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ABSTRACT

Consider a scenario in which an MISO channel is overheard by
multiple single-antenna eavesdroppers. The transmitter has perfect
channel state information (CSI) with the legitimate channel, but has
imperfect CSI with the eavesdroppers’ channels. The CSI uncertain-
ties are assumed stochastic. We formulate an artificial-noise (AN)-
aided secrecy-rate maximization problem where the CSI uncertain-
ties are handled using an outage-based formulation. Our aimis to
find, for this problem, tractable designs for the transmit and AN co-
variances. Unfortunately, outage-based optimization problems are
generally difficult to solve. The main contribution here is to derive
a safe, convex optimization-based, approximation to the considered
problem. The advantages of the method are shown by simulations.

Index Terms— Secrecy capacity, Convex optimization,
Bernstein-type inequality, Transmit beamforming

1. INTRODUCTION

Information security is one of the fundamental problems in com-
munications, and this problem is usually tackled by cryptographic
approaches. Recently, we have seen flourishing interest in deliver-
ing information security from a physical-layer perspective, which
is known asphysical-layer secrecy or information-theoretic secu-
rity [1]. The merit of physical-layer secrecy lies in its provable secu-
rity, even when we assume that the eavesdropper possesses unlimited
computational power. To achieve this, the transmitter needto en-
code the message into a sequence of random symbols such that the
legitimate receiver can correctly decode it, while the eavesdropper
retrieve almost no information from its observation [2]. Intuitively,
and roughly speaking, this coding-based approach can be regarded
as a way of discriminating the legitimate receiver and the eavesdrop-
per in time domain. We can also provide security in space domain.
For example, consider a transmitter having multiple antennas. Zero-
forcing beamforming may be employed at the transmitter to com-
pletely null out the eavesdropper, thereby achieving perfectly secure
transmission. In fact, there has been a growing interest in exploit-
ing the spatial degree of freedom to enhance the system security in
recent studies [3–9]. Among those works, the artificial noise (AN)-
aided approach is promising and has received much attention.

The idea of AN is to send artificially generated noise to inter-
fere the eavesdropper deliberately, without affecting thelegitimate
receiver too much [5]. This selective interfering process is possi-
ble only when the transmitter has multiple antennas. Depending on
how accurate the eavesdropper’s channel state information(CSI) is
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known at the transmitter, there are different ways to generate AN:
1) No CSI: a widely used strategy in this case isisotropic AN [5],
which places AN uniformly in the nullspace of the legitimatechan-
nel. 2) Perfect CSI: We can block the eavesdropper much more ef-
fectively by aligning AN with the eavesdropper’s direction, instead
of keeping AN isotropic; see, e.g., [6]. Note that the perfect CSI
case may arise from scenarios where the eavesdropper is alsoa user
of the system, and the transmitter wants to provide different services
for different types of users. 3) Imperfect CSI: This case maybe re-
garded as being more general than the no CSI and perfect CSI cases,
but also more challenging. Some endeavors have recently emerged
to address the imperfect CSI case; e.g., the worst-case robust formu-
lation [8].

This paper focuses on the imperfect CSI case. Specifically,
we consider the scenario in which an MISO channel is overheard
by multiple single-antenna eavesdroppers, and deal with anoutage-
based robust formulation for AN-aided transmit design optimization
under Gaussian CSI uncertainties. Unlike most existing AN designs,
we do not impose any orthogonal restrictions on AN. Instead,we at-
tempt to maximize the secrecy rate by jointly optimizing theinfor-
mation and the AN covariances. However, it is challenging todo so,
owing to the difficult outage constraint, which has no closedform in
general. We handle this problem by developing a safe (conservative)
approximation—the method is based on a concurrently developed
chance constrained optimization technique, known as Bernstein-type
inequality [10, 11]. The merit of the proposed approximation lies in
its tractability. In particular, the proposed safe approximation can be
reformulated as a one-dimensional line search problem, whose op-
timal solution can be efficiently computed by solving a sequence of
convex optimization problems. By investigating the optimality con-
ditions of the safe approximation under an independent and iden-
tically distributed (i.i.d.) isotropic Gaussian CSI errormodel, we
found that the optimal information and AN covariances are closely
related to the isotropic AN design, thereby explaining in part the
validity of the isotropic AN from an outage perspective.

This paper is organized as follows. Problem formulation is given
in Section 2. Section 3 develops a Bernstein-type inequality-based
safe approximation to the outage-based transmit optimization prob-
lem. Simulation results comparing the proposed design and isotropic
AN design are illustrated in Section 4. Section 5 concludes the paper.

Notations: vec(A) denotes the vectorization of matrixA by
stacking its columns;A � 0 (A ≻ 0) means thatA is a Hermitian
positive semidefinite (definite) matrix;HN andHN

+ denote the set
of all N -by-N Hermitian matrices and Hermitian positive semidefi-
nite matrices, respectively;A ⊥ B signifies thatA is orthogonal to
B, i.e.,AHB = 0; x ∼ CN (µ,Ω) means thatx − µ is a random
vector following a circular symmetric complex Gaussian distribution



with covarianceΩ.

2. PROBLEM FORMULATION

2.1. Background
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Fig. 1. System model.

Consider the wireless scenario shown in Fig. 1, where a multi-
antenna transmitter communicates with a single-antenna receiver in
the presence of a number of single-antenna eavesdroppers. The
eavesdroppers are assumed to be non-colluding. The task of the
transmitter is, intuitively speaking, to manipulate its multi-antenna
degree of freedom in accordance with its knowledge about theCSI
of the receivers, both legitimate and eavesdropping, so that good
information security can be achieved. To make this process more ef-
fective, the transmitter would also use a fraction of its transmit power
to send artificially generated noise to interfere the eavesdroppers.

The signal model is as follows. For ease of exposition, we will
refer to the transmitter, legitimate receiver and eavesdropper asAl-
ice, Bob andEve, respectively. Assuming slow frequency-flat fading
channels for all the communication links, the received signals at Al-
ice and Eves are respectively modeled as

yb(t) = h
H
x(t) + nb(t), (1a)

ye,k(t) = g
H
k x(t) + ne,k(t), k = 1, . . . ,K, (1b)

whereh ∈ C
Nt is the channel vector from Alice to Bob;gk ∈ C

Nt

is the channel vector from Alice to thekth Eve;K is the number
of Eves;Nt is the number of transmit antennas employed by Alice;
nb(t) andne,k(t), k = 1, . . . ,K are i.i.d. complex Gaussian noise
with zero mean and unit variance;x(t) ∈ C

Nt is the transmitted
signal vector by Bob. The transmitted signal consists of twocompo-
nents:

x(t) = s(t) + z(t),

wheres(t) is the encoded confidential information signal intended
for Bob; z(t) is the artificial noise for interfering Eves’ reception.
We assumes(t) ∼ CN (0,W) (i.e., vector Gaussian codebook),
whereW is the transmit covariance. The ANz(t) is assumed to
be independent ofs(t), and follow a distributionz(t) ∼ CN (0,Σ)
whereΣ is the AN covariance.

This work considers the design of the transmit covarianceW

and AN covarianceΣ under an achievable secrecy rate maximization
formulation. Given(W,Σ), the achievable secrecy rate is given
by [12]

R = min
k=1,...,K

fk(W,Σ), (2)

wherefk(W,Σ) is the mutual information difference of Bob and
thekth Eve:

fk(W,Σ) = Cb(W,Σ)−Ce,k(W,Σ),

Cb(W,Σ) = log2

(

1 +
hHWh

1 + hHΣh

)

,

Ce,k(W,Σ) = log2

(

1 +
gH
k Wgk

1 + gH
k Σgk

)

.

Note that (2) is a rate at which perfect secrecy is possible; i.e., Bob
can correctly decode the confidential information atR bits per chan-
nel use, while Eves can retrieve almost nothing [2]. Supposethat
Alice has perfect CSI of Bob and Eves, or full information ofh and
{gk}Kk=1. The secrecy-rate maximization (SRM) formulation for
designing(W,Σ) is as follows:

max
W�0,Σ�0

min
k=1,...,K

fk(W,Σ)

s.t. Tr(W +Σ) ≤ P,
(3)

whereP > 0 denotes a (given) average transmit power limit. We
should point out that while (3) is optimal in providing the best
achievable secrecy rate, it is a challenging problem involving joint
optimization ofW,Σ. In our previous work [8], we have developed
a tractable solution to (3) by using convex optimization machinery.
More precisely, the work [8] solved a worst-case robust extension of
(3) where Eves’ CSI is assumed to be imperfectly known.

2.2. Outage Constrained Secrecy-Rate Maximization

Our interest in the present paper lies in an outage constrained SRM
(OC-SRM) formulation. In this formulation, we assume that Alice
has perfect knowledge of Bob’s CSI, but imperfect knowledgeof
Eves’ CSI. The latter is modeled by a random Gaussian model (see,
e.g., [9]), in which the CSI of thekth Eve is modeled as

gk ∼ CN (ḡk,Ck), k = 1, . . . ,K, (4)

whereḡk is Alice’s estimate of thekth-Eve channelgk, andCk ∈
H

Nt

+ is the associated channel uncertainty covariance. In addition,
gk is assumed independent ofgl, for anyk 6= l.

The OC-SRM problem is formulated as follows:

max
W�0,Σ�0,R

R (5a)

s.t. Pr{gk}
K

k=1

{

min
k=1,...,K

fk(W,Σ) ≥ R

}

≥ 1− ρ, (5b)

Tr(W +Σ) ≤ P, (5c)

where0 < ρ < 0.5 is a given parameter specifying the maximum
tolerable probability of the achievable secrecy rate falling belowR,
or, simply, secrecy outage probability1. In other words, the chance
of perfect secrecy, under imperfect CSI, is guaranteed to beat least
1− ρ.

The OC-SRM problem (5) is even more challenging to solve
than the perfect-CSI SRM problem (3) (as well as its worst-case ro-
bust extension). The main difficulty lies in the probabilityfunction
in (5b), which appears to have no closed-form expression. Hence,

1Note that there are other possibilities to define the outage probability
(cf. [13]); herein we adopt the definition in [14] for simplicity.



in what follows, we will make a compromise by deriving a safe ap-
proximation to OC-SRM. By “safe approximation” we mean thatthe
approximation formulation has its optimal solution alwaysfulfilling
the probabilistic constraint (5b). In other words, the safeapproxima-
tion is a restriction of, or conservation approximation to,the original
OC-SRM problem. Moreover, the safe approximation is developed
in such a way that its solution can be efficiently computable by avail-
able convex optimization tools.

3. A BERNSTEIN-TYPE INEQUALITY-BASED SAFE
APPROXIMATION TO THE OC-SRM PROBLEM

We present the proposed safe OC-SRM approximation by dividing
the derivations into three steps. Among them, the second step, appli-
cation of Bernstein-type inequality, is most significant providing us
with a tractable handle with the challenging probabilisticconstraints.

3.1. Step 1: Decoupling the probabilistic constraint(5b)

In (5b), the probability term is coupled among Eves. Our firststep
is to decouple (5b) into per-Eve terms. By noting the independence
betweengk andgl, ∀k 6= l, we have the following implication:

(5b) ⇐⇒
K
∏

k=1

Prgk
{fk(W,Σ) ≥ R} ≥ 1− ρ, (6a)

⇐= Prgk
{fk(W,Σ) ≥ R} ≥ 1− ρ̄,∀k. (6b)

whereρ̄ = 1− (1− ρ)1/K . Physically, the implication (6b) means
that we constrain the outage probability of each mutual information
difference (which can be seen as a per-Eve secrecy rate) to beno
greater than̄ρ, thereby fulfilling the overall secrecy outage probabil-
ity constraint (5b).

3.2. Step 2: Application of Bernstein-type inequality to(6b)

Our challenge now turns to the probabilistic constraints
Prgk

{fk(W,Σ) ≥ R} ≥ 1 − ρ̄. Sincegk ∼ CN (ḡk,Ck),
we can make a change of variable

gk = ḡk +C
1/2
k vk, (7)

with vk ∼ CN (0, INt
). By substituting (7) intofk(W,Σ), and

through some careful derivations, one can obtain

fk(W,Σ) ≥ R ⇐⇒ v
H
k Akvk + 2Re{vH

k uk}+ ck ≥ 0, (8)

where

β = 1 +
hHWh

1 + hHΣh
,

Ak = C
1/2
k

(

(2−Rβ − 1)Σ−W
)

C
1/2
k ,

uk = C
1/2
k

(

(2−Rβ − 1)Σ−W
)

ḡk,

ck = ḡ
H
k

(

(2−Rβ − 1)Σ−W
)

ḡk + 2−Rβ − 1.

In particular, (8) shows that the inequalityfk(W,Σ) ≥ R can
be expressed as a quadratic inequality with respect to the complex
Gaussian vectorvk. This means that in the implication in (6b), we
are dealing withchance quadratic constraints.

Chance quadratic constraints generally do not have closed-form
expressions, and, in fact, are unlikely to be tractable. What fur-
ther adds to the difficulty is that the matricesAk are generally in-
definite, and as a result the quadratic inequalities in (8) are indefi-
nite. However, there exist safe tractable approximations to general
chance quadratic constraints. One is the Bernstein-type inequality
by Bechar [11], which is very recently converted by us to provide
safe approximation to a different transmit optimization problem [10].
The result is summarized as follows:

Lemma 1. ( [10]) For any (A,u, c) ∈ H
n × C

n × R, v ∼
CN (0, In) and ρ ∈ (0, 1], the following implication holds true:

Prv
{

v
H
Av + 2Re{vH

u}+ c ≥ 0
}

≥ 1− ρ

⇐=















Tr(A)−
√

−2 ln(ρ) · x+ ln(ρ) · y + c ≥ 0,
∥

∥

∥

∥

[

vec(A)√
2u

]
∥

∥

∥

∥

2

≤ x,

yIn +A � 0, y ≥ 0,

(9)

where x and y are slack variables. Moreover, Eqs. (9) are convex in
(A,u, c, x, y).

We are now ready to present the safe OC-SRM approximation.
By replacing the hard probabilistic constraint (5b) with the impli-
cation (6b), and then by applying Lemma 1 to (6b) (note (8)), we
obtain the following safe approximation to OC-SRM:

R⋆ = max
W,Σ,R,β

{xk}
K

k=1
,{yk}

K

k=1

R (10a)

s.t. Tr(Ak)−
√

−2 ln(ρ̄) · xk + ln(ρ̄) · yk + ck ≥ 0, ∀k
(10b)

∥

∥

∥

∥

[

vec(Ak)√
2uk

]∥

∥

∥

∥

2

≤ xk, ∀k, (10c)

ykINt
+Ak � 0, yk ≥ 0, ∀k, (10d)

hHWh

1 + hHΣh
= β − 1, (10e)

Tr(W+Σ) ≤ P, W � 0, Σ � 0. (10f)

A significant merit of the safe approximation (10) is that allits con-
straints have explicit forms. However, by careful inspection, one can
see that problem (10) is still nonconvex. We deal with this issue in
the next step.

3.3. Step 3: One-variable-parameterized convex reformulation
of (10)

While the safe approximation (10) is nonconvex, it can be reformu-
lated to a form where the problem is convex when one particular
variable is fixed. Hence, by doing line search over that variable, we
can solve (10) optimally.

To describe the reformulation, we note that the left hand side of
(10e) is a linear fractional function, which can be simplified by using
the Charnes-Cooper transformation [15]. Specifically, by letting

Q = ξW, Γ = ξΣ, ξ > 0, (11)

and making a change of variables

ν = 2−Rβ, η = 2R, (12)



problem (10) can be transformed to the following equivalentprob-
lem:

max
Q,Γ,ν,η,ξ

{x̂k}
K

k=1
,{ŷk}

K

k=1

η (13a)

s.t. Tr(Âk)−
√

−2 ln(ρ̄) · x̂k + ln(ρ̄) · ŷk + ĉk ≥ 0, ∀k
(13b)

∥

∥

∥

∥

[

vec(Âk)√
2ûk

]
∥

∥

∥

∥

2

≤ x̂k, ∀k, (13c)

ŷkI+ Âk � 0, ŷk ≥ 0, ∀k, (13d)

h
H
Qh = νη − 1, (13e)

ξ + h
H
Γh = 1, (13f)

Tr(Q+ Γ) ≤ Pξ, Q � 0, Γ � 0, ξ ≥ 0, (13g)

where

Âk = ξAk = C
1/2
k ((ν − 1)Γ−Q)C

1/2
k ,

ûk = ξuk = C
1/2
k ((ν − 1)Γ −Q) ḡk,

ĉk = ξck = ḡ
H
k ((ν − 1)Γ−Q) ḡk + (ν − 1)ξ.

Note that as a common trick in the Charnes-Cooper transformation,
(13f) is introduced to fix the denominator of the linear fraction func-
tion in (10e). In (13g), we have replacedξ > 0 by ξ ≥ 0; this mild
relaxation causes no loss, since any feasibleξ of (13) has to be pos-
itive, for otherwise (13g) implies thatQ = Γ = 0, which violates
(13f).

Problem (13) is nonconvex with respect to all the optimization
variables, but is convex for a fixedν. Specifically, problem (13),
for a fixed ν, is a conic (and convex) program involving positive
semidefinite constraints and second order cone constraints. Hence,
we recast (13) as

max
ν

ϕ(ν) (14a)

s.t. 1 ≤ ν ≤ 1 + P‖h‖2, (14b)

where
ϕ(ν) = max

Q,Γ,η,ξ

{x̂k}
K

k=1
,{ŷk}

K

k=1

η

s.t. (13b)− (13g).

(15)

In (14b), the lower bound onν is due to the feasibility of (6b). To see
this, supposingν = 2−Rβ < 1, then one can check thatvH

k Akvk+
2Re{vH

k uk}+ ck < 0 holds for arbitraryvk, and thus (6b) cannot
be satisfied. The upper bound onν is derived as follows:

ν = 2−Rβ ≤ β = 1 +
hHWh

1 + hHΣh
≤ 1 + h

H
Wh ≤ 1 + P‖h‖2

where the first inequality is due to the secrecy rateR ≥ 0; the last in-
equality follows fromTr(W) ≤ P ; and the equality can be achieved
with W = PhhH/‖h‖2.

Note that (14) is a box-constrained single-variable optimization
problem, whose objective value can be evaluated by solving the
conic program (15) (say, using available software [16]). Therefore,
(14) can be handled by performing one-dimensional line search over
ν. There are many derivative-free search algorithms that onecan
use, e.g., Golden search [17], compass or coordinate search[18],
etc. Once (14) has been solved,W andΣ can be recovered through
(12).

Our development of safe OC-SRM approximation is now com-
plete. We have the following remark.

Remark 1: The safe OC-SRM approximation derived above
not only provides a tractable way to optimize the transmit solution
(W,Σ), it also gives an efficiently computable lower bound on the
outage-constrained secrecy rateR. For example, given a transmit
solution(W,Σ) of some other methods, what one may desire to do
is to evaluate its outage-constrained secrecy rate. The safe approxi-
mation method can be used to compute a lower bound on its outage-
constrained secrecy rate (by fixing(W,Σ) in the safe approxima-
tion problem). While we can also use Monte-Carlo simulations to
obtain an accurate evaluation of the outage-constrained secrecy rate,
such evaluation can be computationally demanding especially for
small outage specificationρ.

Before closing this section, let us see some physical interpre-
tations of the proposed design. For simplicity, consider ani.i.d.
isotropic Gaussian CSI model:

gk ∼ CN (0, σ2
I), k = 1, . . . , K (16)

for someσ > 0. We can show the following:

Proposition 1. Suppose that a positive secrecy rate R⋆ can be
achieved in (10)under the i.i.d. isotropic Gaussian CSI model. Then,
the optimal W⋆ and Σ⋆ in (10) must satisfy

W
⋆ = w

⋆
w

⋆H , Σ
⋆ ⊥ (w⋆ + τ⋆

h)

for some w
⋆ ∈ C

Nt 6= 0 and τ⋆ ∈ C 6= 0.

The proof is omitted due to lack of space. From Proposition 1,we
can see at least two physical interpretations of the proposed design
under the considered scenario: 1)Transmit beamforming is an op-
timal transmit strategy for the proposed design; 2) the AN should
be placed orthogonally to a linear combination of the beamforming
direction and the legitimate user’s channel direction. Actually, by
simulation, we found that the optimal beamforming directionw

⋆ al-
ways aligns withh, andΣ⋆, if it is nonzero, is orthogonal toh with
its components uniformly distributed on the nullspace ofh. This
observation in part explains the validity of the popular isotropic-AN
design from an outage perspective.

4. SIMULATION RESULTS

In this section, two simulations are presented to demonstrate the effi-
cacy of the proposed safe approximation solution. Unless specified,
we setNt = 4, K = 5, ρ = 0.05, σ = 0.1, andP = 10dB. The
i.i.d. isotropic Gaussian CSI model in (16) is adopted. All the simu-
lation results were averages of500 independent trials. At each trial,
h is randomly generated followingCN (0, I).

The proposed safe approximation solution is compared with the
isotropic AN solution in [19], which is a simple method. Our perfor-
mance measure is the outage-constrained (OC) secrecy rate;given a
transmit solution(W,Σ), either the proposed or the isotropic AN
solution, the outage-constrained secrecy rate is defined as

RMC = sup
R

{R | Pr{ min
k=1,...,K

fk(W,Σ) ≥ R} ≥ 1− ρ} (17)

The OC secrecy rate above has no analytical expression, and we have
to evaluate it by Monte-Carlo (MC) simulations (hence the subscript
‘MC’ in (17)).

Fig. 2 plots the OC secrecy rates against the average transmit
powerP . In the legend, ‘AN Bernstein by MC’ and ‘isotropic AN



by MC’ represent MC-evaluated OC secrecy ratesRMC of the pro-
posed safe approximation solution and isotropic AN solution, re-
spectively. In addition, ‘AN Bernstein computable lower bound’ is
the rate outputted by the proposed solution, i.e.,R⋆ in (10). Note
that this is a guaranteed OC secrecy rate value obtained by the pro-
posed safe optimization, rather than MC evaluation. We can see
from Fig. 2 that the proposed solution outperforms the isotropic AN
for P ≤ 20 dB, and otherwise forP > 20 dB. This means that the
advantage of the proposed safe approximation lies in lower transmit
powers. This is further confirmed when we observe the gaps be-
tween ‘AN Bernstein by MC’ and ‘AN Bernstein computable lower
bound’—smaller gaps mean better approximation accuracies.

In Fig. 3 we demonstrate how the Eves’ CSI uncertainty level
σ affects the OC secrecy rates. The proposed safe approximation
solution is seen to exhibit better performance for smallerσ.
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Fig. 2. The outage secrecy rate versus the average transmit power.
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Fig. 3. The outage secrecy rate versusσ.

5. CONCLUSION

To conclude, this paper has considered an outage-constrained se-
crecy rate maximization problem for an MISO channel overheard

by multiple single-antenna Eves. This is a challenging problem, and
we have developed a safe approximation method for this problem,
using a concurrent chance constrained optimization technique called
Bernstein-type inequality. The resulting safe approximation can be
efficiently handled by solving a sequence of convex problems. Sim-
ulation results demonstrate that the proposed design can give a better
performance than the isotropic AN design under some scenarios. As
a future work, it is worthwhile to investigate how the approxima-
tion quality of the proposed design can be further improved,e.g., by
resorting to advanced probability theory.
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