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ABSTRACT

Consider a scenario in which an MISO channel is overheard b
multiple single-antenna eavesdroppers. The transmiéemlerfect
channel state information (CSlI) with the legitimate chdnbet has
imperfect CSl with the eavesdroppers’ channels. The CSntiain-
ties are assumed stochastic. We formulate an artificiaen(AN)-
aided secrecy-rate maximization problem where the CSlirntaioe
ties are handled using an outage-based formulation. Ouisaim
find, for this problem, tractable designs for the transmi AN co-
variances. Unfortunately, outage-based optimizatiorbleras are
generally difficult to solve. The main contribution hereasderive
a safe, convex optimization-based, approximation to tmsidered
problem. The advantages of the method are shown by simugatio

Index Terms— Secrecy capacity, Convex optimization,
Bernstein-type inequality, Transmit beamforming

1. INTRODUCTION
Information security is one of the fundamental problems ame
munications, and this problem is usually tackled by cryppgic
approaches. Recently, we have seen flourishing interestlived
ing information security from a physical-layer perspegtiwhich
is known asphysical-layer secrecy or information-theoretic secu-
rity [1]. The merit of physical-layer secrecy lies in its provabecu-
rity, even when we assume that the eavesdropper posse$issitash
computational power. To achieve this, the transmitter rteeen-
code the message into a sequence of random symbols suchehat
legitimate receiver can correctly decode it, while the sdvepper
retrieve almost no information from its observation [2]tuitively,
and roughly speaking, this coding-based approach can laeded
as a way of discriminating the legitimate receiver and thesdrop-
per in time domain. We can also provide security in space édama
For example, consider a transmitter having multiple ardsnZero-
forcing beamforming may be employed at the transmitter tm-co
pletely null out the eavesdropper, thereby achieving péyfsecure
transmission. In fact, there has been a growing intereskpro#-
ing the spatial degree of freedom to enhance the systemityeicur
recent studies [3-9]. Among those works, the artificial ag&N)-
aided approach is promising and has received much attention
The idea of AN is to send artificially generated noise to inter
fere the eavesdropper deliberately, without affectinglégitimate
receiver too much [5]. This selective interfering procespassi-
ble only when the transmitter has multiple antennas. Depgnuh
how accurate the eavesdropper’s channel state informé@isi) is
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known at the transmitter, there are different ways to ganeAi:

1) No CSI: a widely used strategy in this casesstropic AN [5],
Which places AN uniformly in the nullspace of the legitimaten-
nel. 2) Perfect CSI: We can block the eavesdropper much nfere e
fectively by aligning AN with the eavesdropper’s directionstead
of keeping AN isotropic; see, e.g., [6]. Note that the perfesl
case may arise from scenarios where the eavesdropper ia atsy
of the system, and the transmitter wants to provide diffeservices
for different types of users. 3) Imperfect CSI: This case raye-
garded as being more general than the no CSl and perfect €&,ca
but also more challenging. Some endeavors have recentlggeche
to address the imperfect CSl case; e.g., the worst-casstrfdymu-
lation [8].

This paper focuses on the imperfect CSI case. Specifically,
we consider the scenario in which an MISO channel is ovethear
by multiple single-antenna eavesdroppers, and deal wittutage-
based robust formulation for AN-aided transmit designroj#ation
under Gaussian CSl uncertainties. Unlike most existing Aslghs,
we do not impose any orthogonal restrictions on AN. Insteadat-
tempt to maximize the secrecy rate by jointly optimizing thor-
mation and the AN covariances. However, it is challengindd®o,
owing to the difficult outage constraint, which has no clok®d in
general. We handle this problem by developing a safe (coates)
approximation—the method is based on a concurrently dpeelo
chance constrained optimization technique, known as Bamgype
inequality [10, 11]. The merit of the proposed approximaties in
its tractability. In particular, the proposed safe appnwadion can be
teformulated as a one-dimensional line search problemseviop-
timal solution can be efficiently computed by solving a sewpeeof
convex optimization problems. By investigating the optitgacon-
ditions of the safe approximation under an independent ead-i
tically distributed (i.i.d.) isotropic Gaussian CSI ermoodel, we
found that the optimal information and AN covariances aosely
related to the isotropic AN design, thereby explaining imt e
validity of the isotropic AN from an outage perspective.

This paper is organized as follows. Problem formulatioriverny
in Section 2. Section 3 develops a Bernstein-type inequbéised
safe approximation to the outage-based transmit optimizgirob-
lem. Simulation results comparing the proposed designsotcbpic
AN design are illustrated in Section 4. Section 5 conclubdegaper.

Notations: vec(A) denotes the vectorization of matrix by
stacking its columnsA > 0 (A > 0) means thaf is a Hermitian
positive semidefinite (definite) matris™ andHY denote the set
of all N-by-N Hermitian matrices and Hermitian positive semidefi-
nite matrices, respectivelA L B signifies thatA is orthogonal to
B,i.e,AB = 0; x ~ CN(u, Q) means thak — p is a random
vector following a circular symmetric complex Gaussiarnriisition



with covariance. where f (W, X) is the mutual information difference of Bob and

the kth Eve:
2. PROBLEM FORMULATION J(W, ) = Co(W, X) = Ce (W, X),
H
2.1. Background Cy(W. ) = 1 1 _h™Wh
b(W, B) =log, {1+ 775 )
H
gr Wek
Cer(W,X) =1o 1+7).
Avrtificial noise w( ) 82 ( 1+ ngzgk
P ” S Note that (2) is a rate at which perfect secrecy is possitee; Bob
. - NN \\ can correctly decode the confidential informatioRatits per chan-
,’ | -7 NN nel use, while Eves can retrieve almost nothing [2]. Suppbae
S= AN \\ Alice has perfect CSI of Bob and Eves, or full informationtoénd
N ) {gr}i ,. The secrecy-rate maximization (SRM) formulation for
Confidential information deSigning(Wv E) is as follows:
for the legitimate user
max min _ fr(W,X)
Transmitter Iﬁ\l Legitimate user (& Eavesdropper W-0,5-0 k=I1,....K @)
(Alice) (Bob) ¥ e st. Tr(W + %) < P,

Fig. 1. System model. where P > 0 denotes a (given) average transmit power limit. We

should point out that while (3) is optimal in providing thesbe
Consider the wireless scenario shown in Fig. 1, where a multiachievable secrecy rate, it is a challenging problem iriaglyoint
antenna transmitter communicates with a single-antersever in  optimization ofW, X. In our previous work [8], we have developed
the presence of a number of single-antenna eavesdroppedts. Ta tractable solution to (3) by using convex optimization hiaery.
eavesdroppers are assumed to be non-colluding. The tagieof tMore precisely, the work [8] solved a worst-case robustresiten of
transmitter is, intuitively speaking, to manipulate itslthantenna  (3) where Eves’ CSl is assumed to be imperfectly known.
degree of freedom in accordance with its knowledge abouCthe
of the receivers, both legitimate and eavesdropping, sbgbad 2.2 Outage Constrained Secrecy-Rate Maximization
information security can be achieved. To make this process -
fective, the transmitter would also use a fraction of itasrait power ~ Our interest in the present paper lies in an outage consttz®iRM
to send artificially generated noise to interfere the eavggbrs. (OC-SRM) formulation. In this formulation, we assume thaité
The signal model is as follows. For ease of exposition, wé wil Nas perfect knowledge of Bob’s CSl, but imperfect knowledge
refer to the transmitter, legitimate receiver and eaveguoasAl- ~ Eves' CSI. The latter is modeled by a random Gaussian moele| (s
ice, Bob andEve, respectively. Assuming slow frequency-flat fading €9~ [9]), in which the CSI of théth Eve is modeled as
channels for all the communication links, the received aigjat Al- - _
ice and Eves are respectively modeled as gk~ CN(gr, Cr)y k=1, K, )
wheregy, is Alice’s estimate of théth-Eve channeg,, andCy €
ub(t) = h x(t) 4 ny (¢), (1a) Hft is the associated channel uncertainty covariance. Iniaddit
_ H _ gk Is assumed independentgf, for anyk # [.
Yer(t) = g x(t) Fnen(t), k=1,.... K, (1b) The OC-SRM plE)obIem is formula%/edﬁs follows:

whereh € CVt is the channel vector from Alice to Bolgy, € C™t
is the channel vector from Alice to theth Eve; K is the number

of Eves; N, is the number of transmit antennas employed by Alice;| w0 %05 R (5a)
np(t) andne i (t), k = 1,..., K are i.i.d. complex Gaussian noise o

with zero mean and unit varianceft) € C™ is the transmitted st Prig 4k { min _ f,(W,X) > R} >1—p, (5b)
signal vector by Bob. The transmitted signal consists of¢ampo- S G

nents: Tr((W+X) <P, (5¢)

x(t) = s(t) + =(t),

wheres(¢) is the encoded confidential information signal intendedwhere0 < p < 0.5 is a given parameter specifying the maximum

for Bob; z(¢) is the artificial noise for interfering Eves’ reception. tolerable probability of the achievable secrecy raterigllbelowR,

We assumes(t) ~ CN(0, W) (i.e., vector Gaussian codebook), or, simply, secrecy outage probabifityin other words, the chance

whereW is the transmit covariance. The AX{¢) is assumed to of perfect secrecy, under imperfect CSl, is guaranteed tat beast

be independent of(¢), and follow a distributiors(t) ~ CA(0, %) 1—p.

whereX is the AN covariance. The OC-SRM problem (5) is even more challenging to solve
This work considers the design of the transmit covariaWée than the perfect-CSI SRM problem (3) (as well as its worseaa-

and AN covarianc& under an achievable secrecy rate maximizationbust extension). The main difficulty lies in the probabilityction

formulation. Given(W,X2), the achievable secrecy rate is given in (5b), which appears to have no closed-form expressiomcele

by [12]

. INote that there are other possibilities to define the outagbapbility
R= min f,(W,3), (2 (cf. [13]); herein we adopt the definition in [14] for simpitic



in what follows, we will make a compromise by deriving a safe a
proximation to OC-SRM. By “safe approximation” we mean tnet
approximation formulation has its optimal solution alwéytilling
the probabilistic constraint (5b). In other words, the sgfproxima-
tion is a restriction of, or conservation approximationtte original
OC-SRM problem. Moreover, the safe approximation is dgyedio
in such a way that its solution can be efficiently computalylavail-
able convex optimization tools.

3. ABERNSTEIN-TYPE INEQUALITY-BASED SAFE
APPROXIMATION TO THE OC-SRM PROBLEM

We present the proposed safe OC-SRM approximation by diyidi
the derivations into three steps. Among them, the secoipd appli-
cation of Bernstein-type inequality, is most significand\ypding us
with a tractable handle with the challenging probabilistostraints.

3.1. Step 1: Decoupling the probabilistic constrain{5b)

In (5b), the probability term is coupled among Eves. Our ftep
is to decouple (5b) into per-Eve terms. By noting the indejeece
betweeng andg;, Vk # [, we have the following implication:

K

(5b) < [ Pre, {A(W,Z) >R} >1-p, (6a)
k=1

<= Prg, {/kt(W,%) > R} > 1 — p,Vk. (6b)

wherep = 1 — (1 — p)'/%. Physically, the implication (6b) means
that we constrain the outage probability of each mutualrimédion
difference (which can be seen as a per-Eve secrecy rate) o be
greater tharp, thereby fulfilling the overall secrecy outage probabil-
ity constraint (5b).

3.2. Step 2: Application of Bernstein-type inequality to(6b)

Our challenge now turns to the probabilistic constraints
Prg, {/fx(W,X) >R} > 1 — p. Sincegi ~ CN(gk,Ck),
we can make a change of variable

@)

with v, ~ CN(0,1In,). By substituting (7) intof,. (W, X), and
through some careful derivations, one can obtain

8k = 8k + C,lcﬂvk,

(W, X) >R~ kaAkv;C + ZRe{Vfuk} +c >0, (8)
where

hWh
1+h"Xh’
Ak:CyQQTRB—nZ—WN)C

B=1+

1/2
k

uk:(ij(@‘Rﬁ-nzz—\V)gh
=gl (27"B-1DT-W)g+2"5-1.

In particular, (8) shows that the inequalifis(W,3X) > R can
be expressed as a quadratic inequality with respect to timplex
Gaussian vectov,. This means that in the implication in (6b), we
are dealing witlthance quadratic constraints.

Chance quadratic constraints generally do not have clfised-
expressions, and, in fact, are unlikely to be tractable. Wina
ther adds to the difficulty is that the matricas, are generally in-
definite, and as a result the quadratic inequalities in (8)irdefi-
nite. However, there exist safe tractable approximationgeneral
chance quadratic constraints. One is the Bernstein-typguiity
by Bechar [11], which is very recently converted by us to ev
safe approximation to a different transmit optimizatioalgem [10].
The result is summarized as follows:

Lemmal. ( [210]) For any (A,u,c) € H*" x C" x R, v ~
CN(0,1,,) and p € (0, 1], the following implication holds true:

Pry {VHAV + 2Re{v"u} + ¢ > O} >1—-p

Tr(A) — /—2In(p) -z +In(p) -y + ¢ > 0,

9)

vec(A)
<
= I, ==
yI. +A >0, y>0,

where x and y are dack variables. Moreover, Egs. (9) are convex in
(A7 u7 C7 $7 y)

We are now ready to present the safe OC-SRM approximation.
By replacing the hard probabilistic constraint (5b) witte timpli-
cation (6b), and then by applying Lemma 1 to (6b) (note (8}, w
obtain the following safe approximation to OC-SRM:

* = max R (10a)
W,3,R,8

{ka}f-,(:1a{?/k:}£-,(:1
s.t. Tr(Ax) — v/ —2In(p) - zx + In(p) - yr +cx > 0, V&
(10b)

vec(Ay)

<
[ <o 00
h”Wh

T hish — B—1, (10e)
TTI(W+X)<P, W>x0, X>0. (10f)

A significant merit of the safe approximation (10) is thatitasllcon-

straints have explicit forms. However, by careful inspattione can
see that problem (10) is still nonconvex. We deal with thésigsin

the next step.

3.3. Step 3: One-variable-parameterized convex reformution
of (10)

While the safe approximation (10) is nonconvex, it can berrafi-
lated to a form where the problem is convex when one particula
variable is fixed. Hence, by doing line search over that Wdeiave
can solve (10) optimally.

To describe the reformulation, we note that the left hand sid
(10e) is a linear fractional function, which can be simptifiy using
the Charnes-Cooper transformation [15]. Specifically,diting

Q=¢W, T'=¢%, >0, (11)

and making a change of variables
v=27"p,

n=2", (12)



problem (10) can be transformed to the following equivalamtb-
lem:

QTome (132)
(@ hmr {96 i

st. Tr(Ap) —/=2In(p) - @ + In(p) - G + & > 0, Vk
(13b)

‘ {V%ﬁ:)} Sk (13¢)

I+ AL =0, §x>0, Vk, (13d)
h"Qh = vy —1, (13e)
¢+hfrh=1, (13f)

Tr(Q+T) <P, Q=0,T=0,£2>0, (139)

where

Ap=¢a,=C/*(v-1T-Q)C%
i = €up = C/? (v — DT - Q) &,
ée =€ =8k (v— 1T —Q)gr + (v — 1)&.

Note that as a common trick in the Charnes-Cooper transtwma
(13f) is introduced to fix the denominator of the linear frantfunc-
tion in (10e). In (13g), we have replacéd> 0 by £ > 0; this mild
relaxation causes no loss, since any feasjlié (13) has to be pos-
itive, for otherwise (13g) implies thal) = I" = 0, which violates
(23f).

Problem (13) is nonconvex with respect to all the optimizati
variables, but is convex for a fixed Specifically, problem (13),
for a fixed v, is a conic (and convex) program involving positive
semidefinite constraints and second order cone constrdit&sce,
we recast (13) as

max pv) (14a)
st. 1 <v <1+ P|h|? (14b)
where )
V)= max
T i (15)

s.t. (13b)— (13g).

In (14b), the lower bound onis due to the feasibility of (6b). To see
this, supposing = 2~ %4 < 1, then one can check thaf’ A, v+
2Re{vfuk} + ¢ < 0 holds for arbitrary, and thus (6b) cannot
be satisfied. The upper bound oris derived as follows:

H
h” Wh <

— = <1+hfWh<1+P|n|?
ltbfsh = <1+ Plh]

v=2"fg<p=1+
where the firstinequality is due to the secrecy fate 0; the lastin-
equality follows fromIr(W) < P; and the equality can be achieved
with W = Phh¥ /||h|?.

Note that (14) is a box-constrained single-variable optation
problem, whose objective value can be evaluated by solieg t
conic program (15) (say, using available software [16])efEfiore,
(14) can be handled by performing one-dimensional linecteaver
v. There are many derivative-free search algorithms thatoame
use, e.g., Golden search [17], compass or coordinate sEe8th
etc. Once (14) has been solva¥, andX can be recovered through
(12).

Our development of safe OC-SRM approximation is now com-
plete. We have the following remark.

Remark 1: The safe OC-SRM approximation derived above
not only provides a tractable way to optimize the transmiitson
(W, X), it also gives an efficiently computable lower bound on the
outage-constrained secrecy rdte For example, given a transmit
solution(W, X) of some other methods, what one may desire to do
is to evaluate its outage-constrained secrecy rate. Tlecaggiroxi-
mation method can be used to compute a lower bound on itseutag
constrained secrecy rate (by fixiti§V, ) in the safe approxima-
tion problem). While we can also use Monte-Carlo simulatitm
obtain an accurate evaluation of the outage-constrairgdcerate,
such evaluation can be computationally demanding espedal
small outage specification

Before closing this section, let us see some physical irgerp
tations of the proposed design. For simplicity, consider.bd.
isotropic Gaussian CSI model:

gr ~ CN(0,6°1), k

1,....K (16)

for someo > 0. We can show the following:

Proposition 1. Suppose that a positive secrecy rate R* can be
achieved in (10) under thei.i.d. isotropic Gaussian CS model. Then,
the optimal W* and 3* in (10) must satisfy

W' =w'w*”, " L (w* +7°h)

for somew* € C™ £ 0and7* € C # 0.

The proof is omitted due to lack of space. From Propositiowd,,
can see at least two physical interpretations of the prapdssign
under the considered scenario: Ttansmit beamforming is an op-
timal transmit strategy for the proposed design; 2) the ANugth
be placed orthogonally to a linear combination of the beamiiog

direction and the legitimate user's channel direction. uady, by

simulation, we found that the optimal beamforming directio* al-

ways aligns withh, andX*, if it is nonzero, is orthogonal th with

its components uniformly distributed on the nullspacehof This

observation in part explains the validity of the populatiepic-AN

design from an outage perspective.

4. SIMULATION RESULTS

In this section, two simulations are presented to dematestine effi-
cacy of the proposed safe approximation solution. Unlessiied,
we setN; = 4, K =5, p = 0.05, 0 = 0.1, andP = 10dB. The
i.i.d. isotropic Gaussian CSI model in (16) is adopted. Ad simu-
lation results were averages &0 independent trials. At each trial,
h is randomly generated following\ (0, I).

The proposed safe approximation solution is compared \wéh t
isotropic AN solution in [19], which is a simple method. Owrfor-
mance measure is the outage-constrained (OC) secrecyian;a
transmit solution(W, X), either the proposed or the isotropic AN
solution, the outage-constrained secrecy rate is defined as

Ryie = sup{R | Pr{k IPiank(W, 3)>R}>1-p} (17)
R =1,...,

The OC secrecy rate above has no analytical expression,@ahewve
to evaluate it by Monte-Carlo (MC) simulations (hence thiessuipt
‘MC’in (17)).

Fig. 2 plots the OC secrecy rates against the average transmi
power P. In the legend, ‘AN Bernstein by MC’ and ‘isotropic AN



by MC’ represent MC-evaluated OC secrecy raigc of the pro-
posed safe approximation solution and isotropic AN sohytice-
spectively. In addition, ‘AN Bernstein computable lowerbd’ is
the rate outputted by the proposed solution, ii,in (10). Note
that this is a guaranteed OC secrecy rate value obtainedehyrth

from Fig. 2 that the proposed solution outperforms the dgutr AN

tween ‘AN Bernstein by MC’ and ‘AN Bernstein computable lawe
bound'—smaller gaps mean better approximation accuracies

In Fig. 3 we demonstrate how the Eves’ CSI uncertainty level
o affects the OC secrecy rates. The proposed safe approgimati
solution is seen to exhibit better performance for smatler

7 , , , ,

o

(%2}

=]

T 6

c

c

©

S

ER

£

o

o 4

©

ey

o 3f

é A AN Bernstein

® V; computable lower bound

g 7| - © - AN Bemstein by MC

b - A - |sotropic AN by MC
1 ‘ ‘ ‘ ‘

0 5 10 15 20 25

Power P (dB)

Fig. 2. The outage secrecy rate versus the average transmit power.

5.5

AN Bernstein
computable lower bound |]

® | — © — AN Bernstein by MC
- A - |sotropic AN by MC

Outage secrecy rate (bits/channel use)

1 L L L L
0.02 0.1 0.18 0.26 0.34 0.42
(0}

Fig. 3. The outage secrecy rate versus

5. CONCLUSION

To conclude, this paper has considered an outage-coresiraie-
crecy rate maximization problem for an MISO channel overthea

by multiple single-antenna Eves. This is a challenging fenob and
we have developed a safe approximation method for this gnobl
using a concurrent chance constrained optimization teclencalled
Bernstein-type inequality. The resulting safe approxioratan be
efficiently handled by solving a sequence of convex problesis-
posed safe optimization, rather than MC evaluation. We & s ulation results demonstrate that the proposed design vamadietter
performance than the isotropic AN design under some saehakis
for P < 20dB, and otherwise foP > 20 dB. This means that the a future work, it is worthwhile to investigate how the apgroa-
advantage of the proposed safe approximation lies in lok@esmit  tion quality of the proposed design can be further improeegl,, by
powers. This is further confirmed when we observe the gaps beesorting to advanced probability theory.
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