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Abstract—This paper considers the problem of decentralized
consensus optimization over a network, where each node holds a
strongly convex and twice-differentiable local objective function.
Our goal is to minimize the sum of the local objective functions
and find the exact optimal solution using only local computation
and neighboring communication. We propose a novel Newton
tracking algorithm, which updates the local variable in each node
along a local Newton direction modified with neighboring and
historical information. We investigate the connections between
the proposed Newton tracking algorithm and several existing
methods, including gradient tracking and primal-dual methods.
We prove that the proposed algorithm converges to the exact
optimal solution at a linear rate. Furthermore, when the iterate
is close to the optimal solution, we show that the proposed algo-

rithm requires O

(
max

{
κf

√
κg + κ2

f ,
κ
3/2
g

κf
+ κf

√
κg

}
log 1

∆

)
iterations to find a ∆-optimal solution, where κf and κg are
condition numbers of the objective function and the graph,
respectively. Our numerical results demonstrate the efficacy of
Newton tracking and validate the theoretical findings.

I. INTRODUCTION

In this paper, we study the problem of decentralized con-
sensus optimization over an undirected and connected network
with n nodes, which takes the form

x∗ = arg min
x∈Rp

n∑
i=1

fi(x). (1)

Here, fi : Rp → R is a strongly convex and twice-differen-
tiable function privately owned by node i. Every node aims to
obtain an optimal solution x∗ to (1) via local computation
and communication with its neighbors. Problem (1) arises
in various applications, such as resource allocation [1]–[3],
smart grid control [4], [5], federated learning [6]–[8], and
decentralized machine learning [9]–[12].

Decentralized consensus optimization methods have been
extensively studied in the literature. Among the first-order
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methods, a popular algorithm is decentralized gradient descent
(DGD) [13]–[15]. However, DGD has to employ diminishing
step sizes to obtain an exact optimal solution. With a fixed
step size, DGD converges fast but only to a neighborhood of
an optimal solution [15]. There are other first-order methods
that use a fixed step size but still converge to an exact optimal
solution, including DLM [16], EXTRA [17], exact diffusion
[18], NIDS [19], and gradient tracking [20]–[24]. In gradient
tracking algorithms, for instance, each node maintains a local
estimate of the global gradient descent direction based on
neighboring and historical information and uses it to correct
the convergence error in DGD. Unification and generalization
of several exact decentralized first-order methods are discussed
in [25].

Although first-order methods enjoy low per-iteration com-
putational complexity, second-order methods are attractive
due to their faster convergence speeds and hence lower
communication costs. Some works, such as [26]–[29], con-
sider a penalty function approach, in which the consensus
constraint is implicitly enforced by adding a penalty term
to the objective function. They then propose second-order
methods to tackle the resulting unconstrained formulation.
However, these methods can only be proven to converge to
a neighborhood of an optimal solution. In essence, there is a
tradeoff between convergence speed and solution accuracy in
the penalty function approach. To better handle this tradeoff,
various second-order methods that operate in the primal-dual
domain have been proposed [30]–[32] and can be shown to
achieve convergence to the exact optimal solution at a linear
rate. The Newton-Raphson consensus method proposed in
[33], which operates in the primal domain, also achieves exact
linear convergence. However, it requires to exchange both
gradient trackers and Hessian trackers in order to estimate
the global Newton direction. There are other second-order
methods that can achieve superlinear convergence rates, but
they typically require much stricter conditions. For instance,
the work [34] proposes the distributed averaged quasi-Newton
method for a master-slave network, but the initialization is
required to be close enough to an optimal solution so as
to guarantee local superlinear convergence. The work [35]
proposes an algorithm based on Polyak’s adaptive Newton
method and establishes its global superlinear convergence, but
the algorithm needs to run a finite-time set-consensus inner
loop in each iteration. Online algorithms with distributed data
sources can be found in [36], [37], while this work deals with
offline optimization where the local cost, its gradient, and its



Hessian are known at each node.
In this paper, we propose a novel second-order Newton

tracking algorithm, which updates the local variable in each
node along a local Newton direction modified with neighbor-
ing and historical information. As its name suggests, Newton
tracking inherits the idea of gradient tracking, but it can
improve the convergence speed of the latter by utilizing
second-order information. We investigate the connections be-
tween the proposed Newton tracking algorithm and several
existing methods, including gradient tracking and primal-dual
methods. Under the aforementioned setting of problem (1),
we prove that the proposed algorithm converges to the exact
optimal solution at a linear rate. Our numerical experiments
demonstrate the efficacy of Newton tracking and validate our
theoretical findings.

Notation. We use I ∈ Rnp×np, In ∈ Rn×n, and Ip ∈ Rp×p
to denote identity matrices of different sizes; 0 ∈ Rnp and
0p ∈ Rp to denote all-zero vectors of different sizes; 1n ∈ Rn
to denote the all-one vector; λmax(·), λmin(·), and λ̂min(·) to
denote the largest, smallest, and smallest nonzero eigenvalues
of a matrix, respectively.

II. PROBLEM FORMULATION AND ALGORITHM
DEVELOPMENT

In this section, we rewrite the decentralized consensus
optimization problem (1) into an equivalent constrained form
and propose the Newton tracking algorithm to solve it.

A. Problem Formulation

Consider a bi-directionally connected network of n nodes,
where two nodes are neighbors if they are connected by an
edge. Define Ni as the set that includes the neighbors of node
i as well as node i itself. Let xi ∈ Rp be the local copy of the
decision variable x that is kept at node i. Since the network
is bi-directionally connected, problem (1) is equivalent to

{x∗i }
n
i=1 := arg min

{xi}ni=1

n∑
i=1

fi (xi) , (2)

s.t. xi = xj , ∀j ∈ Ni, ∀i.

Indeed, the constraint in (2) enforces the consensus condition
x1 = · · · = xn for any feasible solution of (2). When the
consensus condition is satisfied, the objective functions in (1)
and (2) are equivalent, so that the optimal solutions {x∗i }ni=1

of the local problems (2) are all equal to the optimal solution
x∗ of (1); i.e., x∗1 = · · · = x∗n = x∗.

B. Algorithm Development

To model the communication process between nodes, we
introduce a nonnegative mixing matrix W ∈ Rn×n, whose
(i, j)-th element wij ≥ 0 represents the weight assigned to
node j by node i. The mixing matrix W is required to satisfy
the following assumption, which is standard in the literature.

Assumption 1. The mixing matrix W is nonnegative, whose
(i, j)-th element wij ≥ 0 and wij = 0 if and only if j /∈ Ni.
Further, W is symmetric and doubly stochastic; i.e., W = WT

and W1n = 1n. The null space of In −W is span (1n).

When the underlying network is bi-directionally connected,
a mixing matrix W satisfying Assumption 1 can be generated
using various techniques, such as those introduced in [38].
According to the Perron-Frobenius theorem, Assumption 1
means that the eigenvalues of W lie in (−1, 1] and W has
a single eigenvalue at 1; see, e.g., [39].

At time t of our proposed Newton tracking algorithm, each
node i keeps a local copy xti ∈ Rp and a vector uti ∈ Rp that
estimates the negative Newton direction ut; i.e.,

uti ≈ ut ,

(
n∑
i=1

∇2fi(x̄
t)

)−1( n∑
i=1

∇fi(x̄t)

)
,

where x̄t , 1
n

∑n
i=1 x

t
i is the average of local copies.

Each node i updates xt+1
i from xti by moving along the

direction −uti with a unit step size. Since it is too expensive
to compute the exact Newton direction in a decentralized
manner, we propose to estimate the Newton direction by
a novel Newton tracking technique. Specifically, our New-
ton tracking algorithm starts with x0

i = 0p and u0
i =(

∇2fi(0p) + εIp
)−1∇fi(0p) and then performs the updates

xt+1
i = xti − uti, (3)

ut+1
i = (∇2fi(x

t+1
i ) + εIp)

−1 (4)[
(∇2fi(x

t
i) + εIp)u

t
i +∇fi(xt+1

i )−∇fi(xti)

+2α

xt+1
i −

∑
j∈Ni

wijx
t+1
j

− α
xti − ∑

j∈Ni

wijx
t
j

 ,
where ε > 0 and α > 0 are parameters. Comparing −ut+1

i

with the true Newton direction −ut+1, we have two obser-
vations. First, the exact global Hessian

∑n
i=1∇2fi(x̄

t+1) is
replaced by the regularized local Hessian ∇2fi(x

t+1
i ) + εIp.

The regularization parameter ε is necessary because the local
Hessian ∇2fi(x

t+1
i ) may be unreliable, especially in the

beginning stage of the algorithm. Second, the exact gradient∑n
i=1∇fi(x̄t) is replaced by three terms that are locally

computable. The first term (∇2fi(x
t
i) + εIp)u

t
i involves the

previous local Hessian and the estimated Newton direction.
The second term ∇fi(xt+1

i ) − ∇fi(xti) is the difference
between the current and previous gradient directions. The third
term 2α(xt+1

i −
∑
j∈Ni wijx

t+1
j ) − α(xti −

∑
j∈Ni wijx

t
j)

extrapolates the current and previous consensus errors. We will
give the derivations of (3)-(4) in Section III-B.

Now, let us elaborate on (3)-(4) to better illustrate the idea
of Newton tracking. From (4) we have

(∇2fi(x
t+1
i ) + εIp)u

t+1
i (5)

=(∇2fi(x
t
i) + εIp)u

t
i +∇fi(xt+1

i )−∇fi(xti)

+ 2α

xt+1
i −

∑
j∈Ni

wijx
t+1
j

− α
xti − ∑

j∈Ni

wijx
t
j

 .



Summing (5) over i = 1, . . . , n and invoking the double
stochasticity of W , we have

n∑
i=1

(
∇2fi(x

t+1
i ) + εIp

)
ut+1
i (6)

=

n∑
i=1

(
∇2fi(x

t
i) + εIp

)
uti +

n∑
i=1

(
∇fi(xt+1

i )−∇fi(xti)
)
.

When the algorithm is initialized such that
∑n
i=1∇fi(x0

i ) =∑n
i=1

(
∇2fi(x

0
i ) + εIp

)
u0
i , summing (6) from time 0 to time

t yields

n∑
i=1

(
∇2fi(x

t
i) + εIp

)
uti =

n∑
i=1

∇fi(xti).

In comparison, the global Newton direction −ut satisfies

n∑
i=1

∇2fi(x̄
t)ut =

n∑
i=1

∇fi(x̄t).

When the local variable pairs {(xti, uti)}ni=1 are similar across
the nodes, we observe that xti is close to x̄t and −uti tracks a
regularized Newton direction.

For subsequent development, it is desirable to write the
updates (3)-(4) in a compact form. Towards that end, define
x , [x1; . . . ;xn] ∈ Rnp and u , [u1; . . . ;un] ∈ Rnp as
the stacks of local variables. Define the aggregate function
f : Rnp → R as f(x) = f(x1, . . . , xn) =

∑n
i=1 fi(xi). The

gradient of f at x is ∇f(x) = [∇f1(x1); . . . ;∇fn(xn)] ∈
Rnp. The Hessian of f at x, denoted by ∇2f(x) ∈ Rnp×np,
is the block diagonal matrix whose i-th diagonal block is
∇2fi(xi). Define Ht , ∇2f(xt) + εI ∈ Rnp×np and
W , W ⊗ Ip ∈ Rnp×np as the Kronecker product of the
weight matrix W and the identity matrix Ip. We can then
write (3)-(4) as

xt+1 = xt − ut, (7)

ut+1 = (Ht+1)−1
[
Htut +∇f

(
xt+1

)
−∇f

(
xt
)

(8)

+ α(I−W)(2xt+1 − xt)
]
.

The algorithm is initialized as x0 = 0 and u0 = (∇2f(0) +
εI)−1∇f(0).

III. CONNECTIONS WITH EXISTING APPROACHES

This section investigates the connections of the proposed
Newton tracking algorithm with several existing approaches,
such as gradient tracking and primal-dual methods.

A. Connection with Gradient Tracking

The gradient tracking updates are given by [21]

xt+1 = Wxt − αyt, (9)

yt+1 = Wyt +∇f(xt+1)−∇f(xt), (10)

where x,y ∈ Rnp. To see the connection between gradient
tracking and Newton tracking, we first rewrite (9) as xt+1 =

xt− [(I−W)xt+αyt]. Then, by defining rt = (I−W)xt+
αyt ∈ Rnp, we see that (9)-(10) are equivalent to

xt+1 = xt − rt, (11)

rt+1 = Wrt + α[∇f(xt+1)−∇f(xt)] (12)

+ (I−W)(xt+1 −Wxt).

Similar to the update of ut+1 in (8), the update of rt+1 in
(12) also involves three parts: the previous direction rt, the
difference between current and previous gradient directions
α[∇f(xt+1) − ∇f(xt)], and the combination of current and
previous consensus errors (I−W)(xt+1 −Wxt). The major
difference between ut+1 and rt+1 is that the former utilizes
the current and previous Hessians.

B. Connection with Primal-dual Algorithms

The proposed Newton tracking algorithm also has a primal-
dual interpretation. Since by assumption the null space of In−
W is span (1n), so is the null space of its square root (In −
W )

1
2 . Using the relation (I −W)

1
2 = (In −W )

1
2 ⊗ Ip, we

see that (I−W)
1
2x = 0 if and only if x1 = · · · = xn. Hence,

problem (2) is equivalent to

x∗ , arg min
x

f(x), (13)

s.t. (I−W)
1
2x = 0.

The augmented Lagrangian L(·, ·) of (13) is given by

L(x,v) = f(x) + 〈v, (I−W)
1
2x〉+

α

2
xT (I−W)x,

where v ∈ Rnp is the dual variable. Therefore, the augmented
Lagrangian method for solving (13) can be written as [40]

xt+1 = arg min
x

L(x,vk), (14)

vt+1 = vt + α(I−W)
1
2xt+1. (15)

Despite its simplicity in description, the above method is non-
trivial to implement, especially the minimization step in (14).
Indeed, given the generality of f , it is unlikely that xt+1 can
be given in closed form. Even if f is quadratic and hence
xt+1 can be given in closed-form, it cannot be computed in a
decentralized manner due to the topology-dependent quadratic
term α

2x
T (I −W)x. Motivated by these observations, we

propose to replace the functions f and x 7→ α
2x

T (I −W)x
in the augmented Lagrangian L by their quadratic and linear
approximations at xt, respectively, and add the proximal term
x 7→ ε

2‖x − xt‖2 to the modified augmented Lagrangian. In
other words, the update of xt+1 is given by the solution of

min
x

〈
∇f(xt) + (I−W)

1
2vt + α(I−W)xt,x− xt

〉
+

1

2
(x− xt)T∇2f(xt)(x− xt) +

ε

2
‖x− xt‖2,

which is

xt+1 (16)

= xt −
(
Ht
)−1

[
∇f

(
xt
)

+ (I−W)
1
2vt + α(I−W)xt

]
.

Now, we show that the updates (16) and (15) initialized by
x0 = 0 and v0 = 0 are equivalent to the updates (7) and



(8) initialized by x0 = 0 and u0 = (∇2f(0) + εI)−1∇f(0).
First, observe that both sets of updates give x1 = −(∇2f(0)+
εI)−1∇f(0). Next, using (16), we have

Htxt+1

= Htxt −
[
∇f

(
xt
)

+ (I−W)
1
2vt + α(I−W)xt

]
.

This, together with the dual update (15), implies that

Ht+1xt+2 −Htxt+1

=
[
Ht+1 − α(I−W)

]
xt+1 −

[
Ht − α(I−W)

]
xt

− (I−W)
1
2 (vt+1 − vt)−

[
∇f

(
xt+1

)
−∇f

(
xt
)]

=
[
Ht+1 − 2α(I−W)

]
xt+1 −

[
Ht − α(I−W)

]
xt

−
[
∇f

(
xt+1

)
−∇f

(
xt
)]
,

or equivalently,

Ht+1xt+2 −
[
Ht+1 − α(I−W)

]
xt+1 (17)

= Htxt+1 −
[
Ht − α(I−W)

]
xt − α(I−W)xt+1

−
[
∇f

(
xt+1

)
−∇f

(
xt
)]
.

Let st , Htxt+1−[Ht − α(I−W)]xt. Then, we can rewrite
(17) as

st+1 = st − α(I−W)xt+1 −
[
∇f

(
xt+1

)
−∇f

(
xt
)]
.

(18)

Moreover, from the definition of st, we have

xt+1 = xt − (Ht)−1
[
α(I−W)xt − st

]
. (19)

Upon letting qt , α(I −W)xt − st = Ht(xt − xt+1), we
can rewrite (19) and (18) as

xt+1 = xt − (Ht)−1qt, (20)

qt+1 = qt +∇f
(
xt+1

)
−∇f

(
xt
)

(21)

+ α(I−W)(2xt+1 − xt),

respectively. To establish the claimed equivalence, it remains
to observe that (20)-(21) corresponds to (7)-(8) with ut =
(Ht)−1qt.

Remark 1. The exact second-order method (ESOM) intro-
duced in [31] employs a quadratic approximation of the
augmented Lagrangian L(·, ·) when solving (14). In other
words, unlike our proposed Newton tracking algorithm, ESOM
does not linearize the topology-dependent quadratic term
α
2x

T (I−W)x. As we have indicated earlier, this renders the
closed-form solution of the resulting update not implementable
in a decentralized manner. Indeed, the primal update of ESOM,
which is given by

xt+1 = xt −
(
∇2f(x) + α(I−W) + εI

)−1
(22)[

∇f
(
xt
)

+ (I−W)
1
2vt + α(I−W)xt

]
,

involves computing the inverse of ∇2f(x) + α(I−W) + εI.
Such a task requires multiple rounds of communication and
computation. Although ESOM introduces an inner loop to
approximately solve (22), it still leads to extra communication
and computation costs.

Remark 2. The work [33] proposes the Newton-Raphson con-
sensus method to solve problem (2). With proper initialization,
it updates xt+1

i on node i as

xt+1
i = (1− α)xti + α

[
Ht
i

]−1

ς
yti ,

yt+1
i =

∑
j∈Ni

wij
(
ytj +∇fj(xtj)−∇fj(xt−1

j )
)
,

Ht+1
i =

∑
j∈Ni

wij
(
Ht
j +∇2fj(x

t
j)−∇2fj(x

t−1
j )

)
,

where α ∈ (0, 1] is the step size and [·]ς is a thresholding
operator with parameter ς > 0 defined in [33]. Compared
with Newton tracking, Newton-Raphson consensus requires
two rounds of communication in each iteration, one to transmit
the gradient trackers yti ∈ Rp and another to transmit the
Hessian trackers Ht

i ∈ Rp×p. Note that when p is large,
transmitting p×p matrices over the network is prohibitive due
to the high communication cost. In addition, the analysis of
Newton-Raphson consensus is different from that in our work.

IV. CONVERGENCE ANALYSIS

Since the Newton tracking updates (7) and (8) are equivalent
to the primal-dual updates (16) and (15), once we show that
the latter exhibits a linear convergence rate, then so does the
former. In the analysis, we need the following assumption.

Assumption 2. The local objective functions {fi}ni=1 are
twice differentiable. Moreover, there exist constants µf , Lf ∈
(0,+∞) such that

µfIp � ∇2fi (xi) � LfIp (23)

for all xi ∈ Rp and i = 1, . . . , n.

The lower bound in (23) implies that the local objective
functions {fi}ni=1 are strongly convex with parameter µf >
0, while the upper bound implies that the local gradients
{∇fi}ni=1 are Lipschitz continuous with constant Lf > 0.
Since the Hessian ∇2f(x) of the aggregate objective function
f at x = [x1; . . . ;xn] is the block diagonal matrix whose i-th
diagonal block is ∇2fi(xi), the bounds in (23) also hold for
∇2f ; i.e.,

µfI � ∇2f(x) � LfI

for all x ∈ Rnp. In other words, the aggregate objective
function f is also strongly convex with parameter µf and its
gradient ∇f is Lipschitz continuous with constant Lf .

Our analysis involves the optimal primal-dual pair (x∗,v∗)
of (13). According to the KKT conditions of (13), we have

∇f(x∗) + (I−W)
1
2v∗ = 0, (24)

(I−W)
1
2x∗ = 0. (25)

Lemma 1. The primal-dual iterates generated by the equiva-
lent Newton tracking updates (16) and (15) satisfy

∇f
(
xt+1

)
−∇f (x∗) + (I−W)

1
2

(
vt+1 − v∗

)
(26)

+ ε
(
xt+1 − xt

)
+ et = 0,



where et is defined as

et , ∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)

− α(I−W)(xt+1 − xt).

Lemma 1 reveals the relationship of the primal-dual pairs
(xt,vt) and (xt+1,vt+1) with the optimal primal-dual pair
(x∗,v∗). It can be proven using arguments similar to those in
[31].

Proof. By definition of et, (16) can be rewritten as

∇f
(
xt+1

)
+ (I−W)

1
2vt + α(I−W)xt+1 (27)

+ ε
(
xt+1 − xt

)
+ et = 0.

Combining (24) and (25) with (27), we have

∇f
(
xt+1

)
−∇f (x∗) + (I−W)

1
2

(
vt − v∗

)
(28)

+ α(I−W)
(
xt+1 − x∗

)
+ ε
(
xt+1 − xt

)
+ et = 0.

Now, observe that vt in (28) can be further replaced by vt+1.
To be specific, substituting (25) into (15) and then regrouping
terms, we know that vt can be represented as

vt = vt+1 − α(I−W)
1
2

(
xt+1 − x∗

)
. (29)

Substituting (29) into (28) yields (26).

The term et can be interpreted as the error introduced by
approximation at time t. To bound this error, let us introduce
the following assumption, which is common in the analysis of
second-order methods.

Assumption 3. The Hessian ∇2f of the aggregate objective
function f is Lipschitz continuous with constant L ∈ (0,+∞);
i.e., ∥∥∇2f(x)−∇2f(y)

∥∥ ≤ L‖x− y‖, ∀x,y ∈ Rnp.

In the following lemma, we provide an upper bound on ‖et‖
in terms of

∥∥xt+1 − xt
∥∥. The arguments used in the proof are

similar to those in [30].

Lemma 2. Under Assumptions 2 and 3, the error vectors
{et}t≥0 associated with the equivalent Newton tracking up-
dates (16) and (15) satisfy∥∥et∥∥ ≤ (ρt + αλmax(I−W))

∥∥xt+1 − xt
∥∥ , (30)

where ρt , min
{

2Lf ,
L
2

∥∥xt+1 − xt
∥∥}.

Proof. Since ∇2f(x) � LfI for any x ∈ Rnp, we have∥∥∇f (xt+1
)
−∇f

(
xt
)∥∥

≤
∫ 1

0

∥∥∇2f
(
sxt+1 + (1− s)xt

) (
xt+1 − xt

)∥∥ ds
≤ Lf

∥∥xt+1 − xt
∥∥

and

‖∇2f
(
xt
) (

xt+1 − xt
)
‖ ≤ Lf

∥∥xt+1 − xt
∥∥ .

It follows that

‖∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)
‖ (31)

≤ ‖∇f
(
xt
)
−∇f

(
xt+1

)
‖+ ‖∇2f

(
xt
) (

xt+1 − xt
)
‖

≤ 2Lf
∥∥xt+1 − xt

∥∥ .

Moreover, since

∇f
(
xt+1

)
−∇f

(
xt
)

=

∫ 1

0

∇2f
(
sxt+1 + (1− s)xt

) (
xt+1 − xt

)
ds

= ∇2f(xt)
(
xt+1 − xt

)
+

∫ 1

0

[
∇2f

(
sxt+1 + (1− s)xt

)
−∇2f

(
xt
)]

(
xt+1 − xt

)
ds,

we have

‖∇f
(
xt+1

)
−∇f

(
xt
)
−∇2f

(
xt
) (

xt+1 − xt
)
‖ (32)

=

∥∥∥∥∥
∫ 1

0

[
∇2f

(
sxt+1 + (1− s)xt

)
−∇2f

(
xt
)]

(
xt+1 − xt

)
ds

∥∥∥∥∥
≤
∫ 1

0

∥∥∇2f
(
sxt+1 + (1− s)xt

)
−∇2f

(
xt
)∥∥∥∥xt+1 − xt

∥∥ ds.
By Assumption 3,∥∥∇2f

(
sxt+1 + (1− s)xt

)
−∇2f

(
xt
)∥∥ ≤ sL∥∥xt+1 − xt

∥∥ .
Substituting this into (32) and computing the integral, we
obtain

‖∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)
‖ (33)

≤ L

2

∥∥xt+1 − xt
∥∥2
.

It then follows from (31) and (33) that

‖∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)
‖ (34)

≤ min

{
2Lf ,

L

2

∥∥xt+1 − xt
∥∥}∥∥xt+1 − xt

∥∥
= ρt

∥∥xt+1 − xt
∥∥ ,

where ρt , min
{

2Lf ,
L
2

∥∥xt+1 − xt
∥∥}. Thus, by the triangle

inequality,

‖et‖ ≤‖∇f
(
xt
)
−∇f

(
xt+1

)
+∇2f

(
xt
) (

xt+1 − xt
)
‖

+ ‖α(I−W)(xt+1 − xt)‖
≤ (ρt + αλmax(I−W))

∥∥xt+1 − xt
∥∥ ,

which completes the proof.

Lemma 2 shows that the error et introduced by the ap-
proximation tends to zero as the sequence of iterates {xt}t≥0

approaches the optimal solution x∗.
Given the preliminary results in Lemmas 1 and 2, we are

ready to establish the linear convergence of the proposed
Newton tracking method. Let ζt, ζ∗ ∈ R2np and G ∈ Rnp×np
be defined as

ζt =

[
xt

vt

]
, ζ∗ =

[
x∗

v∗

]
, G =

[
Q 0
0 1

αI

]
,



where Q , εI − α(I −W). Note that Q is positive definite
when ε−αλmax(I−W) > 0. The following lemma provides
a recursion of the primal-dual iterates {(xt,vt)}t≥0.

Lemma 3. Under Assumptions 1-3, the primal-dual iterates
{(xt,vt)}t≥0 generated by the equivalent Newton tracking
updates (16) and (15) satisfy

‖x∗ − xt‖2Q − ‖x∗ − xt+1‖2Q (35)

+
1

α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)
≥‖xt − xt+1‖2

(Q− ρ
2
t
θ I)

+
1

α
‖vt+1 − vt‖2

+ (µf − θ)
∥∥x∗ − xt+1

∥∥2
,

where θ > 0 is an arbitrary constant.

Proof. See Appendix.

Using Lemma 3, we can show that the sequence {‖ζt −
ζ∗‖G}t≥0 converges to zero at a linear rate.

Theorem 1. Under Assumptions 1-3, suppose that for all t ≥
0, the parameters ε and α satisfy λmin(Q) = ε− αλmax(I−
W) ≥ Υ +

ρ2t
µf

>
ρ2t
µf

for some constant Υ > 0. Given any
β, φ > 1, let

δ′t = min

 δtµf

(1 + δt)
[
ε+

βφL2
f

αλ̂min(I−W)

] , (36)

αδ2
t (ε− αλmax(I−W))λ̂min(I−W)

βε2

(β−1) + βφ(ρt+αλmax(I−W))2

(φ−1)

 > 0,

where

δt , 1− ρ2
t

µfλmin(Q)
= 1− ρ2

t

µf (ε− αλmax(I−W))
> 0.

(37)
Then, the primal-dual iterates {ζt}t≥0 generated by the equiv-
alent Newton tracking updates (16) and (15) satisfy∥∥ζt+1 − ζ∗

∥∥2

G
≤ 1

1 + δ′t

∥∥ζt − ζ∗∥∥2

G
. (38)

Moreover, defining δ′ , inft≥0 δ
′
t, we have δ′ > 0 and thus∥∥ζt+1 − ζ∗

∥∥2

G
≤ 1

1 + δ′
∥∥ζt − ζ∗∥∥2

G
. (39)

Proof. We first show that δ′ > 0. Observe that by adjusting
ε, α > 0 if necessary, we can always find Υ > 0 such that

λmin(Q) = ε− αλmax(I−W) ≥ Υ +
ρ2
t

µf
>
ρ2
t

µf
.

By substituting such λmin(Q) into the definition of δt in (37),
we have

δt = 1− ρ2
t

µfλmin(Q)

≥ 1− ρ2
t

µf (Υ +
ρ2t
µf

)
= 1− 1

µf ( Υ
ρ2t

+ 1
µf

)

≥ 1− 1

µf ( Υ
4L2

f
+ 1

µf
)
, δ > 0,

where we use ρt = min
{

2Lf ,
L
2

∥∥xt+1 − xt
∥∥} ≤ 2Lf in

the last inequality. Now, by substituting the bounds δt ≥ δ,
λmin(Q) = ε − αλmax(I −W) ≥ Υ , and ρt ≤ 2Lf into the
definition of δ′t in (36), we have

δ′t ≥min

 δµf

(1 + δ)
[
ε+

βφL2
f

αλ̂min(I−W)

] ,
αδ2Υ λ̂min(I−W)

βε2

(β−1) +
βφ(2Lf+αλmax(I−W))2

(φ−1)

 .

Since the right-hand side of the above inequality does not
depend on t and is strictly positive, it follows that δ′ =
inft≥0 δ

′
t > 0, as desired.

Next, we prove (38). From (35), we need to choose θ > 0
such that λmin(Q)− ρ2

t

θ
> 0,

µf − θ > 0.

This can be achieved when

δt = 1− ρ2
t

µfλmin(Q)
> 0,

which holds if

λmin(Q) = ε− αλmax(I−W) >
ρ2
t

µf
.

In particular, we can choose θ =
µf

1+δt
so that ρ2t

θ = (1 −
δ2
t )λmin(Q) and (35) becomes

‖x∗ − xt‖2Q − ‖x∗ − xt+1‖2Q (40)

+
1

α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)
≥δ2

t λmin(Q)‖xt − xt+1‖2 +
1

α
‖vt+1 − vt‖2

+
µfδt

1 + δt

∥∥x∗ − xt+1
∥∥2
.

To establish (38), it suffices to show that ‖ζt − ζ∗‖2G −∥∥ζt+1 − ζ∗
∥∥2

G
≥ δ′t

∥∥ζt+1 − ζ∗
∥∥2

G
. In view of (40), it is

enough to show that

δ′t
α

∥∥vt+1 − v∗
∥∥2

+ δ′t
∥∥xt+1 − x∗

∥∥2

Q
(41)

≤δ2
t λmin(Q)‖xt−xt+1‖2 +

1

α
‖vt+1 − vt‖2

+
µfδt

1 + δt

∥∥x∗ − xt+1
∥∥2
.

Towards that end, we first use (26) and the Cauchy-Schwarz
inequality to get∥∥vt+1 − v∗

∥∥2

I−W (42)

≤ βε2

β − 1
‖xt+1 − xt‖2 + βφ‖∇f

(
xt+1

)
−∇f (x∗) ‖2

+
βφ

φ− 1
‖et‖2

for any β, φ > 1. By Assumption 2, we have ‖∇f
(
xt+1

)
−

∇f (x∗) ‖2 ≤ L2
f‖xt+1 − x∗‖2. Moreover, by (30), we have



‖et‖2 ≤ ρ̃2
t

∥∥xt+1 − xt
∥∥2

, where ρ̃t , ρt + αλmax(I − Z).
Substituting these inequalities into (42) yields∥∥vt+1 − v∗

∥∥2

I−W

≤
(
βε2

β − 1
+
βφρ̃2

t

φ− 1

)
‖xt+1 − xt‖2 + βφL2

f‖xt+1 − x∗‖2.

Next, considering that vt+1 and v∗ both lie in the column
space of (I−W)

1
2 , we have∥∥vt+1 − v∗

∥∥2 ≤ 1

λ̂min(I−W)
(43){(

βε2

β − 1
+
βφρ̃2

t

φ− 1

)
‖xt+1 − xt‖2 + βφL2

f‖xt+1 − x∗‖2
}
.

Here, note that λ̂min(I −W) > 0 because I −W � 0. In
addition, we have∥∥xt+1 − x∗

∥∥2

Q
≤ λmax(Q)

∥∥xt+1 − x∗
∥∥2
. (44)

By substituting (43) and (44) into (41), we see that the
following is a sufficient condition for (38) to hold:

λmax(Q)δ′t
∥∥xt+1 − x∗

∥∥2
+

δ′t

αλ̂min(I−W){(
βε2

β − 1
+
βφρ̃2

t

φ− 1

)
‖xt+1 − xt‖2 + βφL2

f‖xt+1 − x∗‖2
}

≤δ2
t λmin(Q)‖xt−xt+1‖2 +

1

α
‖vt+1 − vt‖2

+
µfδt

1 + δt

∥∥x∗ − xt+1
∥∥2
.

After rearranging the terms, the above is equivalent to(
µfδt

1 + δt
− δ′tλmax(Q)−

δ′tβφL
2
f

αλ̂min(I−W)

)∥∥xt+1 − x∗
∥∥2

+

(
δ2
t λmin(Q)− δt

′βε2/(β − 1)

αλ̂min(I−W)
− δ′tβφρ̃

2
t/(φ− 1)

αλ̂min(I−W)

)
∥∥xt+1 − xt

∥∥2
+

1

α

∥∥vt+1 − vt
∥∥2 ≥ 0.

Clearly, the above inequality holds if the coefficients on
the left-hand side are all non-negative. The latter can be
guaranteed if

δ′t ≤ min

 µfδt

(1 + δt)
[
λmax(Q) +

βφL2
f

αλ̂min(I−W)

] , (45)

αδ2
t λmin(Q)λ̂min(I−W)

βε2

(β−1) +
βφρ̃2t
(φ−1)

 .

Since Q = εI− α(I−W), we have

λmin(Q) = ε− αλmax(I−W) >
ρ2
t

µf
> 0,

λmax(Q) = ε− αλmin(I−W) = ε > 0.

These, together with the fact that ρ̃t = ρt + αλmax(I −W),
imply that the choice of δ′t in (36) satisfies (45), which is
sufficient to establish the inequality (38) and hence the linear

convergence of the equivalent Newton tracking updates (16)
and (15).

Theorem 1 shows that the sequence {‖ζt − ζ∗‖2G}t≥0 con-
verges to zero linearly, with the factor of linear convergence
being 1

1+δ′ . By the definitions of ζt and ζ∗, we know that

‖xt − x∗‖2Q ≤ ‖ζt − ζ∗‖
2
G. It follows that∥∥xt − x∗

∥∥2

Q
≤ 1

(1 + δ′)
t

∥∥ζ0 − ζ∗
∥∥2

G
.

In particular, since λmin(Q) > 0, we conclude that xt

converges to x∗ linearly.
We require the parameters ε and α to satisfy ε−αλmax(I−

W) >
ρ2t
µf

for all t ≥ 0. Since λmax(I − W) < 2

and ρt = min
{

2Lf ,
L
2

∥∥xt+1 − xt
∥∥} ≤ 2Lf , a sufficient

condition on the step sizes is ε−2α >
4L2

f

µf
. There are several

works on how to estimate the global parameters Lf and µf in
a decentralized manner [41], [42]. Even if the estimated Lf
and µf are inaccurate, a sufficiently large ε and a sufficiently

small α will satisfy the condition ε− 2α >
4L2

f

µf
.

Now, let us investigate the behavior of the equivalent
Newton tracking updates (16) and (15) when xt is close to
x∗ and hence ρt is small. Define the condition numbers of the
objective function and the graph as

κf =
Lf
µf
, κg =

λmax(I−W)

λ̂min(I−W)
,

respectively. The following corollary reveals how these two
quantities affect the asymptotic convergence rate of Newton
tracking.

Corollary 1. Under Assumptions 1-3, suppose that we take

α =

√
κgLf

λmax(I−W)
, (46)

ε = 2

(
αλmax(I−W) +

2L2
f

µf

)
= 2

(
√
κgLf +

2L2
f

µf

)
.

Then, we have

δ′t = Ω

min

 1

κf
√
κg + κ2

f

,
1

κ
3/2
g

κf
+ κf

√
κg


 .

Consequently, when xt is close to x∗, Newton tracking re-

quires O
(

max

{
κf
√
κg + κ2

f ,
κ3/2
g

κf
+ κf

√
κg

}
log 1

∆

)
iter-

ations to reach a ∆-optimal solution (i.e., a solution that is
within ∆ of x∗).

Proof. For simplicity, let us write λmax = λmax(I−W) and
λ̂min = λ̂min(I −W) in the proof. Since ρt ≤ 2Lf for all
t ≥ 0, with the parameters given by (46), we have

λmin(Q) = ε− αλmax =
√
κgLf +

4L2
f

µf
>
ρ2
t

µf
,

for all t ≥ 0. Therefore, Theorem 1 holds. Here, we choose
Υ =

√
κgLf in Theorem 1 so that δt ≥ δ and δ′t ≥ δ′ for all

t. In the following, we will further refine δt and δ′t when xt

is close to x∗.



Since xt converges to x∗ by Theorem 1, there exists a T ≥ 0
such that ρt ≤

√
µfλmin(Q)/2 and hence δt ≥ 1/2 for all

t ≥ T . Now, recall from (36) that δ′t is the minimum of two
terms. When t ≥ T , the first term reduces to

δtµf

(1 + δt)
[
ε+

βφL2
f

αλ̂min

] (47)

=
δtµf

(1 + δt)
[
2
(√

κgLf +
2L2

f

µf

)
+

βφLfλmax
√
κgλ̂min

]
=

δt

(1 + δt)
[
2
(√

κgκf +
2L2

f

µ2
f

)
+ βφκf

√
κg

]
=Ω

(
1

κf
√
κg + κ2

f

)
,

while the second term reduces to

αδ2
t (ε− αλmax)λ̂min

βε2

(β−1) + βφ(ρt+αλmax)2

(φ−1)

(48)

=
αδ2

t

(
αλmax +

4L2
f

µf

)
λ̂min

4β
β−1

(
αλmax +

2L2
f

µf

)2

+ βφ(ρt+αλmax)2

(φ−1)

=
δ2
t +

4δ2tL
2
f

µfαλmax

4β
β−1

(
√
κg +

2L2
f/αµf√

λmaxλ̂min

)2

+ βφ
φ−1

(
ρt/α√
λmaxλ̂min

+
√
κg

)2

≥
δ2
t +

4δ2tκf√
κg

4β
β−1

(√
κg + 2κf

)2
+ βφ

φ−1

(
2 +
√
κg
)2

=Ω

(
κf/
√
κg

(
√
κg + κf )2 + κg

)

=Ω

 1

κ
3/2
g

κf
+ κf

√
κg

 .

With (47) and (48), we complete the proof.

Corollary 1 shows that when xt is close to x∗, the condition
numbers of the objective function and the graph determine
the asymptotic convergence rate of our proposed Newton
tracking algorithm. In particular, when κf ≈

√
κg , the iteration

complexity of finding an ∆-optimal solution is O(κ2
f log 1

∆ ).

1In this table, κf =
Lf
µf

and κg =
λmax(I−W)

λ̂min(I−W)
are the condition numbers

of fi and the graph, respectively; α and ε are the step sizes; σ is the second
largest absolute eigenvalue of W , i.e., σ = λmax(W − 1

n
1n1Tn ).

2Here, Lu and Lo are the unoriented and oriented Laplacian, respectively,
which are defined in [16]. The refined rate is obtained when α =

Lfκf
λmin(Lu)

and ε = Lfκf .
3Here, we set W̃ in [17] as W̃ = I+W

2
and α =

0.5λ̂min(W̃ )
Lfκf

.
4Here, the refined rate is obtained when xt → x∗ and α =

5Lfκf
(λmin(Lu))2

.
5Here, Γt = min

{
2Lf ,

L
2
‖xt+1 − xt‖

}
+(Lf +ε+2α(1−ω))ρK+1,

where ω = miniWii, K is the number of inner-loop iterations and ρ ∈
(0, 1) is some constant defined in [31]. The refined rate is obtained when
α =

µf
20(1−ω)

, ε = 3(µf + Lf )κf , and Γt → 0, meaning that xt → x∗

and K →∞.
6Here, the refined rate is obtained when xt → x∗; see Corollary 1 for

details.

Convergence rates of Newton tracking and several existing
algorithms are compared in Table I.

V. NUMERICAL EXPERIMENTS

In this section, we apply our proposed Newton tracking
algorithm to solve a decentralized logistic regression problem
of the form

x∗ = argmin
x∈Rp

ρ

2
‖x‖2 +

n∑
i=1

mi∑
j=1

ln
(
1 + exp

(
−
(
oTijx

)
pij
))
,

where node i has access to the training samples (oij ,pij) ∈
Rp × {−1,+1}; j = 1, . . . ,mi. We add a regularization term
ρ
2‖x‖

2 with ρ > 0 to the loss function to avoid overfitting.
In our numerical experiments, we randomly generate the
elements in oij according to the normal distribution and the
elements in pij according to the uniform distribution. Also, we
randomly generate τn(n−1)

2 undirected edges for the network
of n nodes, where τ ∈ (0, 1] is the connectivity ratio and is
chosen to ensure that the network is connected.

To evaluate the performance of the compared algorithms,
the optimal logistic classifier x∗ is pre-computed through
centralized gradient descent. We use relative error as the per-
formance metric, which is defined as ‖xt − x∗‖ /

∥∥x0 − x∗
∥∥.

We conduct the experiments with Matlab R2016b, running on
a laptop with Intel(R) Core(TM) i7 CPU@1.80GHz, 16.0 GB
of RAM, and Windows 10 operating system.

A. Comparison with Second-Order Methods

We compare Newton tracking with other second-order
algorithms in the literature, including NN-K [26], ESOM-
K [31], and DQM [30]. In every iteration of NN-K and
ESOM-K, the nodes need to execute a (K + 1)-round inner
loop to approximately compute the inverse of a topology-
dependent matrix of the forms α∇2f(x) + (I − W) and
∇2f(x) + α(I−W) + εI, respectively.

We set the number of nodes as n = 10 and the connectivity
ratio as τ = 0.5. Each node holds 12 samples; i.e., mi = 12
for all i. The dimension of the sample vectors {oij} is p = 8.
We set the regularization parameter ρ = 0.001.

All the algorithms use hand-optimized step sizes. The
step size of DQM is set to α = 0.3. The parameters of
ESOM-0 (ESOM-1; ESOM-2) are set to α = 3(3.4; 5.5) and
ε = 0.1(0.1; 0.1). For NN-K, a smaller step size improves
accuracy but leads to slower convergence, while a larger step
size accelerates the convergence at the cost of lower accuracy.
Therefore, we use the step sizes α = 0.001, α = 0.008,
and α = 0.02 for NN-0, NN-1, and NN-2, respectively. For
Newton tracking, we set α = 3.9 and ε = 3.6.

Fig. 1 illustrates the relative error versus the number of
iterations. Observe that NN-K only converges to a neighbor-
hood of the optimal solution. Among the exact decentralized
algorithms, except for ESOM-2, the proposed Newton track-
ing algorithm has the best performance compared with the
other algorithms and converges linearly, which validates the
theoretical result in Theorem 1.

Newton tracking and DQM require one round of communi-
cation per iteration, while NN-K and ESOM-K require K+1



TABLE I
CONVERGENCE RATES OF DECENTRALIZED CONSENSUS OPTIMIZATION ALGORITHMS TO SOLVE (2)

Algorithm Step size Rate 1

DLM [16] αλmin(Lu) + ε >
Lfκf

2
O

(
max

{
κ2
fλmax(Lu)

λmin(Lu)
+
λmin(Lu)

λ̂min(Lo)
,

(λmax(Lu))2

λmin(Lu)λ̂min(Lo)
+

λmin(Lu)

κ2
f
λ̂min(Lo)

}
log( 1

∆
)

)
2

EXTRA [17] α <
2λmin(W̃ )
Lfκf

O

(
κ2f

1−σ log( 1
∆

)

)
3

gradient tracking [21] α =
(1−σ)2

36Lfκf
O

(
κ2
f

(1−σ)2
log( 1

∆
)

)
DQM [30] α >

4Lfκf
(λmin(Lu))2

O

(
max

{(
λmax(Lu)

λ̂min(Lo)

)2
, κ2
f

(
λmax(Lu)
λmin(Lu)

)2
+ µf

(
λmin(Lu)

λ̂min(Lo)

)2
}

log( 1
∆

)

)
4

ESOM [31] ε >
µf+Lf
2µfLf

(
2Lf + 2α(1− ω)κf

)2
O

(
κ2
f

λ̂min(I−W)
log( 1

∆
)

)
5

Newton tracking ε− αλmax(I−W) >
ρ2t
µf

O

(
max

{
κf
√
κg + κ2

f ,
κ
3/2
g

κf
+ κf

√
κg

}
log 1

∆

)
6
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Fig. 1. Relative errors of Newton tracking, DQM, NN-K, and ESOM-K
versus number of iterations.
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Fig. 2. Relative errors of Newton tracking, NN-K, ESOM-K, and DQM
versus rounds of communications.

rounds. Fig. 2 illustrates the relative error versus the number
of communication rounds. Observe that although ESOM-1 and
ESOM-2 perform well as depicted in Fig. 1, they become
worse in Fig. 2 because more rounds of communication are
required in each iteration. In terms of communication cost, the
proposed Newton tracking algorithm is the best.

B. Comparison with First-Order Methods

We compare Newton tracking with several first-order al-
gorithms, including gradient tracking [21], EXTRA [17], and
DLM [16]. Their equivalent updates are given as follows:
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Fig. 3. Relative errors of Newton tracking, gradient tracking, EXTRA and
DLM when n = 50, mi = 10 and p = 20.

• Gradient tracking:

xt+2 = 2Wxt+1 −W2xt − α
[
∇f

(
xt+1

)
−∇f

(
xt
)]
.

• EXTRA:

xt+2 = (I + W)xt+1 − (I + W)xt/2

− α
[
∇f

(
xt+1

)
−∇f

(
xt
)]
.

• DLM:

xt+2 = (I− αDLo) (2xt+1 − xt)

−D
[
∇f

(
xt+1

)
−∇f

(
xt
)]
.

Here, D = diag{1/(2αdi + ε)}, di is the degree of node i,
and Lo is the oriented Laplacian defined in [16].

We consider two larger networks, which consist of n =
50 (100) nodes. The number of samples on each node is
mi = 10 (10) for all i and the dimension of the sample vectors
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Fig. 4. Relative errors of Newton tracking, gradient tracking, EXTRA, and
DLM when n = 100, mi = 10, and p = 40.

as p = 20 (40). We run all the algorithms with fixed hand-
optimized step sizes. The step sizes of gradient tracking and
EXTRA are set to α = 0.16 (0.6) and α = 0.07 (1.6), respec-
tively. The parameters of DLM are set to α = 0.04 (0.006)
and ε = 4 (0.1). For Newton tracking, the parameters are set
to α = 1.1 (0.08) and ε = 1.2 (0.08). All other settings are
the same as those in Section V-A.

Fig. 3 illustrates the relative error versus the number of
iterations and the runtime, respectively, on the n = 50 net-
work. Observe that the proposed Newton tracking outperforms
the first-order algorithms in terms of both the number of
iterations and runtime. Although Newton tracking computes
the inverse of the estimated Hessian ∇2fi(xi) + εIp ∈ Rp×p
in each iteration, it calls for a relatively smaller number of
iterations compared with the first-order algorithms and hence
leads to a shorter runtime. Similar results hold for the n = 100
network; see Fig. 4. However, when the dimension p is very
large, Newton tracking becomes less efficient than first-order
methods because computing the inverse of the regularized
Hessian ∇2fi(xi) + εIp ∈ Rp×p is time-consuming.

C. Effect of Network Topology

Now, let us investigate the performance of Newton tracking
and ESOM-1 in four different topologies – the line graph,
the cycle graph, random graphs with τ = {0.3, 0.5, 0.7}, and
the complete graph. The parameters of ESOM-1 are set to
α = 6 (2.9, 3.8, 3.4, 3.2, 2.9), ε = 3 (0.1, 0.05, 0.1, 0.1, 0.1),
and the parameters of Newton tracking are set to α =
5.9 (2.4, 2.7, 3.9, 3.1, 2.9), ε = 5.9 (2.4, 2.4, 3.6, 2.7, 2.6). All
other settings are the same as those in Section V-A.

Figs. 5 and 6 illustrate the relative error versus the num-
ber of communication rounds. Newton tracking outperforms
ESOM-1 in all the topologies. Observe that Newton tracking
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Fig. 5. Relative errors of Newton tracking versus rounds of communications
for line graph, cycle graph, random graphs with τ = {0.3, 0.5, 0.7}, and
complete graph.
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Fig. 6. Relative errors of ESOM-1 versus rounds of communications for line
graph, cycle graph, random graphs with τ = {0.3, 0.5, 0.7}, and complete
graph.

has linear convergence in all types of graphs. Among them,
the complete graph yields the fastest speed. This observation
confirms our theoretical analysis on the convergence speed.
For the line graph, the cycle graph, random graphs with
τ = {0.3, 0.5, 0.7}, and the complete graph, we have λ̂min(I−
W) = {0.03, 0.12, 0.17, 0.34, 0.43, 1.00} and λmax(I−W) =
{1.30, 1.33, 1.16, 1.15, 1.10, 1.00}, respectively. According to
our theoretical analysis, the complete graph with the largest
λ̂min(I −W) and the smallest λmax(I −W) has the largest
δ′t, hence the fastest convergence speed.

VI. CONCLUSIONS

This paper proposed a novel Newton tracking algorithm
to solve the decentralized consensus optimization problem.
Each node updates its local variable along a modified local
Newton direction, which is calculated using neighboring and
historical information. Newton tracking employs a fixed step
size and yet provably converges to an exact optimal solution.
The connections between Newton tracking and several ex-
isting methods, including gradient tracking and second-order
algorithms, were investigated. We proved that the proposed
algorithm converges at a linear rate under the strongly convex
assumption. Our numerical results demonstrated the efficacy
of Newton tracking and its superiority over existing algorithms
such as gradient tracking, NN, ESOM, and DQM.



APPENDIX

Proof. The proof of Lemma 3 has two steps.
Step 1. By reorganizing (16), we get

ε(xt − xt+1) +∇2f(xt)
(
xt − xt+1

)
−
[
∇f

(
xt
)

+ (I−W)
1
2vt + α(I−W)xt

]
= 0,

which implies that〈
x∗ − xt+1, ε(xt − xt+1) +∇2f(xt)

(
xt − xt+1

)
(49)

−
[
∇f

(
xt
)

+ (I−W)
1
2vt + α(I−W)xt

]〉
= 0.

Substituting the dual update vt = vt+1−α(I−W)
1
2xt+1 and

regrouping the terms, we can rewrite (49) as〈
x∗ − xt+1, (εI− α(I−W))︸ ︷︷ ︸

,Q

(xt − xt+1)

〉
(50)

−
〈
x∗ − xt+1,∇f

(
xt
)〉
−
〈
x∗ − xt+1, (I−W)

1
2vt+1

〉
+
〈
x∗ − xt+1,∇2f(xt)(xt − xt+1)

〉
= 0.

For the first term on the left-hand side of (50), we have〈
x∗ − xt+1,Q(xt − xt+1)

〉
(51)

=
1

2

(
‖x∗ − xt+1‖2Q + ‖xt − xt+1‖2Q − ‖x∗ − xt‖2Q

)
.

For the second term on the left-hand side of (50), we use the
µf -strong convexity of f to get〈

x∗ − xt+1,∇f
(
xt
)〉

(52)

=
〈
x∗ − xt+1,∇f

(
xt+1

)〉
+
〈
x∗ − xt+1,∇f

(
xt
)
−∇f

(
xt+1

)〉
≤ f(x∗)− f

(
xt+1

)
− µf

2

∥∥x∗ − xt+1
∥∥2

+
〈
x∗ − xt+1,∇f

(
xt
)
−∇f

(
xt+1

)〉
.

Substituting (52) and (51) into (50), we get

1

2

(
‖x∗ − xt+1‖2Q + ‖xt − xt+1‖2Q − ‖x∗ − xt‖2Q

)
− f(x∗) + f

(
xt+1

)
+
µf
2

∥∥x∗ − xt+1
∥∥2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)〉

+
〈
x∗ − xt+1,∇2f(xt)(xt − xt+1)

〉
−
〈
x∗ − xt+1, (I−W)

1
2vt+1

〉
≤ 0.

Upon rearranging the terms above, we obtain

f(x∗)− f
(
xt+1

)︸ ︷︷ ︸
(i)

+
〈
x∗ − xt+1, (I−W)

1
2vt+1

〉
︸ ︷︷ ︸

(ii)

(53)

− 1

2

(
‖x∗ − xt+1‖2Q − ‖x∗ − xt‖2Q

)
≥1

2
‖xt − xt+1‖2Q +

µf
2

∥∥x∗ − xt+1
∥∥2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)〉

+
〈
x∗ − xt+1,∇2f(xt)(xt − xt+1)

〉
.

Step 2. According to the dual update (15), we have vt+1 =
vt + α(I−W)

1
2xt+1. Consequently,

〈
v∗ − vt+1,−(I−W)

1
2xt+1

〉
=

〈
v∗ − vt+1,

vt − vt+1

α

〉
=

1

2α

(
‖vt+1 − vt‖2 − ‖v∗ − vt‖2 + ‖v∗ − vt+1‖2

)
.

Rearranging the terms, we have

〈
v∗,−(I−W)

1
2xt+1

〉︸ ︷︷ ︸
(i′)

+
〈
vt+1, (I−W)

1
2xt+1

〉︸ ︷︷ ︸
(ii′)

(54)

+
1

2α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)
=

1

2α
‖vt+1 − vt‖2.

Now, we utilize the consensus condition (I−W)
1
2x∗ = 0

to sum up (53) and (54). Upon adding (i) and (i′), we have

f(x∗)− f(xt+1) +
〈
v∗,−(I−W)

1
2xt+1

〉
=L̂(x∗,v∗)− L̂(xt+1,v∗) ≤ 0,

where L̂(x,v) = f(x)+ 〈v, (I−W)
1
2x〉 is the Lagrangian of

(13) and the inequality holds because (x∗,v∗) is the saddle
point of L̂(·, ·). On the other hand, adding (ii) and (ii′) yields

〈
x∗ − xt+1, (I−W)

1
2vt+1

〉
+
〈
vt+1, (I−W)

1
2xt+1

〉
=
〈
x∗, (I−W)

1
2vt+1

〉
= 0.

Hence, by adding (53) and (54), we obtain

1

2

(
‖x∗−xt‖2Q − ‖x∗−xt+1‖2Q

)
(55)

+
1

2α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)
≥1

2
‖xt−xt+1‖2Q +

1

2α
‖vt+1 − vt‖2 +

µf
2

∥∥x∗ − xt+1
∥∥2

+
〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)〉

+
〈
x∗ − xt+1,∇2f(xt)(xt − xt+1)

〉
.

To proceed, we observe that for any θ > 0,

〈
x∗ − xt+1,∇f

(
xt+1

)
−∇f

(
xt
)

+∇2f(xt)(xt − xt+1)
〉

≥ −1

θ
‖∇f

(
xt+1

)
−∇f

(
xt
)

+∇2f(xt)(xt − xt+1)‖2

− θ‖x∗ − xt+1‖2

≥ −θ‖x∗ − xt+1‖2 − ρ2
t

θ
‖xt − xt+1‖2, (56)

where the first inequality follows from the Cauchy-Schwarz
inequality and the second follows from (34). Substituting (56)



into (55), we obtain

‖x∗ − xt‖2Q − ‖x∗ − xt+1‖2Q (57)

+
1

α

(
‖v∗ − vt‖2 − ‖v∗ − vt+1‖2

)
≥‖xt − xt+1‖2Q +

1

α
‖vt+1 − vt‖2 + µf

∥∥x∗ − xt+1
∥∥2

− θ‖x∗ − xt+1‖2 − ρ2
t

θ
‖xt − xt+1‖2

=‖xt − xt+1‖2
(Q− ρ

2
t
θ I)

+
1

α
‖vt+1 − vt‖2

+ (µf − θ)
∥∥x∗ − xt+1

∥∥2
.

which completes the proof.
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