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Abstract—In this paper, we consider a time-varying optimi-
zation approach to the problem of tracking a moving target
using noisy time-of-arrival (TOA) measurements. Specifically, we
formulate the problem as that of sequential TOA-based source
localization and apply online gradient descent (OGD) to it to
generate the position estimates of the target. To analyze the
tracking performance of OGD, we first revisit the classic least-
squares formulation of the (static) TOA-based source localization
problem and elucidate its estimation and geometric properties.
In particular, under standard assumptions on the TOA measu-
rement model, we establish a bound on the distance between an
optimal solution to the least-squares formulation and the true
target position. Using this bound, we show that the loss function
in the formulation, albeit non-convex in general, is locally strongly
convex at its global minima. To the best of our knowledge,
these results are new and can be of independent interest. By
combining them with existing techniques from online strongly
convex optimization, we then establish the first non-trivial bound
on the cumulative target tracking error of OGD. Our numerical
results corroborate the theoretical findings and show that OGD
can effectively track the target at different noise levels.

Index Terms—source localization, target tracking, time of
arrival (TOA), online gradient descent, tracking error bound

I. INTRODUCTION

Target tracking [2], [3] is a key enabling technology in many
applications of multi-agent systems and wireless sensor net-
works, such as motion planning [4], [5] and surveillance [6],
[7]. In one of its basic forms, the tracking problem aims to
maintain position estimates of a moving, signal-emitting target
over time using noisy measurements of the emitted signal
collected by stationary sensors. Such a sequential localization
formulation has been extensively studied in the control and
signal processing communities, and various approaches for
tackling it have been proposed. When a model on the target
dynamics and noise statistics is available, a classic approach is
to employ Kalman filtering techniques to perform the tracking;
see, e.g., [8]–[11] and the references therein. In recent years,
however, there have been increasing efforts in developing
tracking techniques that require only minimal assumptions on
the target trajectory and/or noise distribution. One approach
is to view the sequential localization formulation through the
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lens of time-varying optimization [12], [13]. Specifically, at
each time step, the position estimate of the target is given
by a minimizer of a loss function that depends on the noisy
signal measurements collected at that time step. However,
since the time interval between successive measurements is
often very short and the sensors have limited computational
power, it is impractical to solve the loss minimization problem
at each time step exactly. This motivates the use of online
optimization techniques to tackle the target tracking problem.
To evaluate the performance of an online method, various
metrics are available; see [13]. These metrics differ in how
they measure the discrepancy between the solutions generated
by the method at different time steps and the optimal solutions
at the corresponding time steps. When the loss function is
convex at every time step, it has been shown that many online
methods enjoy strong performance guarantees under different
metrics; see, e.g., [14]–[20] and the references therein.

Although the results just mentioned cover a wide variety of
target tracking scenarios, they do not apply to those where the
loss function of interest is non-convex. One such scenario is
time-of-arrival (TOA)-based tracking, in which sensors collect
TOA measurements of the target signal and the tracking
is achieved by minimizing a non-convex least-squares loss
function associated with the measurements collected at each
time step [21]–[23]. In this scenario, the tracking problem can
be viewed as a sequential version of the well-studied TOA-
based source localization problem; see, e.g., [24]–[30]. As
far as we know, the TOA-based tracking problem has barely
been investigated from the time-varying or online optimization
perspective in the literature. Recently, there have been some
works that study time-varying optimization problems with
general non-convex loss functions. However, the results are
not entirely satisfactory when specialized to the TOA-based
tracking problem. For instance, the work [23] proposes an
online Newton’s method (ONM) and establishes a bound on
its dynamic regret (i.e., the difference between the cumulative
loss incurred by the sequence of solutions generated by the
method and that incurred by the sequence of optimal solutions;
see [13]) by assuming, among other things, that the Hessian of
the loss function at each time step satisfies a non-degeneracy
condition. It also demonstrates the numerical performance of
ONM on the TOA-based tracking problem. Nevertheless, since
ONM needs to compute the inverse of the Hessian of the loss
function at each time step, it can be computationally expensive.
In addition, the work does not shed any light on whether
the TOA-based tracking problem satisfies the assumptions



underlying the dynamic regret analysis of ONM. As such,
the theoretical performance of ONM for TOA-based tracking
remains unclear. On the other hand, the work [31] develops
a dual averaging method and obtains a bound on its dynamic
regret under relatively mild assumptions on the loss functions.
However, the method is mainly of theoretical interest, as it
needs to compute a distribution over the feasible solutions
and sample a solution from this distribution at each time step,
and neither of these is straightforward to implement for the
TOA-based tracking problem.

Motivated by the above discussion, we are interested in
developing a low-complexity online method for TOA-based
tracking and establishing theoretical guarantee on its perfor-
mance. One method that naturally suggests itself is online
gradient descent (OGD). The method only needs to perform
a single gradient descent update at each time step, thus
making it well-suited for the target tracking task. However,
there has been no performance analysis of OGD for our
problem setting so far. Not surprisingly, a major difficulty is
that the least-squares loss function associated with the TOA
measurements is non-convex. The main contribution of this
work is the development of the first non-trivial performance
bound for OGD when it is applied to the TOA-based tracking
problem. The performance metric we adopt is the cumulative
target tracking error (CTTE), which is defined as the sum
of the distances between the estimated target position and
the true target position at different time steps. Our bound
makes explicit the dependence of the CTTE of OGD on the
path length of the target trajectory and the noise power of
the TOA measurements. It is important to note that there
is a subtle yet fundamental difference in nature between the
CTTE metric and most other metrics used in the time-varying
or online optimization literature. The former measures the
performance relative to the true values of the parameter we
wish to estimate (viz. the true positions of the target at different
time steps), while the latter (such as the dynamic regret or
the usual tracking error) measure the performance relative
to the optimal solutions to the loss minimization problems
at different time steps. In the context of the TOA-based
tracking problem, it is clear that the CTTE defined above
is a more relevant performance metric, as ultimately we are
interested in how well the online method tracks the true target
positions rather than the optimal solutions to the time-varying
loss minimization problem. Nevertheless, the use of the true
target positions in the definition of CTTE makes it a more
challenging metric to analyze.

To establish the said CTTE bound, we proceed in two steps.
First, we revisit the classic least-squares formulation of the
(static) TOA-based source localization problem and elucidate
its estimation and geometric properties. Specifically, under
standard assumptions on the TOA measurement model, we
establish a bound on the estimation error of any least-squares
estimate of the true target position and use this bound to show
that the loss function, albeit non-convex in general, is locally
strongly convex at its global minima. Moreover, we give an
explicit estimate of the size of the strong convexity region. We
remark that similar results have previously been established
for a time-difference-of-arrival (TDOA)-based least-squares

loss function [32]. However, to the best of our knowledge,
our results for the TOA-based least-squares loss function
are new and can be of independent interest. In particular, it
provides further theoretical justification for the good empirical
performance of gradient-based schemes observed in [27] when
solving the TOA-based source localization problem. Second,
we extend our local strong convexity result from the static
localization setting to the dynamic target tracking setting.
Specifically, we show that as long as the aforementioned
assumptions on the TOA measurement model are satisfied
and the distance between the true positions of the target
at consecutive time steps is sufficiently small, the position
estimate of the target at the current time step will lie in the
strong convexity region of the loss function at the next time
step. This allows us to utilize techniques from online strongly
convex optimization to establish the advertised CTTE bound
for OGD.

The notation in this paper is mostly standard. We use
‖ · ‖1 and ‖ · ‖ to denote the `1-norm and Euclidean norm,
respectively. Given a vector x̄ ∈ Rn and a scalar r > 0, we
use B(x̄, r) := {x ∈ Rn : ‖x− x̄‖ ≤ r} to denote the closed
Euclidean ball with center x̄ and radius r. Given a symmetric
matrix A, we use λmin(A) to denote its smallest eigenvalue
and A � 0 to indicate that it is positive definite.

The rest of the paper is organized as follows. In Section II,
we present a time-varying optimization formulation of the
TOA-based tracking problem and describe how it can be
tackled by OGD. In Section III, we study the estimation error
and local strong convexity property of the static TOA-based
source localization problem. Using these results, we establish
our bound on the CTTE of OGD for the TOA-based tracking
problem in Section IV. In Section V, we present numerical
results to demonstrate the efficacy of OGD for TOA-based
tracking and illustrate our theoretical findings. We then end
with some closing remarks in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

We begin by describing the setup for TOA-based tracking.
Let x?t ∈ Rn be the unknown true position of the moving
target at time t, where t = 1, . . . , T and T is the time
horizon of interest. Furthermore, let ai ∈ Rn (i = 1, . . . ,m)
be the known position of the ith sensor and suppose that
the vectors {ai − a1}mi=2 span Rn (in particular, we have
m ≥ n+ 1). We consider the following model for TOA-based
range measurements:

rti = ‖x?t − ai‖+ wti , i = 1, . . . ,m; t = 1, . . . , T. (1)

Here, wti is the measurement noise and rti is the noisy TOA-
based range measurement between the target and the ith sensor
at time t. We assume that wti is a random variable with mean
zero, variance bounded above by σ2

t and is independent of the
noise at other sensors and at other time steps. We also assume
that |wti | � ‖x?t − ai‖ for i = 1, . . . ,m and t = 1, . . . , T . It
is worth noting that similar assumptions have appeared in the
localization literature; see, e.g., [33].



To estimate the target position at time t, a natural approach
is to consider the following non-convex least-squares formu-
lation:

min
x∈Rn

ft(x) :=

m∑
i=1

(‖x− ai‖ − rti)2. (2)

Such a formulation is motivated by the fact that when the
measurement noise vector wt = (wt1, . . . , w

t
m) is Gaussian,

every optimal solution to Problem (2) is a maximum-likelihood
estimate of the true target position x?t ; see, e.g., [24]. Hence-
forth, we shall use x̂t to denote an optimal solution to (2) (i.e.,
x̂t ∈ arg minx∈Rn ft(x)) and refer to it as a least-squares
estimate of the true target position x?t . In this paper, we
propose to apply OGD to tackle the time-varying optimization
formulation (2), as it may not be computationally feasible to
find an (approximately) optimal solution to (2) at every time
step. Specifically, given an estimate xt−1 of the target position
at time t−1 and the noisy range measurements {rti}mi=1 at time
t, we generate an estimate xt of the target position at time t
via the one-step gradient descent update

xt = xt−1 − ηt∇ft(xt−1), t = 1, . . . , T, (3)

where ηt > 0 is the step size. We remark that the update (3)
should be interpreted in a formal sense at this point, as the
function ft is non-differentiable at x ∈ {a1, . . . ,am}. We
shall justify the validity of (3) in the following sections.

Naturally, we are interested in evaluating the performance of
the sequence of position estimates {xt}Tt=1. For that purpose,
we employ the notion of CTTE, which is defined as

CTTE
(
{xt}Tt=1

)
:=

T∑
t=1

‖xt − x?t ‖.

Note that the definition of CTTE involves the sequence of true
target positions {x?t }Tt=1, not the sequence of optimal solutions
{x̂t}Tt=1 to Problem (2), as it is the former that we are
interested in tracking. Indeed, a small CTTE implies that the
estimate xt is close to the true target position x?t at every time
step t. Our goal is to bound the CTTE in terms of the variations
in the target trajectory {‖x?t+1 − x?t ‖}T−1t=1 and the noise
power {σ2

t }Tt=1 and to derive conditions that can guarantee
a sublinear CTTE bound (i.e., 1

T CTTE
(
{xt}Tt=1

)
→ 0) on

the tracking performance of OGD. We remark that a sublinear
CTTE bound is a desirable property for a tracking algorithm
to have, as it implies that the target tracking error of the
algorithm—i.e., the distance between the target position esti-
mate produced by the algorithm and the true target position—
vanishes asymptotically. In the next section, we will develop
two results that are key to achieving this goal. Specifically,
under the assumption that the power of the measurement noise
σ2
t is sufficiently small, we will first establish a bound on the

estimation error ‖x̂t − x?t ‖ and then use this bound to show
that the loss function ft is locally strongly convex at the least-
squares estimate x̂t.1

1A function g : Rn → R is said to be locally strongly convex at x̄ if there
exists an r > 0 such that g is strongly convex on the ball B(x̄, r) [34].

III. LOCAL STRONG CONVEXITY OF TOA-BASED SOURCE
LOCALIZATION

Consider a fixed time t. Then, Problem (2) reduces to
the classic TOA-based source localization problem (see,
e.g., [30]), in which the target is considered static. For no-
tational simplicity, we drop the index t and write Problem (2)
as

min
x∈Rn

f(x) :=

m∑
i=1

(‖x− ai‖ − ri)2 (4)

with ri = ‖x?−ai‖+wi. As before, we assume that wi is a
random variable with mean zero, variance bounded above by
σ2 and satisfies |wi| � ‖x?−ai‖. Let x̂ ∈ arg minx∈Rn f(x)
denote a least-squares estimate of the true target position x?.
The following proposition, which plays a crucial role in our
subsequent development, shows that x̂ and x? are close when
the power of the measurement noise vectorw = (w1, . . . , wm)
is small.

Proposition 1 (Estimation Error of Least-Squares Estimator).
Suppose that ‖w‖ ≤ c0

√
mσ for some constant c0 > 0. Then,

there exist constants K1, K2 > 0, which are determined by
a1, . . . ,am and x?, such that

‖x̂− x?‖ ≤ K1

√
mσ +K2mσ

2.

The proof of Proposition 1 can be found in Appendix A.
The assumption on ‖w‖ in Proposition 1 is rather mild, as it

can be satisfied with high probability when, e.g., w1, . . . , wm
are sub-Gaussian random variables [35, Chapter 3]. Now, using
Proposition 1, we can prove the following theorem, which
establishes the local strong convexity of f at x̂ and provides
an explicit estimate on the size of the strong convexity region
around x̂. This constitutes our first main result in this paper.

Theorem 1 (Local Strong Convexity of TOA-Based Source
Localization). Consider the setting of Proposition 1. Suppose
that for some given δ > 0, the noise power σ2 satisfies

‖x? − ai‖ > K1

√
mσ +K2mσ

2 + δ, i = 1, . . . ,m (5)

and

κ :=
δ

10m
· Λ− (K1

√
mσ +K2mσ

2)− 4c0σ

5
> 0, (6)

where

Λ := λmin

(
m∑
i=1

(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T)
.

Then, we have ∇2f(x̂ + ε) � 0 for all ε ∈ Rn satisfying
‖ε‖ ≤ κ; i.e., f is strongly convex over B(x̂, κ).

The proof of Theorem 1 can be found in Appendix B. Here,
let us elaborate on the assumptions of the theorem.

1) Condition (5) stipulates that the target should be suffi-
ciently far from the sensors, which is not very restrictive
in practice. Moreover, when combined with Proposi-
tion 1, the condition implies that ‖x̂ − ai‖ > δ for
i = 1, . . . ,m, which shows that the loss function f is
smooth around the least-squares estimate x̂. This allows



us to use the Hessian ∇2f to characterize the local
strong convexity of f at x̂.

2) Since the vectors {ai−a1}mi=2 span Rn by assumption,
it can be shown that the vectors {x? − ai}mi=1 also
span Rn. This implies that Λ > 0. Thus, condition (6)
can be satisfied when σ > 0 is sufficiently small
(incidentally, condition (5) also becomes easier to satisfy
as σ becomes smaller). An important insight drawn
from (6) is that the landscape of the loss function f
around the least-squares estimate x̂ depends on the noise
power level and the geometric configuration of the target
and sensors.

We remark that although the TOA-based source localization
problem has been extensively studied in the literature, Theo-
rem 1 is, to the best of our knowledge, the first result that
elicits the local strong convexity property of the non-convex
least-squares formulation (4). Now, since the strong convexity
region B(x̂, κ) around x̂ is compact and ∇2f is continuous
over B(x̂, κ), we see that ∇f is Lipschitz continuous over
B(x̂, κ). Thus, Theorem 1 implies that when applying the
gradient descent method to tackle Problem (4), the resulting
sequence of iterates will converge to the optimal solution x̂ at
a linear rate, provided that the initial point lies in the strong
convexity region around x̂. This can be deduced using the
following well-known result.

Fact 1 (Linear Convergence of Gradient Descent for Strongly
Convex Minimization; cf. [36, Theorem 2.1.15]). Let g :
Rn → R be a function that is smooth, µ-strongly convex,
and L-gradient Lipschitz continuous on an open convex set
X ⊆ Rn. Suppose that g has a global minimizer x̂ over X .
Then, the sequence {xk}k≥0 generated by the gradient descent
method

xk+1 = xk − η∇g(xk)

with initial point x0 ∈ X and step size η ∈ (0, 2/(µ + L)]
satisfies

‖xk+1 − x̂‖2 ≤
(

1− 2ηµL

µ+ L

)
‖xk − x̂‖2.

In particular, Theorem 1 provides a means to justify the good
empirical performance of gradient-based schemes observed
in [27] when solving the TOA-based source localization pro-
blem.

IV. CTTE OF OGD FOR TOA-BASED TRACKING

Let us now address the main goal of this paper—namely,
to establish a bound on the CTTE of OGD for TOA-based
tracking. The results in Section III suggest that if the iterate
generated by OGD at time t lies in the strong convexity region
of the loss function at time t+1 for t = 0, 1, . . . , T−1, then the
tracking problem is essentially reduced to that of minimizing
a time-varying strongly convex function. This opens up the
possibility of using techniques from online strongly convex
optimization to bound the CTTE of OGD for TOA-based
tracking.

To realize the above idea, we need to first introduce some
additional preliminaries and collect some consequences of the

results in Section III. Observe that the constants K1,K2,Λ in
Theorem 1 involve the target position x?. Since the target is
moving in the tracking setting, it will simplify our subsequent
analysis if we can find uniform bounds on these constants.
Towards that end, we further assume that the target stays
within a fixed compact region T ⊆ Rn throughout the tracking
task. Such an assumption is rather mild in practice. Moreover,
since K1,K2,Λ depend continuously on x?, it implies the
existence of finite upper bounds on K1,K2 and a positive
lower bound on Λ that hold for all t ≥ 0. As a slight abuse
of notation, we shall use K1,K2,Λ to denote these uniform
bounds in the sequel.

Following the setting of Theorem 1, let x̂t ∈
arg minx∈Rn ft(x) denote a least-squares estimate of the true
target position x?t at time t and c0 > 0 be a constant
such that ‖wt‖ ≤ c0

√
mσt for t = 1, . . . , T . Furthermore,

suppose that for some given δ > 0, the maximum noise power
σ2 := maxt∈{1,...,T} σ

2
t satisfies

‖x?t − ai‖ > K1

√
mσ +K2mσ

2 + δ,

i = 1, . . . ,m; t = 1, . . . , T (7)

and

κ :=
δ

10m
· Λ− (K1

√
mσ +K2mσ

2)− 4c0σ

5
> 0 (8)

(recall from the discussion in the preceding paragraph that
K1,K2,Λ are now uniform in t and hence κ is also uniform
in t). Then, using Theorem 1, the expressions for ∇ft,∇2ft,
and the assumption that the target stays within the compact
region T , we deduce the existence of constants µ,L > 0 such
that for t = 1, . . . , T ,

1) ft is µ-strongly convex over B(x̂t, κ)—i.e., for any
x,y ∈ B(x̂t, κ),

ft(x) ≥ ft(y) +∇ft(y)T (x− y) +
µ

2
‖x− y‖2; (9)

2) ∇ft is L-Lipschitz continuous over B(x̂t, κ)—i.e., for
any x,y ∈ B(x̂t, κ),

‖∇ft(y)−∇ft(x)‖ ≤ L‖x− y‖; (10)

Now, let {xt}Tt=1 be the sequence of iterates generated
by the OGD update (3) with initial point x0 and step size
ηt ≡ η ∈ (0, 2/(µ + L)] for t = 1, . . . , T . In addition, let
vt := ‖x?t+1 − x?t ‖ (t = 1, . . . , T − 1) denote the variation
in the true target position between time t and t + 1 and
v := maxt∈{1,...,T−1} vt denote the maximum variation in
the true target position between successive time steps. The
following proposition shows that under suitable conditions,
OGD maintains the invariant that the iterate generated at the
current time step lies in the strong convexity region of the loss
function at the next time step.

Proposition 2 (Invariant of OGD). Suppose that in addition
to (7) and (8), the maximum noise power σ2 and maximum
variation v satisfy

κ ≥ 2(K1
√
mσ +K2mσ

2) + v

1− ρ
, (11)



where ρ :=
(

1− 2ηµL
µ+L

)1/2
∈ (0, 1) with µ,L given

by (9), (10), respectively, and κ > 0 is the radius of the
strong convexity region of the loss function ft around the
least-squares estimate x̂t for t = 1, . . . , T . Furthermore,
suppose that the initial point x0 satisfies ‖x0 − x?1‖ ≤
K1
√
mσ +K2mσ

2. Then, for t = 0, 1, . . . , T − 1, the iterate
xt lies in the strong convexity region B(x̂t+1, κ) of the loss
function ft+1.

Proof. We proceed by induction on t. For t = 0, we have

‖x0 − x̂1‖ ≤ ‖x0 − x?1‖+ ‖x?1 − x̂1‖
≤ 2(K1

√
mσ +K2mσ

2) (12)
≤ κ,

where the second inequality follows from our assumption on
x0 and Proposition 1 and the last follows from our choice of
κ in (11). This establishes the base case. Now, for t ≥ 1, we
have

‖xt − x̂t+1‖ ≤ ‖xt − x̂t‖+ ‖x̂t − x̂t+1‖
≤ ρ‖xt−1 − x̂t‖+ ‖x̂t − x?t ‖+ ‖x?t+1 − x̂t+1‖

+ ‖x?t − x?t+1‖
≤ ρκ+ 2(K1

√
mσ +K2mσ

2) + vt

≤ κ,

where the second inequality follows from the OGD update (3),
the inductive hypothesis (i.e., xt−1 lies in the strong convexity
region of ft), and Fact 1; the third follows from the inductive
hypothesis and Proposition 1; the last follows from our choice
of κ in (11). This completes the inductive step and also the
proof of Proposition 2.

We remark that since the loss functions {ft}Tt=1 are non-
convex, some conditions on the maximum noise power, max-
imum variation, and quality of the initial point are to be
expected in the CTTE analysis of OGD for tackling the TOA-
based tracking problem (2). In fact, the performance analysis
of ONM for general time-varying non-convex optimization
in [23], though focusing on the dynamic regret metric, makes
use of similar conditions on the maximum variation and
quality of the initial point as those in Proposition 2.

Armed with Proposition 2, we can prove the following
theorem, which establishes a CTTE bound for OGD when it is
applied to the TOA-based tracking problem. This constitutes
our second main result in this paper.

Theorem 2 (CTTE of OGD for TOA-Based Tracking). Under
the setting of Proposition 2, the sequence of iterates {xt}Tt=1

satisfies

CTTE
(
{xt}Tt=1

)
= O(1 + V (T ) +N1(T ) +N2(T )),

where V (T ) :=
∑T−1
t=1 ‖x?t+1 − x?t ‖ =

∑T−1
t=1 vt denotes the

path length of the target trajectory, N1(T ) :=
∑T
t=1 σt de-

notes the cumulative noise standard deviation, and N2(T ) :=∑T
t=1 σ

2
t denotes the cumulative noise variance.

Proof. Using the definition of CTTE and the triangle inequa-
lity, we have

CTTE
(
{xt}Tt=1

)
=

T∑
t=1

‖xt − x?t ‖

≤
T∑
t=1

‖xt − x̂t‖+

T∑
t=1

‖x̂t − x?t ‖. (13)

Let us now bound the two terms in (13) separately.
For the first term, we begin by adapting the argument used in

the proof of [17, Theorem 1] to our time-varying optimization
setting and bound

T∑
t=1

‖xt − x̂t‖ ≤ ρ
T∑
t=1

‖xt−1 − x̂t‖

≤ ρ‖x0 − x̂1‖+ ρ

T∑
t=2

‖xt−1 − x̂t−1‖+ ρ

T∑
t=2

‖x̂t−1 − x̂t‖

= ρ (‖x0 − x̂1‖ − ‖xT − x̂T ‖) + ρ

T∑
t=1

‖xt − x̂t‖

+ ρ

T−1∑
t=1

‖x̂t − x̂t+1‖,

where the first inequality follows from the OGD update (3),
Proposition 2, and Fact 1. It follows that
T∑
t=1

‖xt − x̂t‖ ≤
ρ

1− ρ

(
‖x0 − x̂1‖+

T−1∑
t=1

‖x̂t − x̂t+1‖

)
.

(14)

Now, using (12), we get

‖x0 − x̂1‖ ≤ 2(K1

√
mσ +K2mσ

2).

Furthermore, we have
T−1∑
t=1

‖x̂t − x̂t+1‖

≤
T−1∑
t=1

(
‖x̂t − x?t ‖+ ‖x?t − x?t+1‖+ ‖x?t+1 − x̂t+1‖

)
≤

T−1∑
t=1

(
K1

√
m(σt + σt+1) +K2m(σ2

t + σ2
t+1) + vt

)
=

T−1∑
t=1

vt + 2K1

√
m

T∑
t=1

σt + 2K2m

T∑
t=1

σ2
t ,

where the second inequality follows from Proposition 1.
Substituting the above into (14) yields

T∑
t=1

‖xt − x̂t‖ = O(1 + V (T ) +N1(T ) +N2(T )).

For the second term, we simply invoke Proposition 1 to get
T∑
t=1

‖x̂t − x?t ‖ ≤ K1

√
m

T∑
t=1

σt +K2m

T∑
t=1

σ2
t

= O(N1(T ) +N2(T )).



The desired result now follows by substituting the above
into (13).

Theorem 2 reveals that OGD can achieve sublinear CTTE
when both the path length V (T ) and the cumulative noise
power N2(T ) grow sublinearly (note that the latter, together
with the fact that N1(T ) ≤

√
T ·N2(T ), implies the sublinear

growth of the cumulative noise standard deviation N1(T )).
Roughly speaking, this means that if the target is not moving
too fast and the noise power decays at a sufficiently fast rate
over time, then the target tracking error of OGD will vanish
asymptotically. It is important to note that our CTTE bound is
expressed in terms of the path length of the target trajectory
(i.e., V (T ) =

∑T−1
t=1 ‖x?t+1−x?t ‖), not the path length of the

optimal solution trajectory of the time-varying loss function
(i.e., V ′(T ) :=

∑T−1
t=1 ‖x̂t+1 − x̂t‖). Although the latter is

commonly used in existing performance analyses of online
methods (see, e.g., [17], [20], [23]), the former captures the
actual variations in the target trajectory and is thus more
relevant to the tracking problem considered in this paper. It is
also worth noting that our CTTE bound shows explicitly how
the TOA measurement noise affects the tracking performance
of OGD through the terms N1(T ) and N2(T ).

V. NUMERICAL SIMULATIONS

In this section, we present numerical results to demonstrate
the efficacy of OGD for the TOA-based tracking problem and
illustrate our theoretical findings. Specifically, we apply both
OGD and ONM—the latter has previously been used in [23]
to tackle the TOA-based tracking problem—to various test
instances and compare their tracking performance. In all the
considered instances, there are m = 3 sensors, which are
located at a1 =

[
0.5 0.5

]T
, a2 =

[
0 0.5

]T
, and a3 =[

0.5 0
]T

. Given the time horizon of interest T and the target
trajectory {x?t }Tt=1, the measurement noise wti in (1) is gene-
rated according to the Gaussian distribution with mean zero
and variance σ2

t for i = 1, . . . ,m; t = 1, . . . , T , and the TOA-
based range measurements {rti : i = 1, . . . ,m; t = 1, . . . , T}
are then obtained using (1). We consider two initialization
strategies for OGD and ONM. One is exact initialization,
which assumes that the true initial target position x?1 is known
and takes x0 = x?1 as the initial point. The other is ordinary
least-squares (OLS) initialization, which takes

x0 = (ATA)−1AT b1 (15)

with

A :=

 (a2 − a1)T

...
(am − am−1)T

 , (16)

b1 :=
1

2

 ‖a2‖2 − ‖a1‖2 + (r11)2 − (r12)2

...
‖am‖2 − ‖am−1‖2 + (r1m−1)2 − (r1m)2

 (17)

as the initial point; see [37]. The OLS estimate in (15) can be
obtained as follows: Observe that any x satisfying

‖x− ai‖2 ≈ (r1i )
2, i = 1, . . . ,m

can serve as an estimate of the true initial target position x?1.
Upon subtracting the ith equation from the (i + 1)st, where
i = 1, . . . ,m− 1, we get

2(ai+1 − ai)Tx ≈ ‖ai+1‖2 − ‖ai‖2 + (r1i )
2 − (r1i+1)2.

In particular, we can obtain an estimate of x?1 by solving

min
x∈Rn

‖Ax− b‖2, (18)

where A and b are given by (16) and (17), respectively. Since
the vectors {ai−a1}mi=2 span Rn by assumption, the solution
to (18) is readily given by (15). It is worth noting that the OLS
estimate in (15) can be computed simply by using the sensor
positions {ai}mi=1 and noisy range measurements {r1i }mi=1.
Thus, it is an attractive choice for initializing OGD and ONM.
We use the step size ηt = 0.1 for t = 1, . . . , T in OGD. Then,
OGD generates the position estimates of the target via (3),
while ONM generates those via

xt = xt−1 −
(
∇2ft(xt−1)

)−1∇ft(xt−1), t = 1, . . . , T.

All computations were carried out in MATLAB on an Intel(R)
Core(TM) i5-8600 CPU 3.10GHz CPU machine. The CTTE
shown in the figures are averaged over 1000 Monte Carlo runs.

A. Small Noise Level and Path Variation

To begin, we construct the following set of test instances
(cf. [23, Section IV]): The time horizon of interest T is set to
500. The target’s initial position is set to x?1 =

[
2 1

]T
and

its positions at subsequent time steps are given by

x?t+1 = x?t +
0.005√
2(t+ 1)

ut, t = 1, . . . , T − 1, (19)

where u1, . . . ,uT−1 ∈ R2 are independently and uniformly
distributed on the unit circle centered at the origin. We
consider three scenarios, which correspond to three different
noise levels: (i) σt = 0.0001 for t = 1, . . . , T ; (ii) σt = 0.01
for t = 1, . . . , T ; (iii) σt = 0.01√

t
for t = 1, . . . , T . Figures 1a–

1c show the CTTE of OGD and ONM with exact and OLS
initialization at these three noise levels. Figures 1d–1f show
the tracking trajectories generated by OGD and ONM for par-
ticular instances at those noise levels with OLS initialization.
We also include the trajectories of the least-squares estimates
{x̂t}Tt=1 in the figures for reference. These trajectories are
generated using gradient descent (GD) at each time step.
Specifically, at time t, we use the true target position x?t as the
initial point and perform the GD updates using the constant
step size 1/m until either the norm of the gradient is smaller
than 10−8 or the number of iterations reaches 5000. We then
declare the last iterate to be x̂t.

In the first scenario, the noise level is small compared to
the path variation (i.e., σt+1 = 0.0001 vs. vt = 0.005√

2(t+1)
for

t = 1, . . . , T − 1 with T = 500). We see from Figure 1a
that ONM has a smaller CTTE than OGD. This can be
explained as follows: First, Proposition 1 implies that the least-
squares estimate x̂t is close to the true target position x?t for
t = 1, . . . , T . Second, since ONM uses both first- and second-
order information of the loss function ft, the point it generates



(a) σt = 0.0001 (b) σt = 0.01 (c) σt = 0.01/
√
t

(d) σt = 0.0001 (e) σt = 0.01 (f) σt = 0.01/
√
t

Fig. 1: CTTE (top row) and tracking trajectories (bottom row) of OGD and ONM at different noise levels.

is closer to x̂t than that generated by OGD. This suggests
that ONM is better at tracking the least-squares estimates
than OGD. In fact, these two claims are corroborated by our
numerical results; see Figure 1d.

In the second scenario, the noise level increases relative to
the path variation (i.e., σt+1 = 0.01 vs. vt = 0.005√

2(t+1)
for

t = 1, . . . , T − 1 with T = 500). Here, the ability of ONM to
track the least-squares estimates closely becomes a liability,
because Proposition 1 suggests that the true target position
and the least-squares estimate will be further apart. Indeed, as
shown in Figure 1b, ONM has a larger CTTE than OGD, and
the gap widens as time goes by. We see from Figure 1e that
ONM is much better at tracking the least-squares estimates
than OGD. However, the least-squares estimates are quite far
from the true target positions, and OGD is better at tracking
the latter.

We note that in the above two scenarios, the noise level
is constant, and the CTTE of OGD eventually grows linearly
(see Figures 1a and 1b). This is consistent with the result in
Theorem 2, as N1(T ) = Θ(T ) and N2(T ) = Θ(T ) and both
terms dominate V (T ) = Θ(

√
T ).

In the third scenario, the noise level diminishes as time
goes by, but the relative magnitude between noise level and
path variation stays roughly constant (i.e., σt+1 = 0.01√

t
vs.

vt = 0.005√
2(t+1)

for t = 1, . . . , T − 1 with T = 500). From

Figure 1c, we see that with exact initialization, OGD has a
smaller CTTE than ONM. This suggests that the high initial
noise level, which causes the least-squares estimate to deviate

from the true target position, throws off ONM and degrades
its subsequent tracking performace even though the noise level
is diminishing. Moreover, given the high initial noise level,
the OLS initialization strategy tends to produce an inaccurate
estimate of the true initial target position. Consequently, with
OLS initialization, the CTTE of both OGD and ONM grow
rapidly in the beginning, though the former is more affected by
the quality of the OLS estimate than the latter. Nevertheless,
we observe that the CTTE gap between OGD and ONM
narrows as time goes by. This supports our earlier claim
that OGD is better at tracking the true target positions than
ONM; see also Figure 1f. Lastly, we note that the CTTE of
OGD grows sublinearly. This is consistent with the result in
Theorem 2, as we have V (T ) = Θ(

√
T ), N1(T ) = Θ(

√
T ),

and N2(T ) = Θ(log T ).
We also compare the per-iteration CPU time of OGD and

ONM. As can be seen in Table I, OGD is about 2-3 times faster
than ONM. The higher runtime of the latter can be attributed
to the computation of the inverse of the Hessian of the loss
function.

Noise Level OGD ONM
σt = 0.0001 5.23× 10−6s 1.36× 10−5s
σt = 0.01 5.11× 10−6s 1.31× 10−5s

σt = 0.01/
√
t 5.05× 10−6s 1.29× 10−5s

TABLE I: Per-iteration CPU time of OGD and ONM.

To better understand the effect of the relative magnitude
between noise level and path variation on the tracking per-



Fig. 2: CTTE of OGD and ONM at noise level σt = 0.0001,
T = 10000.

formance of OGD and ONM, let us plot Figure 1a again
but with the longer time horizon T = 10000. The result is
shown in Figure 2. Although the CTTE of OGD is higher
than that of ONM in the beginning, the latter eventually
overtakes the former as t increases. This is consistent with our
earlier observation that ONM is better at tracking the least-
squares estimates than OGD. Indeed, when t is sufficiently
large, the noise level σt+1 = 0.0001 is larger than the path
variation vt = 0.005√

2(t+1)
. Thus, as time goes by, the true

target position and the least-squares estimate become further
apart (see Proposition 1), and ONM starts to incur a higher
target tracking error at each time step. This suggests that the
performance of ONM is rather sensitive to the noise level,
while that of OGD is quite stable.

As a further illustration, we construct another set of test
instances with T = 10000, the same initial target position
x?1 =

[
2 1

]T
and target trajectory (19) as before, and the

following two different noise levels: (i) σt = 0.005√
2t

for t =

1, . . . , T ; (ii) σt = 0.008√
2t

for t = 1, . . . , T . For t = 1, . . . , T −
1, the ratios of noise level σt+1 to path variation vt in these
two cases are 1 and 1.6, respectively. Figures 3a–3b show the
CTTE of OGD and ONM with exact and OLS initialization
at these two noise levels.

When the noise level to path variation ratio is 1, Figure 3a
shows that ONM performs better than OGD, regardless of
whether exact or OLS initialization is used. However, when the
ratio increases to 1.6, Figure 3b shows that OGD eventually
performs better than ONM, regardless of whether exact or
OLS initialization is used. These results corroborate our earlier
account that OGD is better at tracking the true target positions,
while ONM is better at tracking the least-squares estimates.

B. Large Noise Level and Path Variation

Next, we study the CTTE of OGD and ONM when the two
methods are applied to test instances that violate one or more
of the conditions (7), (8), and (11). In particular, there is no
guarantee that the iterate generated by OGD at the current time
step lies in the strong convexity region of the loss function at
the next time step.

We first construct a test instance that has large noise level
and path variation but the ratio between them is small. The
time horizon of interest is set to T = 500. The target’s initial
position is set to x?1 =

[
2 1

]T
and its subsequent positions

are given by

x?t+1 = x?t +
0.1√

2(t+ 1)
ut, t = 1, . . . , T − 1.

Here, as before, u1, . . . ,uT−1 ∈ R2 are independently and
uniformly distributed on the unit circle centered at the origin.
The noise levels are given by σt = 0.1√

2t
for t = 1, . . . , T .

Figure 4a shows the CTTE of OGD and ONM. We observe
that the CTTE of OGD is much lower than that of ONM with
both exact and OLS initialization. One possible explanation is
that the good performance of ONM relies heavily on the local
strong convexity of the loss function, and the lack of such a
property seriously affects its performance.

Now, let us construct a test instance that has a small noise
level but large path variation, so that the ratio between them
is small. The time horizon of interest and the target’s initial
position are the same as before. The target trajectory is given
by

x?t+1 = x?t +
0.5√

2(t+ 1)
ut, t = 1, . . . , T − 1,

while the noise levels are given by σt = 0.001√
2t

for t =
1, . . . , T . Figure 4b shows the CTTE of OGD and ONM.
We see that the CTTE of OGD is much lower than that of
ONM. In fact, when the iterates are no longer guaranteed to
lie in the strong convexity regions of the loss functions, ONM
becomes rather unstable regardless of the noise level to path
variation ratio. This supports our earlier explanation that the
local strong convexity of the loss function is crucial to the
good performance of ONM. By contrast, OGD is much more
robust and can better track the true target positions even when
the conditions for local strong convexity are violated.

VI. CONCLUSION

In this paper, we established the first non-trivial performance
bound for OGD when it is applied to a time-varying non-
convex least-squares formulation of the TOA-based tracking
problem. The performance metric we adopted is the CTTE,
which measures the cumulative discrepancy between the tra-
jectory of position estimates and that of the true target. To
establish the said performance bound, we developed new re-
sults on the estimation and geometric properties of the classic
static TOA-based source localization problem, which can be
of independent interest. Our numerical results corroborate the
theoretical findings and show that OGD can effectively track
the target at different noise levels.

A possible future direction is to design and analyze online
methods for TDOA-based tracking, which corresponds to a
sequential version of the TDOA-based source localization
problem (see, e.g., [38] and the references therein). One
possible approach is to combine the results in [32] with the
techniques developed in this paper. Another future direction
is to study the performance of different online methods for
solving the TOA-based tracking problem.



(a) x?
t+1 = x?

t + 0.005√
2(t+1)

ut, σt =
0.005√

2t
(b) x?

t+1 = x?
t + 0.005√

2(t+1)
ut, σt =

0.008√
2t

Fig. 3: CTTE of OGD and ONM when applied to different target trajectories and noise levels.

(a) x?
t+1 = x?

t + 0.1√
2(t+1)

ut, σt =
0.1√
2t

(b) x?
t+1 = x?

t + 0.5√
2(t+1)

ut, σt =
0.001√

2t

Fig. 4: CTTE of OGD and ONM with large noise level and/or path variation.

APPENDIX

A. Proof of Proposition 1

Following the development in Section V, the OLS estimate
of the true target position x? is given by

xOLS = (ATA)−1AT b,

where A is given in (16) and

b :=
1

2

 ‖a2‖2 − ‖a1‖2 + r21 − r22
...

‖am‖2 − ‖am−1‖2 + r2m−1 − r2m

 . (20)

Now, let r?i = ‖x? − ai‖ for i = 1, . . . ,m and let
b? be the vector obtained by replacing ri with r?i in (20).
Then, the derivation in Section V shows that x? satisfies
x? = (ATA)−1AT b?. This implies that

‖xOLS − x?‖ = ‖(ATA)−1AT (b− b?)‖.

Using the fact that ri = r?i + wi for i = 1, . . . ,m, we get
r2i − (r?i )2 = 2r?iwi + w2

i and hence

‖b− b?‖ ≤ C0‖w‖+
1

2
‖w̃‖

for some constant C0 > 0, where

w̃ :=


w2

1 − w2
2

w2
2 − w2

3
...

w2
m−1 − w2

m

 .
Since ‖w̃‖ ≤ ‖w̃‖1 ≤ 2‖w‖2, our assumption on ‖w‖ yields

‖xOLS − x?‖ ≤ C1

√
mσ + C2mσ

2 (21)

for some constants C1, C2 > 0.
Next, let r̂i = ‖x̂ − ai‖ for i = 1, . . . ,m and let b̂ be the

vector obtained by replacing ri with r̂i in (20). By repeating
the same argument as above and noting that

r2i − r̂2i = 2ri(ri − r̂i)− (ri − r̂i)2

= 2(r?i + wi)(ri − r̂i)− (ri − r̂i)2,

f(x̂) =

m∑
i=1

(r̂i − ri)2 ≤ f(x?) = ‖w‖2 ≤ c20mσ2,

|wi| � r?i ,



we have

‖b− b̂‖ ≤ C3

√
f(x̂) +

1

2
‖r̃‖ ≤ C3

√
f(x̂) + C4f(x̂)

≤ C5

√
mσ + C6mσ

2

for some constants C3, C4, C5, C6 > 0, where

r̃ :=


(r2 − r̂2)2 − (r1 − r̂1)2

(r3 − r̂3)2 − (r2 − r̂2)2

...
(rm − r̂m)2 − (rm−1 − r̂m−1)2

 .
This gives

‖xOLS − x̂‖ ≤ C7

√
mσ + C8mσ

2 (22)

for some constants C7, C8 > 0. The desired result then follows
by applying the triangle inequality to (21) and (22).

B. Proof of Theorem 1

We begin with two technical lemmas.

Lemma 1. Let u,v ∈ Rn be two linearly independent vectors.
Then,

λmin(uuT − vvT ) =
‖u‖2 − ‖v‖2 − ‖u− v‖‖u+ v‖

2
.

(23)

Proof. Let (λ,w) ∈ R×Rn be an eigenpair of uuT − vvT ;
i.e., ‖w‖ = 1 and

(uuT − vvT )w = λw.

If w ∈ span{u,v}⊥, then λ = 0. Otherwise, we can write
w = au+ bv for some a, b ∈ R and compute

(uuT − vvT )(au+ bv)

= (a‖u‖2 + b(uTv))u− (a(uTv) + b‖v‖2)v

= λau+ λbv. (24)

Consider the following cases:

Case 1: uTv = 0.
It is immediate that λmin(uuT − vvT ) = −‖v‖2 and the
corresponding eigenvector is w = v/‖v‖. Since ‖u− v‖2 =
‖u+ v‖2 = ‖u‖2 + ‖v‖2, we obtain (23).

Case 2: uTv 6= 0.
We claim that both a and b must be non-zero. Indeed, suppose
to the contrary that a = 0. Since w 6= 0, we have b 6= 0. It
follows from (24) that

(uTv)u = (λ+ ‖v‖2)v.

As uTv 6= 0, we also have λ 6= −‖v‖2. However, the above
relation contradicts the linear independence of u and v. Thus,
we conclude that a 6= 0. A similar argument shows that b 6= 0.

Now, by equating terms in (24), we have

λ =
a‖u‖2 + b(uTv)

a
=
−a(uTv)− b‖v‖2

b
. (25)

Solving the quadratic equation

(uTv)a2 + (‖u‖2 + ‖v‖2)ab+ (uTv)b2 = 0,

we obtain a relationship between a and b. Plugging this
relationship into (25) yields

λ =
(‖u‖2 + ‖v‖2)±

√
(‖u‖2 + ‖v‖2)2 − 4(uTv)2

2
− ‖v‖2

=
‖u‖2 − ‖v‖2 ± ‖u− v‖‖u+ v‖

2
.

The negative root gives a non-positive eigenvalue by the
Cauchy-Schwarz inequality. This establishes (23).

Lemma 2. For any x,y ∈ Rn \ {0}, we have∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ ‖x− y‖
min{‖x‖, ‖y‖}

.

Proof. If ‖x‖ = ‖y‖, then the inequality trivially holds as
equality. Hence, we may assume without loss of generality
that ‖x‖ < ‖y‖. Consider∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2 =
1

‖x‖2

∥∥∥∥x− ‖x‖‖y‖y
∥∥∥∥2 .

Writing α = ‖x‖/‖y‖, where 0 < α < 1 because ‖x‖ < ‖y‖,
we see that

‖x− αy‖2

= ‖x‖2 − 2xTy + ‖y‖2 + 2(1− α)xTy + (α2 − 1)‖y‖2

= ‖x− y‖2 + (1− α)(2xTy − (α+ 1)‖y‖2)

and

2xTy − (α+ 1)‖y‖2 ≤ 2‖x‖‖y‖ − (‖x‖+ ‖y‖)‖y‖
= ‖y‖(‖x‖ − ‖y‖) < 0.

This completes the proof.

Armed with Lemmas 1 and 2, we are now ready to prove
Theorem 1. By Proposition 1 and the assumption of Theo-
rem 1, we have

‖x̂−ai‖ ≥ ‖x?−ai‖−‖x̂−x?‖ > δ, i = 1, . . . ,m. (26)

Thus, the loss function f is twice continuously differentiable
at x̂ with

∇2f(x̂) = 2

m∑
i=1

{
ri

‖x̂− ai‖3
(x̂− ai)(x̂− ai)T

+

(
1− ri
‖x̂− ai‖

)
I

}
.

Our goal is to prove that ∇2f(x̂ + ε) � 0 for all ε within
some ball. In particular, this would imply that ∇2f(x̂) � 0.
To begin, consider a fixed i ∈ {1, . . . ,m}. Since Λ/m ≤ 1,
we have κ < δ/10. This, together with Proposition 1 and the
assumption that ‖ε‖ ≤ κ, gives

‖x̂+ ε− ai‖ ≤ ‖x̂− x?‖+ ‖x? − ai‖+ ‖ε‖

≤ ‖x? − ai‖+K1

√
mσ +K2mσ

2 +
δ

10
.



Moreover, since |wi| � ‖x? − ai‖, we may take ri ≥
‖x?−ai‖/2. Putting these together and using the assumption
of Theorem 1, we obtain

ri
‖x̂+ ε− ai‖

≥ 1/2

1 + ‖x? − ai‖−1 (K1
√
mσ +K2mσ2 + δ/10)

≥ 1

4
.

Hence, we can bound

λmin(∇2f(x̂+ ε))

≥ 2 · λmin

(
m∑
i=1

ri
‖x̂+ ε− ai‖3

(x̂+ ε− ai)(x̂+ ε− ai)T
)

+ 2

m∑
i=1

(
1− ri
‖x̂+ ε− ai‖

)

≥ 1

2
· λmin

(
m∑
i=1

((
x̂+ ε− ai
‖x̂+ ε− ai‖

)(
x̂+ ε− ai
‖x̂+ ε− ai‖

)T

−
(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T))

+
1

2
· λmin

(
m∑
i=1

(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T)

+ 2

m∑
i=1

‖x̂+ ε− ai‖ − ri
‖x̂+ ε− ai‖

. (27)

Now, let us bound the first and last terms in (27) separately.
For the first term, we have

λmin

(
m∑
i=1

((
x̂+ ε− ai
‖x̂+ ε− ai‖

)(
x̂+ ε− ai
‖x̂+ ε− ai‖

)T
−
(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T))

≥ − 1

2

m∑
i=1

∥∥∥∥ x̂+ ε− ai
‖x̂+ ε− ai‖

− x? − ai
‖x? − ai‖

∥∥∥∥ ·∥∥∥∥ x̂+ ε− ai
‖x̂+ ε− ai‖

+
x? − ai
‖x? − ai‖

∥∥∥∥
≥ −

m∑
i=1

∥∥∥∥ x̂+ ε− ai
‖x̂+ ε− ai‖

− x? − ai
‖x? − ai‖

∥∥∥∥
≥ −

m∑
i=1

‖x̂+ ε− x?‖
min{‖x̂+ ε− ai‖, ‖x? − ai‖}

≥ − 2m

δ
· ‖x̂+ ε− x?‖, (28)

where the first inequality follows from Lemma 1, the se-
cond follows by applying triangle inequality to the term∥∥∥ x̂+ε−ai

‖x̂+ε−ai‖ + x?−ai

‖x?−ai‖

∥∥∥, the third follows from Lemma 2, and
the last is due to

min{‖x̂+ ε− ai‖, ‖x? − ai‖} ≥
δ

2
,

which follows from (26) and the assumption that ‖ε‖ ≤ κ <
δ/2. For the last term in (27), we use∣∣‖x̂+ ε− ai‖ − ri

∣∣ ≤ ‖x̂+ ε− x?‖+ |wi|,

(26), and the assumption that ‖ε‖ ≤ κ < δ/2 to bound
m∑
i=1

‖x̂+ ε− ai‖ − ri
‖x̂+ ε− ai‖

≥ −
m∑
i=1

|wi|+ ‖x̂+ ε− x?‖
‖x̂+ ε− ai‖

≥ −2

δ

m∑
i=1

(|wi|+ ‖x̂+ ε− x?‖) .

(29)

Upon substituting (28) and (29) into (27) and noting that∑m
i=1 |wi| ≤

√
m‖w‖ ≤ c0mσ by assumption, we obtain

λmin(∇2f(x̂+ ε))

≥ 1

2
· λmin

(
m∑
i=1

(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T)
− 5m

δ
(‖x̂− x?‖+ ‖ε‖)− 4c0mσ

δ
. (30)

Using Proposition 1, we see that the right-hand side of (30)
is positive whenever

‖ε‖ < δ

10m
· λmin

(
m∑
i=1

(
x? − ai
‖x? − ai‖

)(
x? − ai
‖x? − ai‖

)T)
− (K1

√
mσ +K2mσ

2)− 4c0σ

5
. (31)

Since σ satisfies (6), the right-hand side of (31) is positive.
This completes the proof.
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Wah, “Target-tracking and path planning for vehicle following in jungle
environment,” in Proceedings of the 8th International Conference on
Control, Automation, Robotics and Vision (ICARCV 2004), vol. 1, 2004,
pp. 455–460.

[5] J. Derenick, J. Spletzer, and A. Hsieh, “An optimal approach to
collaborative target tracking with performance guarantees,” Journal of
Intelligent and Robotic Systems, vol. 56, no. 1–2, pp. 47–67, 2009.

[6] P. Chakravarty and R. Jarvis, “Multiple target tracking for surveillance:
A particle filter approach,” in Proceedings of the 2005 International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing, 2005, pp. 181–186.

[7] B. Pannetier, J. Dezert, and G. Sella, “Multiple target tracking with wire-
less sensor network for ground battlefield surveillance,” in Proceedings
of the 17th International Conference on Information Fusion (FUSION
2014), 2014, pp. 1–8.

[8] T. Li, A. Ekpenyong, and Y.-F. Huang, “Source localization and tracking
using distributed asynchronous sensors,” IEEE Transactions on Signal
Processing, vol. 54, no. 10, pp. 3991–4003, 2006.

[9] P.-H. Tseng, K.-T. Feng, Y.-C. Lin, and C.-L. Chen, “Wireless location
tracking algorithms for environments with insufficient signal sources,”
IEEE Transactions on Mobile Computing, vol. 8, no. 12, pp. 1676–1689,
2009.



[10] Y. Wang, G. Leus, and X. Ma, “Tracking a mobile node by asynchronous
networks,” in Proceedings of the 12th IEEE International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC
2011), 2011, pp. 161–165.

[11] L. Yi, S. G. Razul, Z. Lin, and C. M. See, “Target tracking in mixed
LOS/NLOS environments based on individual measurement estimation
and LOS detection,” IEEE Transactions on Wireless Communications,
vol. 13, no. 1, pp. 99–111, 2014.

[12] E. Dall’Anese, A. Simonetto, S. Becker, and L. Madden, “Optimization
and learning with information streams: Time-varying algorithms and
applications,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 71–
83, 2020.

[13] A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis,
“Time-varying convex optimization: Time-structured algorithms and
applications,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2032–2048,
2020.

[14] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th International Confe-
rence on International Conference on Machine Learning (ICML 2003),
2003, pp. 928–935.

[15] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 4, pp. 647–662, 2015.

[16] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
optimization : Competing with dynamic comparators,” in Proceedings of
the 18th International Conference on Artificial Intelligence and Statistics
(AISTATS 2015), 2015, pp. 398–406.

[17] A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro, “Online op-
timization in dynamic environments: Improved regret rates for strongly
convex problems,” in Proceedings of the 55th IEEE Conference on
Decision and Control (CDC 2016), 2016, pp. 7195–7201.

[18] A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class
of prediction-correction methods for time-varying convex optimization,”
IEEE Transactions on Signal Processing, vol. 64, no. 17, pp. 4576–4591,
2016.

[19] S. Shahrampour and A. Jadbabaie, “An online optimization approach for
multi-agent tracking of dynamic parameters in the presence of advers-
arial noise,” in Proceedings of the 2017 American Control Conference
(ACC), 2017, pp. 3306–3311.

[20] A. S. Bedi, P. Sarma, and K. Rajawat, “Tracking moving agents via
inexact online gradient descent algorithm,” IEEE Journal of Selected
Topics in Signal Processing, vol. 12, no. 1, pp. 202–217, 2018.

[21] D. Zhang, F. Xia, Z. Yang, L. Yao, and W. Zhao, “Localization
technologies for indoor human tracking,” in Proceedings of the 5th
International Conference on Future Information Technology, 2010, pp.
1–6.

[22] E. Xu, Z. Ding, and S. Dasgupta, “Target tracking and mobile sensor
navigation in wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 12, no. 1, pp. 177–186, 2013.

[23] A. Lesage-Landry, J. A. Taylor, and I. Shames, “Second-order online
nonconvex optimization,” 2020, accepted for publication in IEEE Tran-
sactions on Automatic Control.

[24] K. W. Cheung, W.-K. Ma, and H. C. So, “Accurate approximation
algorithm for TOA-based maximum likelihood mobile location using
semidefinite programming,” pp. II–145–II–148, 2004.

[25] A. M.-C. So and Y. Ye, “Theory of semidefinite programming for sensor
network localization,” Mathematical Programming, Series B, vol. 109,
no. 2, pp. 367–384, 2007.

[26] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source
localization problems,” IEEE Transactions on Signal Processing, vol. 56,
no. 5, pp. 1770–1778, 2008.

[27] A. Beck, M. Teboulle, and Z. Chikishev, “Iterative minimization schemes
for solving the single source localization problem,” SIAM Journal on
Optimization, vol. 19, no. 3, pp. 1397–1416, 2008.

[28] E. Xu, Z. Ding, and S. Dasgupta, “Source localization in wireless sensor
networks from signal time-of-arrival measurements,” IEEE Transactions
on Signal Processing, vol. 59, no. 6, pp. 2887–2897, 2011.

[29] S. Ji, K.-F. Sze, Z. Zhou, A. M.-C. So, and Y. Ye, “Beyond convex
relaxation: A polynomial-time non-convex optimization approach to
network localization,” in Proceedings of the 32nd IEEE International
Conference on Computer Communications (INFOCOM 2013), 2013, pp.
2499–2507.

[30] H. C. So, “Source localization: Algorithms and analysis,” in Handbook
of Position Location: Theory, Practice, and Advances, 2nd ed., S. A.
(Reza) Zekavat and R. M. Buehrer, Eds. New Jersey: John Wiley &
Sons, Inc., 2019, pp. 59–106.
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