
Technical Elements of Machine Learning for
Intellectual Property Law

Anthony Man-Cho So∗

Abstract

Recent advances in artificial intelligence (AI) technologies have
transformed our lives in profound ways. Indeed, AI has not only ena-
bled machines to see (e.g., face recognition), hear (e.g., music retrie-
val), speak (e.g., speech synthesis), and read (e.g., text processing),
but also, so it seems, given machines the ability to think (e.g., board
game-playing) and create (e.g., artwork generation). This chapter in-
troduces the key technical elements of machine learning (ML), which
is a rapidly growing sub-field in AI and drives many of the aforementi-
oned applications. The goal is to elucidate the ways human efforts are
involved in the development of ML solutions, so as to facilitate legal
discussions on intellectual property issues.

1 Introduction
Although the field of artificial intelligence (AI) has been around for more
than 60 years, its widespread influence is a rather recent (within the past de-
cade or so) phenomenon. From human face recognition to artificial face gene-
ration, from automated recommendations on online platforms to computer-
aided diagnosis, from game-playing programs to self-driving cars, we have
witnessed the transformative power of AI in our daily lives. As it turns out,
machine learning (ML) techniques lie at the core of many of these innovati-
ons. ML is a sub-field of AI that is concerned with the automated detection
of meaningful patterns in data and using the detected patterns for certain
tasks.1 Roughly speaking, the learning process involves an algorithm,2 which

∗Department of Systems Engineering and Engineering Management, The Chinese Uni-
versity of Hong Kong. All online materials were accessed on 30 March 2020. E–mail:
manchoso@se.cuhk.edu.hk

1Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From
Theory to Algorithms (Cambridge University Press 2014).

2An algorithm is a well-defined sequence of computational steps for solving a problem.
Specifically, it takes zero or more values as inputs and applies the sequence of steps to
transform them into one or more outputs. Note that an algorithm can be described in,
say, the English language (which is easier for humans to understand) or in a programming
language (which is easier for the computer to process). The word program refers to an
expression of an algorithm in a programming language. See Donald E Knuth, The Art

1



takes training data (representing past knowledge or experience) as input and
outputs information that can be utilized by other algorithms to perform
tasks such as prediction or decision making. With the huge amount of data
generated on various online platforms,3 the increasing power (in terms of
both speed and memory) of computers, and advances in ML research, rese-
archers and practitioners alike have been able to unleash the power of ML
and contribute to the many impressive technologies we are using or experien-
cing today. In this chapter, I will give an overview of the key concepts and
constructions in ML and, with an aim to make them more concrete, explain
the roles they play in some of the contemporary applications. In addition, I
will elucidate the ways human efforts are involved in the development of ML
solutions, which I hope could facilitate the legal discussions on intellectual
property issues. In recent years, there has been much interest in applying
ML techniques to legal tasks such as legal prediction and classification of
legal documents. However, the discussion of these applications is beyond
the scope of this chapter.4

2 Main Types of Machine Learning
The outcome of any learning process depends, among other things, on the
material from which the learner learns. As alluded to in the introduction, in
the context of ML, the learning material comes in the form of training data.
Since the training data in most applications of interest are too complex and
too large for humans to process and reason about, the power of modern
computers is harnessed to identify the patterns in and extract information
from those data. A key characteristic of ML algorithms is that they can
adapt to their training data. In particular, with better training data (in
terms of volume and quality), these algorithms can produce outputs that
have better performance for the tasks at hand. In order to distinguish
among different ML tasks, it is common to classify them according to the
nature of the training data and the learning process. In this section, I
will describe three main types of ML tasks—namely supervised learning,
unsupervised learning, and reinforcement learning—and explain how they
manifest themselves in various real-life applications.

of Computer Programming. Volume I: Fundamental Algorithms (Third edition, Addison
Wesley Longman 1997) for a more detailed discussion.

3The data could be in the form of images and texts posted on social media, browsing
and purchasing history on e-commerce sites, or emails sent and received using online email
platforms, just to name a few.

4Readers who are interested in some of the applications of ML in the legal field can refer
to, e.g., Harry Surden, ‘Machine Learning and Law’ (2014) 89 Washington Law Review
87.

2



2.1 Supervised Learning

Supervised learning refers to the scenario in which the training data contain
certain information (commonly referred to as the label) that is missing in
the test data (i.e., data that have not been seen before), and the goal is
to use the knowledge learned from the training data to predict the missing
information in the test data. It has been successfully applied to various
fields, such as credit risk assessment5 and medical imaging.6 To better un-
derstand the notion of supervised learning, let me highlight three of its key
elements—preparation of training data, formulation of the learning task,
and implementation of algorithmic solutions to perform the learning.

2.1.1 Preparation of Training Data

The word “supervised” in “supervised learning” comes from the fact that
the training data contain information that guides, or supervises, the learning
process. Typically, the information is supplied by humans (a process referred
to as labeling the data). As such, it often requires substantial effort to
prepare the training data for a supervised learning task.7 To illustrate the
concepts of training data and test data in the supervised learning setting,
consider the task of recognizing handwritten digits. The training data can
be a collection of handwritten digit samples, each of which is labeled with its
interpretation (i.e., 0�9). Figure 1 shows a small portion of such a collection
from the MNIST database.8 Any collection of handwritten digit samples
that have not been labeled or seen before can then be the test data.

It is important to note that in general the label given to a data sample
is not guaranteed to be correct. This can be caused, e.g., by human error
or by the ambiguity in the data sample itself. For instance, in labeling
handwritten digit samples, mistakes can occur when the handwritten digits
are hardly legible (Figure 2). As the premise of supervised learning is to use
the knowledge learned from the labels of the training data samples to predict

5Dinesh Bacham and Janet Yinqing Zhao, ‘Machine Learning: Challenges, Lessons,
and Opportunities in Credit Risk Modeling’ (2017) 9 Moody’s Analytics Risk Perspectives:
Managing Disruption 30.

6Geert Litjens and others, ‘A survey on deep learning in medical image analysis’ (2017)
42 Medical Image Analysis 60.

7Nowadays, it is common to use crowdsourcing to get a large volume of data labeled.
One manifestation of this is the use of CAPTCHAs (Completely Automated Public Turing
test to tell Computers and Humans Apart) on various websites. Although the explicitly
stated purpose of CAPTCHAs is to authenticate users as humans (to prove “I’m not a
robot”), the responses given by human users provide information about the queries posed
by CAPTCHAs (e.g., identify the traffic lights in the image, transcribe the distorted
words, etc.), thus labeling the data in those queries in the process. See, e.g., Luis von
Ahn and others, ‘reCAPTCHA: Human-Based Character Recognition via Web Security
Measures’ (2008) 321(5895) Science 1465, for a discussion.

8Yann LeCun, Corinna Cortes, and Christopher JC Burges, ‘The MNIST database of
handwritten digits’ (2010) 〈http://yann.lecun.com/exdb/mnist/〉.

3

http://yann.lecun.com/exdb/mnist/


Figure 1: Sample handwritten digits from the MNIST database with their
corresponding labels.

the labels of the test data samples, the presence of incorrectly labeled data
samples can adversely affect the outcome of the learning process.

Figure 2: An ambiguous handwritten digit: Is this a ‘0’ or ‘6’?

2.1.2 Formulation of Learning Task

The prediction of the labels of the data samples relies on a prediction rule—
i.e., a function that takes a data sample as input and returns a label for that
sample as output. With this abstraction, the goal of supervised learning can
be understood as coming up with a prediction rule that can perform well on
most data samples. Here, the performance is evaluated by a loss function,
which measures the discrepancy between the label returned by the prediction
rule and the actual label of the data sample. The choice of the loss function
is largely dictated by the learning task at hand and is commonly known.9

To achieve the aforementioned goal, a natural idea is to search among
rules that minimize the loss function on the training data. In other words,
we aim to find the rule that best fits our past knowledge or experience.
However, without restricting the type of rules to search from, such an idea
can easily lead to rules that perform poorly on the unseen test data. This
phenomenon is known as over-fitting. As an illustration, consider the task
of classifying data points on the plane into two categories. Figure 3 shows
the training data, in which each data point is labeled by either a cross “×”

9See, e.g., Shalev-Shwartz and Ben-David (n 1) for a discussion of different loss functi-
ons.

4



or a circle “◦” to indicate the category it belongs to. A prediction rule takes
the form of a boundary on the plane, so that given any point, the side of the
boundary on which the point falls will yield its predicted category. Given a
boundary, a common way to measure its performance on the training data
is to count the number of points that it misclassified. Naturally, the fewer
misclassified points, the better the boundary.

y

x

(a) Fitting by arbitrary curve

y

x

(b) Fitting by line

Figure 3: Illustration of over-fitting in a classification task.

Suppose that we do not restrict the type of boundaries we can use. Then,
a boundary that misclassifies the fewest training data samples is given by
the bolded curve in Figure 3a. Indeed, all the crosses are on the left of the
curve, while all the circles are on the right. However, such a boundary fits
the training data too well and is not well-suited for dealing with potential
variations in the test data. In particular, it is more likely to return a wrong
classification for a test data sample.

On the other hand, suppose that we restrict ourselves to use only straight-
line boundaries. Then, the dotted line in Figure 3b yields the best per-
formance among all straight lines in terms of the number of misclassified
training data points. Although the dotted line incorrectly classifies some of
those points (e.g., there are two circles on the left and two crosses on the
right of the line), it can better handle variations in the test data and is thus
more preferred than the curved boundary in Figure 3a.

The above discussion highlights the necessity to choose the type of pre-
diction rules that will be used to fit the training data. Such a choice de-
pends on the learning task at hand and has to be made by human users
before seeing the data. In general, there are many different types of pre-
diction rules that one can choose from. Some examples include polynomial
functions, decision trees, and neural networks of various architectures. A
key characteristic of these different types of rules is that each type can be
defined by a set of parameters. In other words, each choice of values for the
parameters corresponds to one prediction rule of the prescribed type. For
instance, in the classification example above, the straight-line boundaries

5



used in Figure 3b, which are lines on the plane, can be described by two
parameters—slope and intercept. As another illustration, let us consider
neural networks, which constitute one of the most powerful and popular
types of prediction rules in ML today. Roughly speaking, a neural network
consists of nodes (representing neurons) linked by arrows. Each arrow has a
weight and connects the output of a node (i.e., the tail of the arrow) to the
input of another node (i.e., the head of the arrow). Each node implements
a function whose input is given by a weighted sum of the outputs of all the
nodes linked to it, where the weights are obtained from the corresponding ar-
rows. The architecture of a neural network is specified by its nodes, the links
between the nodes, and the functions implemented on the nodes.10 The weig-
hts on the links then constitute the parameters that describe different neural
networks with the same architecture. Some commonly used neural network
architectures include autoencoders, convolutional neural networks (CNNs),
feedforward networks, and recurrent neural networks (RNNs). Each of these
architectures is designed for particular learning tasks.11

Figure 4 shows an example of a simple three-layer feedforward neural
network. It takes three inputs, which are denoted by x, y, z. The weight
assigned to an arrow is given by the number next to it. All the nodes
implement the same function, which is denoted by f(·).12 To get a glimpse
of what is being computed at the nodes, let us focus on the shaded node. It
has two inputs, one from the output of the first node in the first layer, the
second from the output of the second node in the first layer. The former,
which equals f(x), has a weight of 0.8; the latter, which equals f(y), has
a weight of 0.6. Therefore, the output of the shaded node is computed
as 0.8 × f(x) + 0.6 × f(y). By assigning a different set of weights to the
arrows, we obtain a different neural network with the same architecture.
As an aside, one often sees the word “deep” being used to describe neural
networks nowadays. Loosely speaking, it simply refers to a neural network
with many (say, more than 2) layers.

Once the human user specifies the type of prediction rules to use, the
next step is to find the values of the parameters that minimize the loss
function on the training data. This gives rise to a computational problem
commonly known as loss minimization. By solving this problem, one obtains
as output a prediction rule of the prescribed type that best fits the training
data. The rule can then be integrated into other decision support tools to
inform the decisions of human users.

10Shalev-Shwartz and Ben-David (n 1).
11Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning (http://www.

deeplearningbook.org, MIT Press 2016).
12Mathematically, a function can be regarded as specifying an input-output relationship.

The dot “·” in the notation “f(·)” represents a generic input to the function f . Given a
number t as input, the function f returns the number f(t) as output.

6

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Layer 1

Output

0.2

0.8

0.6

0.1

0.9

0.4

0.25

0.3

0.6

0.33

0.75

0.25

Inputs

Layer 2 Layer 3

f(·)

f(·)

f(·)

f(·)

f(·)

f(·)

f(·)y

x

z

f(·)

Figure 4: A simple feedforward neural network.

2.1.3 Implementation of Algorithmic Solution

Loss minimization problems are typically solved by iterative algorithms.
Starting from an initial choice of values for the parameters, which can be
viewed as a point in space, these algorithms proceed by moving the point
in a certain direction by a certain distance, and then repeat until certain
stopping criterion is met. Different algorithms have different rules for de-
termining the direction and distance to use at each point and have different
stopping criteria. Generally speaking, the directions and distances are de-
signed in such a way that the values of the loss function evaluated at the
points generated by the algorithm have a decreasing trend (recall that the
goal is to minimize the loss function), and the algorithm stops when no furt-
her progress can be made. One popular iterative algorithm for solving loss
minimization problems is the stochastic gradient method. At each step, the
method moves the current point along a random direction that is genera-
ted based on the properties of the loss function, and the distance by which
the point is moved is decreasing as the method progresses, so as to avoid
overshooting the solution.13

Although algorithm design requires human efforts and it is natural for
developers to protect their algorithms in some ways, the specifications (i.e.,
the rules for choosing directions and distances, and the stopping criterion)
of many iterative algorithms used in the ML community are public kno-
wledge. Still, even after one settles on a particular iterative algorithm to

13Sebastian Ruder, ‘An overview of gradient descent optimization algorithms’ (2016)
〈https://arxiv.org/abs/1609.04747〉.

7

https://arxiv.org/abs/1609.04747


solve the loss minimization problem at hand, the choice of initial values for
the parameters (also known as the initialization) could affect the perfor-
mance of the algorithm. To understand this phenomenon, let us consider
the scenario shown in Figure 5. The points on the horizontal axis represent
possible values of the parameter, and the curve represents the loss function
L. One can think of the curve representing L as a mountain range and an
iterative algorithm as a person hiking there without a map and can only
explore her immediate surroundings to decide on which way to go. The goal
of loss minimization can then be understood as finding the lowest point on
the mountain range. In Figure 5, this is the black dot corresponding to the
parameter value w∗ and loss function value L(w∗).

L(w′′)

w′

L

w′′w̄ w∗

L(w̄)

L(w∗)

L(w′)

Figure 5: Effect of initialization.

Now, suppose that the hiker starts at the leftmost black dot on the moun-
tain range. This corresponds to initializing the algorithm at the point w′

whose loss function value is L(w′). To get to a lower point on the mountain
range, the person will naturally walk down the valley until she reaches the
point with value L(w̄). At this point, the hiker cannot reach a lower point
on the mountain range without first going up. Since she does not have a
full picture of the mountain range, she will be inclined to stop there. This
is precisely the behavior of most iterative algorithms—they will stop at a
point when there is no other point with a lower loss function value nearby.
However, it is clear that the point with value L(w̄) is not the lowest one
on the mountain range. In other words, by starting at the leftmost black
dot, most iterative algorithms will stop at the sub-optimal point that cor-
responds to the value L(w̄). On the other hand, if the algorithm starts at
the rightmost black dot, which corresponds to taking w′′ as the initial point
with loss function value L(w′′), then it will stop at the lowest point on the
mountain range. The parameter value at this point is w∗, which corresponds
to the prediction rule that best fits the training data.

8



In view of the above, a natural question is how to find a good initi-
alization for the learning task at hand. Although there are some general
rules-of-thumb for choosing the initialization, finding a good one is very
much an art and requires substantial human input and experience.14 More-
over, since the shape of the loss function depends on both the training data
and the type of prediction rules used, an initialization that works well for
one setting may not work well for another.

From the brief introduction of supervised learning above, it can be seen
that the performance of the prediction rule obtained from a supervised le-
arning process hinges upon three human-dependent factors: the quality of
the training data (in particular, the informativeness of the labels), the type
of prediction rules used to fit the training data (e.g., the choice of a certain
neural network architecture), and the algorithm (including its settings such
as the initialization and the rule for finding the next point) used to solve the
loss minimization problem associated with the learning task. As such, the
prediction rules obtained by two different users will generally be different if
they specify any of the above factors differently. Putting it in another way,
it is generally difficult to reproduce the outcome of a supervised learning
process without knowing how each of the above three factors is specified. In
addition, the prediction rule obtained is often neither transparent nor inter-
pretable. Indeed, a human cannot easily explain how an iterative algorithm
combines the different features of the data to produce the prediction rule, or
how the rule makes predictions, or why the rule makes a certain prediction
for a given data sample. Such a black-box nature of the prediction rule li-
mits our understanding of the learning task at hand and could have various
undesirable consequences.15

2.2 Unsupervised Learning

Unlike supervised learning, in which the goal is to learn from the labels of
the training data samples a rule that can predict the labels of the unseen test
data samples as accurately as possible, unsupervised learning is concerned
with the scenario where the training data samples do not have any labels and
the goal, loosely speaking, is to uncover hidden structure in the data. Such a
goal is based on the belief that data generated by physical processes are not

14To quote Goodfellow, Bengio, and Courville (n 11) , “Modern initialization strategies
are simple and heuristic. Designing improved initialization strategies is a difficult task
because neural network optimization is not yet well understood.” (p. 293).

15In recent years, there has been growing interest in interpretable ML, which concerns
the design of ML systems whose outputs can be explained; see Christoph Molnar, Inter-
pretable Machine Learning: A Guide for Making Black Box Models Explainable (https:
//christophm.github.io/interpretable-ml-book/, 2019) for some recent advances in this
direction.

9

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


random but rather contain information about the processes themselves.16

For instance, a picture taken by a camera typically contains a foreground
and a background, and one can try to identify the backgrounds in image data
for further processing. However, in an unsupervised learning task, there is
no external guidance on whether the uncovered structure is correct or not,
hence the word “unsupervised”. This is in contrast to supervised learning,
where one can evaluate the accuracy of the prediction rule by comparing the
predicted labels and actual labels of the data samples. Thus, one may say
that unsupervised learning has a much less well-defined goal. Nevertheless,
it is more typical of how humans learn. Indeed, as Geoffrey Hinton, one of
the most prominent researchers in artificial intelligence, put it:17

When we’re learning to see, nobody’s telling us what the right
answers are—we just look. [...] The brain’s visual system requi-
res 1014 [neural] connections. And you only live for 109 seconds.
So it’s no use learning one bit per second. You need more like
105 bits per second. And there’s only one place you can get that
much information—from the input itself.

Moreover, since unsupervised learning does not require labeled data—which,
as previously mentioned, are not only more expensive to obtain but also
quite limited due to the substantial human efforts involved—it is applicable
to many more settings. As a first illustration, let us consider one of the most
fundamental tasks in unsupervised learning—clustering.

2.2.1 Clustering

Roughly speaking, the goal of clustering is to divide the data samples into
groups, so that those with similar characteristics belong to the same group
and those with different characteristics are separated into different groups.
The discovered clusters can then inform the decisions of human users. Clus-
tering is a data analysis technique that has many applications, such as cu-
stomer segmentation (the process of identifying groups of customers with
similar characteristics so that targeted marketing can be carried out)18 and
image segmentation (the process of dividing images into regions so that each
region is largely homogeneous).19

One may note the similarity of clustering with classification (recall the
example shown in Figure 3). However, there is a fundamental difference

16DeLiang Wang, ‘Unsupervised Learning: Foundations of Neural Computation—A
Review’ (2001) 22(2) AI Magazine 101.

17Pam Frost Groder, ‘Neural Networks Show New Promise for Machine Vision’ (2006)
8(6) Computing in Science & Engineering 4.

18Michael J Shaw and others, ‘Knowledge management and data mining for marketing’
(2001) 31(1) Decision Support Systems 127.

19Richard Szeliski, Computer Vision: Algorithms and Applications (Springer-Verlag
2011).

10



between the two. In a classification task, each training data sample is labeled
with its category. As such, we know exactly how many categories are there
and what similar data samples look like. By contrast, in a clustering task,
it is not clear how many groups one should divide the data samples into
and how to define similarity (or dissimilarity) between two samples. Thus,
depending on the notion of similarity used, it is entirely possible to come
up with different but equally convincing groupings of the same set of data.
To demonstrate such a possibility, let us consider dividing the points below
(which constitute the data samples) into two groups.20

If one prefers not to separate nearby points, then the points should be divi-
ded into the two groups shown in Figure 6a. However, if one prefers not to
have far-away points belonging to the same group, then the points should
be divided into the two groups shown in Figure 6b.

(a) Nearby points should not
be separated

(b) Far-away points should
not share the same group

Figure 6: Clustering points into two clusters.

The existence of multiple different clustering criteria motivates the deve-
lopment of various clustering algorithms. In general, human input is needed
to define a suitable criterion for the clustering task at hand. Once the cri-
terion is fixed, further human input is needed to either choose an existing
algorithm (if available) or design a new one to compute a desired clustering
of the data samples.

2.2.2 Generative Modeling

As another illustration, let us turn to generative modeling—an unsupervised
learning task that has attracted much attention in recent years. Besides
being used to inform decisions, the information extracted from the training
data can also be used to build a model (in the form of an algorithm) for
generating new data samples that resemble or are highly related to the
training data. The task of building such a model is known as generative

20This example is taken from Chapter 22 of Shalev-Shwartz and Ben-David (n 1).

11



modeling. It lies at the core of many intriguing applications, such as image
generation (e.g., to generate highly realistic synthetic photographs that are
practically indistinguishable from real ones)21 and poem generation (e.g., to
generate a poem that “describes” the scene of an input image).22 Currently,
one of the most powerful approaches to generative modeling is to use a
neural network architecture called generative adversarial network (GAN).

A GAN consists of two components, namely the generator and the dis-
criminator. The generator produces new data samples that are supposed to
resemble the training data (the fake data). These generated data samples
are then passed along with some training data samples (the real data) to the
discriminator, whose task is to classify the data samples it receives as either
real or fake. As the word “adversarial” suggests, these two components can
be viewed as two players in a game, in which the generator aims to make the
real and fake data samples indistinguishable to the discriminator, while the
discriminator aims to correctly classify the data samples that are being pas-
sed to it. The two components interact in rounds. At the end of each round,
the generator is updated depending on how well it fools the discriminator,
while the discriminator is updated depending on how well it classifies the
real and fake data samples. The interaction ends when the discriminator is
no longer able to distinguish between the real and fake data.23 At this point
we say that the GAN is trained, and the resulting generator can be used as
the generative model. Figure 7 shows the schematic view of a GAN.

Real/Fake?

Update

Update

Input

Generator
Generated

Data Samples

Real Data Samples

Discriminator

Figure 7: Schematic view of a GAN.

In more detail, both the generator and discriminator are represented by
21For a state-of-the-art approach, see Tero Karras and others, ‘Analyzing and Improving

the Image Quality of StyleGAN’ (2019) 〈https://arxiv.org/abs/1912.04958〉 Readers who
are interested in seeing its performance can visit https://thispersondoesnotexist.com/ (for
human face generation) or https://thiscatdoesnotexist.com/ (for cat photo generation).

22Bei Liu and others, ‘Beyond Narrative Description: Generating Poetry from Images by
Multi-Adversarial Training’ [2018] Proceedings of the 26th ACM International Conference
on Multimedia 783.

23One can formalize this by comparing the classification accuracy of the discriminator
with that of random guess, which is 1/2.

12

https://arxiv.org/abs/1912.04958


neural networks. From the discussion in Section 2.1, we know that each
of these neural networks has its own set of parameters. To measure how
well these two networks perform, two loss functions are introduced, one
for the generator (denoted by LG) and one for the discriminator (denoted
by LD). These loss functions take the parameters of both the generator
and discriminator networks as input. However, since the generator and
discriminator are competing against each other, each can only control the
parameters of its own network. In particular, only after both the generator
and discriminator fix the values of the parameters of their own networks
would the values of the loss functions LG and LD be known. Such a setting
can best be understood as a game between the generator and discriminator,
where each player’s move is to choose the values of the parameters it controls,
and the payoffs to the players are given by the corresponding values of the
loss functions and are known only after both players make their moves. The
goal of the game is to find the values of the parameters of the generator and
discriminator networks so that the loss functions LG and LD are minimized.
This gives rise to a computational problem that can again be solved by
iterative algorithms.

Naturally, the performance of a GAN depends on the architectures of the
generator and discriminator networks, the choice of the loss functions LG
and LD and the iterative algorithm used to minimize them, and the training
data. While there are some standard choices for the network architectures,
loss functions, and the algorithm for minimizing the loss functions,24 a hu-
man user will have to come up with the training data and the initialization
strategy for the algorithm. Without knowing either of these two ingredients,
it is virtually impossible to reproduce the generator obtained from a trained
GAN.

In view of its applications in generative modeling, particularly on content
(e.g., photos, artworks, poems, etc.) generation, one may ask whether GANs
have the intelligence to do creation on their own. Our discussions above
suggest that the answer is no. Indeed, the training of a GAN relies on
a number of ingredients supplied by a human user. The computer only
executes the instructions of the human user to identify the patterns in and
extract information from the training data. The generator obtained from a
trained GAN can thus be viewed as a nonlinear function that is created using
the ingredients supplied by the human user. However, it is generally difficult
to pin down precisely how the function depends on those ingredients, as the
process of creating the function is too complex for humans to reason about
using the currently available tools.

24Ian Goodfellow, ‘NIPS 2016 Tutorial: Generative Adversarial Networks’ (2017) 〈https:
//arxiv.org/abs/1701.00160〉.

13

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1701.00160


2.3 Reinforcement Learning

Reinforcement learning refers to the scenario in which an agent25 learns
by interacting with its environment over time to achieve a certain goal.
The interaction involves the agent taking actions to change the state of the
environment and receiving feedback in the form of rewards and penalties
from the environment, while the goal is typically to maximize the total
cumulative reward. To have a more concrete understanding of the above
concepts, let us consider the familiar game of tic-tac-toe.
Illustration: Tic-Tac-Toe. In the classic setting of tic-tac-toe, two players
take turns playing on a 3-by-3 board. One player places an “×” in an
unoccupied slot of the board when it is her turn, while the other player
places an “◦”. A player wins when her symbol appears three in a row, either
horizontally, vertically, or diagonally.

With the above setup, each player is an agent. A state of the game cor-
responds to a configuration (i.e., placement of the ×’s and ◦’s) of the board.
The actions available to an agent on her turn are the different ways she can
place her symbol in the current configuration of the board. Hence, the game
changes to a new configuration after the play of each player. There could
be many different ways to define the reward of an action. One possibility is
to define it as 1 if the game is won after the action is played, −1 if the game
is lost or ends in a draw, and 0 otherwise.

It is worth noting that even in such a simple game, the number of dif-
ferent states is large: Assuming that “×” is played first, there are 5,478
different states of the game! �

From the above illustration, it can be seen that reinforcement learning
is rather different from supervised learning. Indeed, it needs to account
for the interactions between the agent and the environment, and it is often
impractical to obtain labeled training data that indicate which actions are
“correct” in which state of the environment. Reinforcement learning is also
different from unsupervised learning, in that it aims to maximize a certain
reward function rather than to uncover hidden structure. Generally spea-
king, in a reinforcement learning task, an agent only knows the reward of
the action it has taken but not whether that action has the most reward.
Thus, the agent has to try out different actions in order to discover the
one with the most reward. In the process, however, the agent could incur
penalties. In addition, the action taken by the agent at present time may
affect not only the immediate reward but also the actions that are available
afterwards and hence the future rewards. These features naturally pose a
great challenge to the agent. On one hand, the agent should exploit what
it has learned from the environment by repeating actions that it has taken

25The term “agent” refers to a generic decision-making entity, such as a computer pro-
gram.

14



before and found to produce reward. On the other hand, the agent should
explore the environment by trying actions that it has not taken before in
order to discover ones with better reward. Therefore, to be successful in a
reinforcement learning task, the agent must carefully manage the trade-off
between exploration and exploitation.

There are various algorithms for solving reinforcement learning problems.
One family is the evolutionary methods.26 These methods are inspired by bi-
ological evolution and proceed in three steps. First, a collection of initial
solutions is generated. Here, a solution, which is commonly referred to as a
policy in the literature, takes the form of a function that specifies the action
to be taken by the agent from each state. Next, the solutions undergo
“reproduction”, meaning that new solutions are generated, e.g., by either
combining (known as recombination) or modifying (known as mutation) ex-
isting ones in a certain way. Then, a “natural selection” of the solutions is
performed, in which solutions that yield the most reward are carried over
to the next generation. These solutions will undergo another round of re-
production and the whole process repeats until certain stopping criterion is
met. There are various evolutionary methods in the literature, which dif-
fer in their implementations of the three steps above. These methods can
be effective when the number of states and number of actions available at
each state are small. Nevertheless, they do not make use of the information
contained in the state-action relationships of the reinforcement learning pro-
blem at hand. For instance, the natural selection step selects solutions that
lead to a high cumulative reward. However, for those solutions, it does not
reveal which actions taken in which states are crucial to getting the high
cumulative reward. Thus, evolutionary methods can be quite inefficient.27

Another family of algorithms that can address this shortcoming is the
value function methods. Roughly speaking, these methods also proceed in
three steps, and they differ in their implementations of these steps. First,
using some initial policy, a sequence of states, together with the actions
taken and the corresponding rewards earned along the way, is generated.
Next, the generated information is used to estimate a value function, which
specifies for each state the total reward that an agent can expect to earn
in the future if it starts from that state. For environments with a huge
number of states,28 the value function is typically approximated by a neural
network. In this case, estimating the value function means finding values of

26Zhi-Hua Zhou, Yang Yu, and Chao Qian, Evolutionary Learning: Advances in Theo-
ries and Algorithms (Springer Nature Singapore Pte Ltd 2019).

27Richard S Sutton and Andrew G Barto, Reinforcement Learning: An Introduction
(Second Edition, The MIT Press 2018).

28For many contemporary applications such as the board game Go, the number of states
can easily exceed the number of atoms in the whole universe (which is roughly 1080). Even
with today’s supercomputer, which can execute roughly 1017 calculations per second, it
will take more than 1063 seconds, or 1055 years, to enumerate all the states.

15



the parameters of the neural network that best fit the information collected
in the first step. Lastly, the estimated value function is used to update
the policy, and the whole process repeats until certain stopping criterion is
met. It should be noted that reward and value are two different notions.
The former measures the immediate merit of an action, while the latter
measures the long-term merit of a state by taking into account the possible
subsequent states and the rewards of the actions that lead to those states.
Thus, value function methods can evaluate the merit of individual states
and hence can better exploit the state-action relationships of the problem
at hand.29

Recently, the use of reinforcement learning techniques has led to some
very impressive advances in board game-playing (e.g., AlphaGo),30 video
game-playing (e.g., StarCraft),31 and autonomous driving,32 just to name
a few. As most applications of interest give rise to reinforcement learning
tasks that have an astronomical number of states, careful implementation of
algorithms and significant computational resources are essential to getting
good results. Both of these factors require substantial human input and
cannot be easily reproduced.

3 Closing Remarks
In this chapter, I gave an overview of three types of ML problems and
discussed the technical elements in each. A theme that is common in all three
types of problems is the use of certain algorithms to extract information
from data so as to enable humans to perform complex tasks. Whether the
learning process yields useful results depends mainly on the formulation of
the learning task at hand (e.g., for supervised learning, the type of prediction
rule used for classification; for unsupervised learning, the criterion used
to define clusters in the data; for reinforcement learning, the reward and
penalty used to train a self-driving car), the algorithm used to tackle the
formulation and its implementation details (e.g., initialization strategy), and
the volume and quality of the data (which represent past knowledge or
experience). As explained in this chapter, the above factors, especially the
last two, rely heavily on human users’ input. In particular, it is generally
difficult to reproduce the outcome of a learning process without knowing
how each of the factors is specified. Moreover, the outcome is typically
given as a black box, which lacks transparency and interpretability. It is

29Sutton and Barto (n 27).
30David Silver and others, ‘Mastering the game of Go without human knowledge’ (2017)

550 Nature 354.
31Oriol Vinyals and others, ‘Grandmaster level in StarCraft II using multi-agent rein-

forcement learning’ (2019) 575 Nature 350.
32Jack Stilgoe, ‘Self-driving cars will take a while to get right’ (2019) 1 Nature Machine

Intelligence 202.

16



often unclear to humans what features of the training data are used by an
ML algorithm to produce the output and how the output accomplishes its
objective.

Due to their ability to perform tasks that are beyond human capabilities,
modern ML systems are often deemed “intelligent” in the sense that they
can create or reason on their own. In reality, the power of these systems is
limited by how the learning tasks are formulated and what data are used
to train them. As it turns out, such a limitation could have far-reaching
consequences, legal, ethical, and otherwise. For instance, since ML algo-
rithms take the training data as input, they will pick up biases in the data
and encode them in their output. In a recent study, it has been shown that
“standard machine learning can acquire stereotyped biases from textual data
that reflect everyday human culture”.33 On one hand, such a finding suggests
the possibility of using ML techniques to study and identify prejudicial be-
havior in humans. On the other hand, it also means that ML-based decision
support tools can give discriminatory results. A case in point is Amazon’s
ML-based recruiting tool, which aims to automate the process of reviewing
job applicants’ résumés and searching for top talents.34 The tool took the
résumés submitted to the company over a 10-year period as training data.
However, most of these résumés were from men. As a result, the tool tends
to penalize résumés from female applicants. Although the problem was later
identified and attempts to make the tool more gender-neutral were made,
the black-box nature of ML processes means that it is difficult to rule out
other form of biases in the resulting tool. The need to tackle the issue of bias
in ML systems in part drives the recent growth in research on interpretable
and fair ML.35 Another example is adversarial attacks on ML systems—
i.e., the use of carefully designed data samples to force the ML systems to
commit an error. For instance, it has been found that various image classi-
fication systems obtained by training standard neural network architectures
using different sets of training data can be fooled by adversarially designed
images. In some cases, the adversarial image is just a slight perturbation of
a correctly classified image and is essentially the same as the latter from a
human perspective.36 Such a finding shows that the behavior of ML systems

33Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan, ‘Semantics derived auto-
matically from language corpora contain human-like biases’ (2017) 356(6334) Science 183.

34Reuters, Amazon scraps secret AI recruiting tool that showed bias against women
(2018) 〈https : / / www . reuters . com / article / us - amazon - com - jobs - automation -
insight/amazon - scraps - secret - ai - recruiting - tool - that - showed - bias - against - women -
idUSKCN1MK08G〉.

35Molnar (n 15); Morgan Gregory, ‘What Does Fairness in AI Mean?’ (15 January
2020) 〈https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-
mean/〉.

36Readers can refer to Samuel G Finlayson and others, ‘Adversarial attacks on medical
machine learning’ (2019) 363(6433) Science 1287, for examples of adversarial attacks on
medical imaging systems.

17

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-mean/
https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-mean/


are not only very different from that of humans but can also be manipulated
in ways that have negative consequences. It is now an active research area
to develop ML systems that are robust against adversarial attacks.37

Although the aforementioned efforts to overcome the limitations of ML
systems do lead us closer to being able to explain their inner workings and
interpret their outputs, there is still much work to be done and it is enti-
rely possible that the development of new, more complex ML systems can
outpace these efforts.

37See, e.g., Gean T Pereira and André CPLF de Carvalho, ‘Bringing robustness against
adversarial attacks’ (2019) 1 Nature Machine Intelligence 499.

18



Bibliography

Article References

Bacham D and Zhao JY, ‘Machine Learning: Challenges, Lessons, and Op-
portunities in Credit Risk Modeling’ (2017) 9 Moody’s Analytics Risk
Perspectives: Managing Disruption 30.

Caliskan A, Bryson JJ, and Narayanan A, ‘Semantics derived automati-
cally from language corpora contain human-like biases’ (2017) 356(6334)
Science 183.

Finlayson SG and others, ‘Adversarial attacks on medical machine learning’
(2019) 363(6433) Science 1287.

Groder PF, ‘Neural Networks Show New Promise for Machine Vision’ (2006)
8(6) Computing in Science & Engineering 4.

Litjens G and others, ‘A survey on deep learning in medical image analysis’
(2017) 42 Medical Image Analysis 60.

Liu B and others, ‘Beyond Narrative Description: Generating Poetry from
Images by Multi-Adversarial Training’ [2018] Proceedings of the 26th
ACM International Conference on Multimedia 783.

Pereira GT and de Carvalho ACF, ‘Bringing robustness against adversarial
attacks’ (2019) 1 Nature Machine Intelligence 499.

Shaw MJ and others, ‘Knowledge management and data mining for marke-
ting’ (2001) 31(1) Decision Support Systems 127.

Silver D and others, ‘Mastering the game of Go without human knowledge’
(2017) 550 Nature 354.

Stilgoe J, ‘Self-driving cars will take a while to get right’ (2019) 1 Nature
Machine Intelligence 202.

Surden H, ‘Machine Learning and Law’ (2014) 89 Washington Law Review
87.

Vinyals O and others, ‘Grandmaster level in StarCraft II using multi-agent
reinforcement learning’ (2019) 575 Nature 350.

von Ahn L and others, ‘reCAPTCHA: Human-Based Character Recognition
via Web Security Measures’ (2008) 321(5895) Science 1465.

Wang D, ‘Unsupervised Learning: Foundations of Neural Computation—A
Review’ (2001) 22(2) AI Magazine 101.

Book References

Goodfellow I, Bengio Y, and Courville A, Deep Learning (http ://www.
deeplearningbook.org, MIT Press 2016).

Knuth DE, The Art of Computer Programming. Volume I: Fundamental
Algorithms (Third edition, Addison Wesley Longman 1997).

Molnar C, Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable (https ://christophm.github. io/ interpretable -ml -
book/, 2019).

19

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


Shalev-Shwartz S and Ben-David S, Understanding Machine Learning: From
Theory to Algorithms (Cambridge University Press 2014).

Sutton RS and Barto AG, Reinforcement Learning: An Introduction (Second
Edition, The MIT Press 2018).

Szeliski R, Computer Vision: Algorithms and Applications (Springer-Verlag
2011).

Zhou Z.-H, Yu Y, and Qian C, Evolutionary Learning: Advances in Theories
and Algorithms (Springer Nature Singapore Pte Ltd 2019).

Reports

Reuters, Amazon scraps secret AI recruiting tool that showed bias against
women (2018) 〈https ://www.reuters . com/article/us - amazon - com-
jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-
showed-bias-against-women-idUSKCN1MK08G〉.

Online References

Goodfellow I, ‘NIPS 2016 Tutorial: Generative Adversarial Networks’ (2017)
〈https://arxiv.org/abs/1701.00160〉.

Gregory M, ‘What Does Fairness in AI Mean?’ (15 January 2020) 〈https:
//www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-
in-ai-mean/〉.

Karras T and others, ‘Analyzing and Improving the Image Quality of Sty-
leGAN’ (2019) 〈https://arxiv.org/abs/1912.04958〉.

LeCun Y, Cortes C, and Burges CJC, ‘The MNIST database of handwritten
digits’ (2010) 〈http://yann.lecun.com/exdb/mnist/〉.

Ruder S, ‘An overview of gradient descent optimization algorithms’ (2016)
〈https://arxiv.org/abs/1609.04747〉.

20

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://arxiv.org/abs/1701.00160
https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-mean/
https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-mean/
https://www.forbes.com/sites/googlecloud/2020/01/15/what-does-fairness-in-ai-mean/
https://arxiv.org/abs/1912.04958
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1609.04747

	Introduction
	Main Types of Machine Learning
	Supervised Learning
	Preparation of Training Data
	Formulation of Learning Task
	Implementation of Algorithmic Solution

	Unsupervised Learning
	Clustering
	Generative Modeling

	Reinforcement Learning

	Closing Remarks
	Bibliography

