
runtime of the initialization time by MVLSA with P = 100, and
thus the runtime curve of AltMaxVar is slightly higher than that of
MVLSA (P = 100) in Fig. 1. Another observation is that, although
MVLSA exhibits good runtime performance when using P = 100,
the its runtime underP = 500 andP = 1, 000 is not very appealing.
The corresponding cost values can be seen in Table 1. The eigen-
decomposition based method gives the lowest cost values when ap-
plicable, as it is an optimal solution. The proposed algorithm gives
favorable cost values that are close to the optimal ones, even when
only one iteration of the Q-subproblem is implemented for every
fixed G(r) – this result supports our analysis in Theorem 2. Increas-
ing P helps improve MVLSA. However, even when P = 1, 000, the
cost value given by MVLSA is still higher than that of AltMaxVar,
and MVLSA using P = 1, 000 is much slower than AltMaxVar.
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Fig. 1: Runtime of the algorithms under various problem sizes.

Table 1: Cost values of the algorithms under different problem sizes.
L =M/0.8, ρ = 10−3, σ = 0.1. † means “out of memory”.

Algorithm
M

5,000 10,000 20,000 30,000 40,000 50,000
Global Opt 0.053 0.033 0.021 † † †

MVLSA (P = 100) 2.164 3.527 5.065 5.893 6.475 7.058
MVLSA (P = 500) 0.280 0.717 1.766 2.582 3.407 3.996

MVLSA (P = 1, 000) 0.125 0.287 0.854 1.406 2.012 2.513
Proposed 0.092 0.061 0.049 0.043 0.038 0.039

Table 2 presents the simulation results of a large-scale case in
the presence of outlying features. Here, we fix L = 100, 000 and
M = 80, 000 and change the density level ρ. We add 30, 000
outlying features to each view and every outlying feature is a ran-
dom sparse vector whose non-zero elements follow the zero-mean
i.i.d. unit-variance Gaussian distribution. We also scale the out-
lying features so that the average energy of the clean and outly-
ing features are identical. The other settings follow those in the
last simulation. In this case, the optimal solution to Problem (4)
is unknown. Therefore, we evaluate the performance by observing
metric1 = 1/I

∑I
i=1 ‖Xi(:,Sci )Q̂i(Sci , :)− Ĝ‖2F , and metric2 =

1/I
∑I
i=1 ‖Xi(:,Si)Q̂i(Si, :)‖2F , where Sci and Si denote the in-

dex sets of clean and outlying features of view i, respectively – i.e.,
Xi(:,Sci ) = ZiAi and Xi(:,Si) = Oi if noise is absent. metric1
measures the performance of matching Ĝ with the relevant part of
the views, while metric2 measures the performance of suppressing
the irrelevant part. We desire low values of metric1 and metric2 si-
multaneously. We use gi(·) = µi‖ · ‖2,1 for AltMaxVar to discard
the outlying features. One can see from Table 2 that the proposed
algorithm with µi = 0.05 gives the most balanced result – both eval-
uation metrics are at fairly low levels. Using µi = 0.5 suppresses
Qi(S, :) even better, but using such a relatively large µi degrades
the fitting metric. In terms of runtime, one can see that the proposed
algorithm operates within the same order of magnitude as MVLSA.
Since AltMaxVar works with the intact views of size L×M while
MVLSA works with significantly reduced-dimension data, such run-
time performance of AltMaxVar is very satisfactory.

Table 2: Evaluation in the presence of outlying features. L =
100, 000, M = 80, 000, |S| = 30, 000, σ = 1, I = 3.

Algorithm measure
ρ (density of views)

10−5 5× 10−4 10−4 10−3

MVLSA

metric1 16.843 13.877 17.159 16.912
metric2 0.003 0.010 0.009 0.003

time (min) 0.913 1.019 1.252 3.983

Proposed (µ = .05)
metric1 0.478 0.610 0.565 0.775
metric2 0.018 0.134 0.034 0.003

time (min) 3.798 5.425 5.765 24.182

Proposed (µ = .1)
metric1 0.942 1.054 0.941 1.265
metric2 0.006 0.054 0.004 0.000

time (min) 2.182 3.791 4.510 16.378

Proposed (µ = .5)
metric1 1.592 1.497 1.306 1.538
metric2 0.003 0.021 0.000 0.000

time (min) 1.735 2.714 3.723 13.447

To conclude, we have considered large-scale MAX-VAR GCCA
with structure-promoting regularization and designed a memory-
efficient and computationally lightweight algorithm that easily in-
corporates various common regularization penalties. Our analysis
shows that the algorithm converges to a KKT point for a variety
of regularizations at a sublinear rate. When the classic MAX-VAR
GCCA is considered, the algorithm approaches a global optimal so-
lution at a linear rate. Simulations demonstrated the good scalability
and the effectiveness of the proposed algorithm.
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