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Semidefinite Relaxation and Approximation
Analysis of a Beamformed Alamouti Scheme for

Relay Beamforming Networks
Sissi Xiaoxiao Wu, Anthony Man-Cho So, Jiaxian Pan and Wing-Kin Ma

Abstract—In this paper, we study amplify-and-forward (AF)
schemes in two-hop one-way relay networks. In particular,
we consider multigroup multicast transmission between long-
distance users. Assuming that perfect channel state information
is perceived, our goal is to design the AF process so that
the max-min-fair signal-to-interference-plus-noise ratio (SINR)
is optimized while generalized power constraints are satisfied.
We propose a beamformed Alamouti (BFA) AF scheme and
formulate the corresponding AF design problem as a two-block
fractional quadratically-constrained quadratic program (QCQP).
We then tackle the two-block fractional QCQP using the semidef-
inite relaxation (SDR) technique and analyze the approximation
accuracy of the proposed SDR. From a theoretical perspective,
our results are fundamentally new and reveal that the proposed
BFA AF scheme can outperform the traditional BF AF scheme,
especially when there are many users in the system or many
generalized power constraints in the problem formulation. From
a practical perspective, our proposed BFA AF scheme improves
the receivers’ SINR by offering two degrees of freedom (DoFs) in
beamformer design, as opposed to only one DoF offered by the BF
AF scheme. In the latter part of this paper, we demonstrate how
this extra DoF leads to provable performance gain by considering
two special relay scenarios, in which the AF process is shown
to possess a special structure. Numerical simulations further
confirm that the proposed BFA AF scheme outperforms the BF
AF scheme and works well for large-scale relay systems.
Index terms− MIMO relay network, distributed relay network,
cognitive radio, energy harvesting, amplify-and-forward (AF),
multigroup multicast, SDR, approximation bounds.

I. INTRODUCTION

The information delivery between multiple wireless devices
has shown an increasing importance in up-to-date military
networks, relay networks, and 5G networks [1]–[3]. The state-
of-the-art technique in this context is to use small smart
access points (APs), such as mobile phones, wireless relays,
and Wi-Fi APs, to assist information delivery between far-
apart transceiver pairs. Nowadays, a new trend is to connect
the smart APs by fibers, microwave, or millimeter wave to
build up a cloud processing center for facilitating reliable
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communications. A typical example is the cloud radio access
network (C-RAN) [4]–[6], which is recently proposed as a
promising network architecture to offer a 1000x increase in
capacity to support broadband applications. The key enabling
technologies in C-RANs are the cloud processors pool and
fronthaul-backhaul links. They coordinate all the base-stations
in all cells to form a cloud base-station and serve the users
in a jointly optimized manner. Naturally, one can extend the
above setting to “cloud relays" by viewing communications
between devices as information delivery in a relay network.
The intra-network interference will be treated as noise and the
inter-network interference will be managed by designing the
amplify-and-forward (AF) process at the cloud center. This
gives rise to the so-called cloud relay network (C-RN) [2],
[7]–[9]; see a system model example in Figure 1.
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Fig. 1. An example of the cloud relay network.

In this work, we focus on a typical two-hop one-way relay
network. In particular, we consider the case where all nodes—
i.e., transmitters, receivers, and relays—are equipped with a
single antenna. This assumption is reasonable, as nodes in a
D2D communication network are usually limited by power and
apparatus. In our setting, the transmitters and receivers are far-
apart and the direct links between them are negligible.1 Thus,

1We treat signals from direct links as noise terms at the destination.
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the transmitters rely on the relays to AF the information.2

We assume that the relays are distributively located, and more
importantly, they coordinate to form a C-RN. In practice,
the capacity of the fronthaul-backhaul links in C-RNs is an
important issue. If the link capacity is unlimited, then both
the channel state information (CSI) and received signals can
be shared within the cloud, and the system becomes an MIMO
relay network. On the other hand, if the link capacity is limited
in such a way that only CSIs are shared and the received
signals are isolated among different relays, then the system
is reduced to a distributed relay network. We remark that
there are also other types of relay networks corresponding to
different link capacities, but in this paper we focus on the two
above.

Our goal is to design the relay AF process for multigroup
multicast transmission. In the literature, there are different
problem formulations; see, e.g., [10]–[18]. Herein, we focus
on the max-min-fair (MMF) formulation, in which the worst
user’s signal-to-interference-plus-noise ratio (SINR) is to be
maximized while generalized power constraints, such as total
power constraint, per-relay power constraints, interference
temperature constraints, or energy harvesting constraints, are
to be satisfied. This makes our design approach applicable to
many scenarios. A classic design approach for AF relays is
to adopt the beamformed (BF) AF scheme [10], [11], which
gives rise to an NP-hard single-block fractional quadratically-
constrained quadratic program (QCQP). An effective way to
tackle such fractional QCQPs is to apply the semidefinite
relaxation (SDR) technique [19], which involves reformulating
the fractional QCQP as a rank-one constrained fractional
semidefinite program (SDP) and relaxing the rank constraint
to obtain a polynomial-time solvable fractional SDP. It is well
known that the SDR is tight if the corresponding fractional
SDP has rank-one solutions. Otherwise, a Gaussian random-
ization algorithm is applied to convert the optimal solution to
the fractional SDP into a feasible solution to the fractional
QCQP [20], [21]. We shall call this solution the SDR solution
in the sequel. A fundamental issue here is to quantify the
quality of the SDR solution. In our previous work [8], [9], we
show that the fractional SDP always has a rank-one solution
when M +J ≤ 4, and that the SINR associated with the SDR
solution is at least Ω( 1

M log J ) times that associated with the
optimal solution to the fractional QCQP when M + J > 4.
Here, M is the number of users (receivers) in the network and
J is the number of generalized power constraints. Although
this result provides an SDR approximation bound for the
single-block fractional QCQP when multiple constraints are
present, from a practical perspective, it actually implies that
the SINR associated with the SDR-based BF AF scheme may
experience a performance loss on the order of 1

M log J in large-
scale systems.

In order to improve the relay beamforming performance,
we propose to adopt the Alamouti space-time code in the AF
structure. This leads to the BF Alamouti (BFA) AF scheme,
in which two beamformers are used to process two data

2The relays can also decode-and-forward (DF) the received signals, but this
is beyond the scope of this paper.

symbols jointly. Compared to the BF AF scheme, which uses
only one beamformer to process a single data symbol, the
BFA AF scheme has one extra degree of freedom (DoF)
in the beamformer design. As such, it is expected to yield
better system performance. In fact, the extra DoF available to
the BFA AF scheme is also manifested in its corresponding
design problem, in that it can be shown to admit a two-block
fractional QCQP formulation. Our analytic results show that
the optimal value of the corresponding two-block fractional
SDP is always no worse than that of the single-block fractional
SDP. Moreover, in a variety of relay scenarios, the SDR is
tight when M + J ≤ 5, and the approximation accuracy of
the SDR solution is on the order of 1√

M log J
when M+J > 5.

Clearly, both the tightness and approximation accuracy results
are better than their BF AF counterparts.

The idea of using the Alamouti code in single-group mul-
ticast beamforming is introduced independently in [22] (see
also [23]) and [24] and leads to the first BFA schemes. The
subsequent conference paper [21] proposes a BFA scheme for
multigroup multicasting without relays. This paper unifies and
significantly extends the aforementioned works by developing
a BFA AF scheme for multigroup multicast relay networks
with generalized power constraints and providing an analysis
on the performance of the proposed scheme. Although BFA
AF schemes for relay networks have previously been studied
in [25], [26], there are fundamental differences between those
works and ours. Indeed, the work [25] focuses on a distributed
relay network with one power constraint, while our work
considers both distributed relay and MIMO relay networks
with generalized power constraints. The work [26] allows a
direct link to exist between the devices, while our work is
targeted at the setting where devices are far-apart and direct
links between them are negligible. In addition, both of the
works [25], [26] focus on the single-group multicast scenario,
while ours considers the multigroup multicast scenario. We
remark that generalizing the BFA schemes from single-group
multicasting to multigroup multicasting, and from distributed
relays to MIMO relays, is non-trivial. More importantly, we
establish for the first time the SDR approximation accuracy of
a fairly general class of two-block fractional QCQPs, thereby
allowing us to obtain a provable guarantee on the performance
of our proposed scheme. By contrast, no such guarantee is
available for the schemes proposed in [25], [26].

It should also be noted that the problem considered in this
paper, namely beamformer design for multi-user to multi-user
multigroup multicasting in relay networks, has not been well
addressed in the literature. Indeed, existing works on relay
transceiver design mainly focus on the point-to-point [13],
[14], single-user to multi-user [15], multi-user to single-
user [16], [17], and multi-user to multi-user unicast [10]
and multicast scenarios [18]. Although the work [27] studies
beamformer design in a multigroup multicast relay network, it
considers BF AF schemes for single-antenna relays, whereas
our focus is on designing a BFA AF scheme in a cloud relay
setting. From a computational point of view, some efficient
heuristics have recently been proposed to find high-quality so-
lutions to single-block fractional QCQPs; see, e.g., [28]–[31].
We numerically compare those heuristics with the proposed
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BFA AF scheme and observe that even though those heuristics
can help us find a better QCQP solution, the proposed BFA
AF scheme still owns a significantly better performance; see
Section IV-F. Lastly, we remark that although it seems one
can further improve the system performance by considering
higher-dimensional orthogonal space-time block codes (OS-
TBCs), the overall rate loss associated with the use of such
codes (recall that there is no full-rate OSTBC of dimension
n > 2 [32]) may neutralize any performance gain; see also
the discussion in [23, Remark 3]. We should also point out
that the usage of the Alamouti code in this work differs from
that of the distributed space-time codes in [33], [34], since the
former uses the Alamouti code structure at each relay while
the latter judiciously designs the code structure at each of the
relays so that they form an OSTBC as a whole.

The organization of this paper is as follows. In Section II, we
introduce the system model and the SDR-based BF AF scheme
for both the MIMO relay and distributed relay networks in the
presence of primary users. We show how the design problem
for the BF AF scheme can be tackled by the SDR technique
and review existing bounds on the approximation accuracy
of the SDR solution. In Section III, we introduce the BFA
AF scheme and show how the corresponding design problem
gives rise to a new two-block fractional QCQP formulation.
As one of our main results, we establish a bound on the
approximation accuracy of the SDR solution to the two-block
fractional QCQP, thereby providing a performance guarantee
for the proposed BFA AF scheme. We then apply our results to
two types of multicasting relay network and demonstrate how
the two DoFs offered by the BFA AF scheme can improve
system performance. Lastly, we present simulation results in
Section IV and conclude the paper in Section V.

Our notation is standard: CN is the set of all complex N -
dimensional vectors; HN+ is the set of all N × N positive
semidefinite matrices; z∗ denotes the complex conjugate of
the complex number z; ‖ · ‖ is the vector Euclidean norm;
A •B stands for the inner product between matrix A and B;
A ⊗B stands for the Kronecker product between matrix A
and B; A �B stands for the element-wise product between
matrix A and B; vec(A) is the vectorization operator for
matrix A; Diag(x) is a diagonal matrix parametrized by
the elements of x; rank(X) and λmin(X) stand for the
rank and the smallest eigenvalue, respectively; ei is a unit
vector with the non-zero element in the ith entry; e is the
vector of all ones; Ir denotes the r-by-r identity matrix;
E[·] denotes statistical expectation; CN (0,W ) denotes the
circularly symmetric complex Gaussian distribution with mean
vector 0 and covariance matrix W .

II. SYSTEM MODEL AND THE BEAMFORMED
AMPLIFY-AND-FORWARD SCHEME

In this section, we describe the system model for two-hop
one-way relay networks. We consider multigroup multicast
transmission by a network of single-antenna AF relays. We
assume that there are L relays in the network; G single-
antenna transmitters (sources) send G independent common
information to G groups of single-antenna users (receivers,

destinations). Users in the same group require the same
information, while users in different groups require different
information. In total, there are

∑G
j=1mj = M users in

the network, where mj is the number of users in group
j for j = 1, . . . , G. In our target setting, the transmitters
and receivers are far-apart so that direct links between them
can be ignored. As such, relays play an important role in
information delivery by AF-ing received signals from sources
to destinations. Under the C-RN setting [7], we assume that
the relays are distributively located but connected by a cloud
processing unit (PU) pool (i.e., the computation center) via
fronthaul and backhaul links, which are typically fibers or
microwave connected to fibers. We further assume that all
nodes in the network are well synchronized, channels from
transmitters to relays and relays to users are frequency flat
and quasi-static, and the channels are perfectly perceived at
the transmitters and receivers (e.g., by using reference signals)
and are fully shared within the cloud PU pool. The cloud PU
pool can then coordinate the design of the AF process in the
network.

A. The BF AF Scheme

The information delivery process in a one-way relay net-
work proceeds in two hops; see Figure 2:
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Fig. 2. The two-hop one-way relay network with primary users.

1) Source-to-Relay Hop: The transmitters send information to
relays. The receive model at the relay is given by

r(t) =

G∑
j=1

fjsj(t) + n(t), (1)

where r(t) = [r1(t), . . . , r`(t), . . . , rL(t)]T with

r`(t) =

G∑
j=1

f `j sj(t) + n`(t), ` = 1, . . . , L (2)

being the received signal at relay `; sj(t) is the common
information specific for group j with E[|sj(t)|2] = Pj , where
Pj is the transmit power at transmitter j; fj = [f1

j , . . . , f
L
j ]T

is the channel from transmitter j to all the relays; n(t) =
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[n1(t), . . . , nL(t)]T with n`(t) being the Gaussian noise at
relay `, which has mean zero and variance σ2

` . Throughout
this paper, we assume that σ2

` > 0 for ` = 1, . . . , L.
2) Relay-to-Destination Hop: Relays process the received
signals and then forward them to receivers. A classic AF
scheme is the BF AF scheme, which has been widely used
in the literature; see, e.g., [10], [11]. The transmit structure at
the relay side is given by

x(t) = V r(t). (3)

The weighting matrix V represents how the relays interact
with each other. Specifically, consider the setting where all the
single-antenna relays are connected by a cloud, within which
the CSIs are fully shared. If the received signals are also shared
within the cloud, then there is no constraint on the matrix V ,
and we are dealing with an MIMO relay network [11]. On the
other hand, if the received signals are not shared, then V is
constrained to be a diagonal matrix, and we are dealing with
a distributed relay network [10].

In the case of an MIMO relay network, the received signal
for user-(k, i) (i.e., user i in group k) is given by

yk,i(t) = gHk,ix(t) + vk,i(t) (4)

= gHk,iV fksk(t)︸ ︷︷ ︸
desired signal

+ gHk,iV

∑
m 6=k

fmsm(t) + n(t)

+ µk,i(t)︸ ︷︷ ︸
interference and noise

,

where gk,i = [g1
k,i, . . . , g

`
k,i, . . . , g

L
k,i]

T is the vector of
channels from the relays to user-(k, i) and µk,i(t) is the
Gaussian noise at user-(k, i) with zero mean and variance
σ2
k,i. In this paper, we assume that σ2

k,i > 0 for i =
1, . . . ,mk and k = 1, . . . , G. Accordingly, by letting Σ =
Diag(σ2

1 , . . . , σ
2
` , . . . , σ

2
L) � 0, the receive SINR at user-(k, i)

can be expressed as

Pk

∣∣∣gHk,iV fk∣∣∣2∑
m 6=k

Pm
∣∣gHk,iV fm∣∣2 + gHk,iV ΣV Hgk,i + σ2

k,i

. (5)

B. Generalized Power Constraints

We are interested in optimizing the AF weighting matrix V
for relay networks under three types of design constraints:

1) Total Power Constraints. A natural consideration is that
the total transmit power at the relays is below a given
threshold. This leads to the total power constraint

E[‖x(t)‖2] =Tr

V
 G∑
j=1

Pjfjf
H
j + Σ

V H


=wHD0w ≤ P̄0, (6)

where (6) is obtained by setting w = vec(V ) and
applying the identity

Tr
(
AHBCD

)
= vec(A)H

(
DT ⊗B

)
vec(C),

which is valid for arbitrary complex matricesA,B,C,D
of appropriate dimensions. Also, P̄0 is the total transmit

power budget for all the relays and D0 is defined in (10)
in Table I.

2) Per-Relay Power Constraints. Another common design
constraint is to place a power budget at each relay. Such
constraint can be formulated as

eH` V

 G∑
j=1

Pjfjf
H
j + Σ

V He` ≤ P̄`, ` = 1, . . . , L,

where P̄` is the maximum transmit power allowed at relay
`. Similar to (6), we can rewrite the above constraints as

wHD`w ≤ P̄`, ` = 1, . . . , L, (7)

where D` is defined in (11) in Table I.
3) Interference Temperature Constraints. We may also

consider a popular design constraint in the cognitive
radio (CR) network setting, which is to control the
interference temperature at the primary users [35]–[37].
Suppose that we have a CR relay network with U primary
users, at which the interference is simply caused by
the AF relays and not by the transmitters. Let hu =
[h1
u, . . . , h

`
u, . . . , h

L
u ]T be the vector of channels from the

relays to primary user u, for u = 1, . . . , U . Then, the
interference temperature constraints can be formulated as

wHGuw ≤ ηu, u = 1, . . . , U,

where ηu is the maximum interference allowed at primary
user u, and Gu is defined in (12) in Table I with σ2

u > 0
being the noise power at primary user u.

C. A Unified AF Design Problem

In this sub-section, we show how the beamformer design
problems associated with different types of relay networks
admit a unified formulation.

1) Problem Formulation for the MIMO CR Relay Network:
In light of the SINR expression in (5), we consider the MMF
design approach, which maximizes the worst user’s SINR
subject to the generalized power constraints. This gives rise to
the single-block fractional QCQP problem (R1BF) in Table I.

2) Problem Formulation for the Distributed CR Relay Net-
work: Since the AF weighting matrix is diagonal in the case
of a distributed relay network, by writing w = Diag(V ), it is
not hard to see that the design problem for the distributed CR
relay network has exactly the same form as that for the MIMO
relay network; i.e., Problem (R1BF) with L, Ak,i, Ck,i, D`,
and Gu given by (13)–(18) in Table I.

3) Problem Formulation for Other Two-Hop Relay Net-
works: Given different types of interactions among relays, we
may formulate different AF design problems by prescribing
a set V of admissible AF matrices and imposing the con-
straint w = vec(V ) ∈ V; cf. Sections II-C1 and II-C2.
One scenario of potential interest is when the relays are
partitioned into several groups; those within the same group
can fully communicate with each other, while those belonging
to different groups have limited message-passing capacity.
This is typical when the backhaul is not powerful enough to
support large-scale information sharing. In this paper, we shall
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TABLE I
SUMMARY OF THE DESIGN PROBLEMS UNDER THE BF AF SCHEME

(R1BF) w? = arg max
w∈CL

min
i=1,...,mk
k=1,...,G

wHAk,iw

wHCk,iw + 1

subject to wHD`w ≤ P̄`, ` = 0, 1, . . . , L,

wHGuw ≤ ηu, u = 1, . . . , U.

(R1SDR) W ? = arg max
W∈HL

+

min
i=1,...,mk
k=1,...,G

Ak,i •W
Ck,i •W + 1

subject to D` •W ≤ P̄`, ` = 0, 1, . . . , L,

Gu •W ≤ ηu, u = 1, . . . , U.

MIMO Relay:

L =L2,

Ak,i =Pk(f∗k ⊗ gk,i)(f
∗
k ⊗ gk,i)

H/σ2
k,i, (8)

Ck,i =
∑
m 6=k

Pm(f∗m ⊗ gk,i)(f
∗
m ⊗ gk,i)

H/σ2
k,i (9)

+ Σ⊗ (gk,ig
H
k,i)/σ

2
k,i,

D0 =

 G∑
j=1

Pj(f∗j )(f∗j )H + Σ

⊗ I, (10)

D` =

 G∑
j=1

Pj(f∗j )(f∗j )H + Σ

⊗ (e`e
H
` ), (11)

Gu =
G∑

j=1

Pj(f∗j ⊗ hu)(f∗j ⊗ hu)H/σ2
u. (12)

Distributed Relay:

L =L, (13)

Ak,i =Pk(f∗k � gk,i)(f
∗
k � gk,i)

H/σ2
k,i, (14)

Ck,i =
∑
m 6=k

Pm(f∗m � gk,i)(f
∗
m � gk,i)

H/σ2
k,i (15)

+ Diag(|g1k,i|
2σ2

1 , |g2k,i|
2σ2

2 , . . . , |gLk,i|
2σ2

L)/σ2
k,i,

D0 =
G∑

j=1

PjDiag((f∗j )(f∗j )H) + Σ, (16)

D` =

 G∑
j=1

PjDiag((f∗j )(f∗j )H) + Σ

� (e`e
H
` ), (17)

Gu =

G∑
j=1

Pj(f∗j � hu)(f∗j � hu)H/σ2
u. (18)

restrict our attention to the MIMO relay and distributed relay
networks discussed in Sections II-C1 and II-C2 and provide a
comprehensive performance analysis for them.

D. The SDR Technique and Approximation Bound for Single-
Block Fractional QCQPs

It is well known that the single-block fractional QCQP
(R1BF) formulated in the previous sub-section is NP-hard in
general [10], [19]–[21]. To obtain a tractable solution method,
a classic approach is to apply the SDR technique [19]. Specif-
ically, by applying the equivalence W = wwH ⇐⇒ W �
0, rank(W ) ≤ 1 and dropping the non-convex constraint
rank(W ) ≤ 1, we can relax (R1BF) to (R1SDR) shown in
Table I. As described in [20], [21], [38], Problem (R1SDR)
can be approximated to arbitrary accuracy in polynomial time.
Now, define

γ(W ) = min
i=1,...,mk
k=1,...,G

Ak,i •W
Ck,i •W + 1

and let w? and W ? denote the optimal solutions to
(R1BF) and (R1SDR), respectively. It follows that γ(W ?) ≥
γ(w?w?H), since (R1SDR) is a relaxation of (R1BF). More-
over, equality holds when (R1SDR) has a rank-one optimal
solution. If rank(W ?) > 1, then a feasible but generally
sub-optimal solution ŵ can be extracted from W ? using a
Gaussian randomization algorithm, such as Algorithm 1 in [9].
The solution ŵ clearly satisfies γ(w?w?H) ≥ γ(ŵŵH). It
is thus natural to ask whether a reverse inequality (approx-
imately) holds. Such inequality, if available, will reveal the
approximation accuracy of the SDR solution. We summarize
the results in [9], [20] as follows:

Proposition 1 Let M ≥ 1 be the total number of users in the
relay network and J = L+U+1 ≥ 1 denote the total number
of constraints in (R1BF). Then, the following hold:

a) When M + J ≤ 4, Problem (R1SDR) has an optimal
solution of rank at most one. Moreover, such a solution
can be found in polynomial time.

b) When M + J > 4, let ŵ be the solution returned by the
Gaussian randomization algorithm after N trials. Then,
with probability at least 1− (5/6)N , we have

γ
(
ŵŵH

)
= Ω

(
1

M log J

)
γ(w?w?H).

Proposition 1 implies that although the SDR-based BF AF
scheme is optimal when M + J ≤ 4, its SINR performance
could, in the worst case, degrade at a rate of M log J when
M or J is large. As such, the SDR-based BF AF scheme may
not work well in large-scale systems.

Remark 1: Recently, there has been flourishing interest in using
RF wave to transfer power to those users in the system who
aim at receiving energy rather than information. Such users are
usually referred to as energy receivers (ERs). It is possible to
incorporate R ≥ 1 harvested energy constraints, one for each
ER, into the design problem (R1BF); see, e.g., [39]–[41]. In
this case, Proposition 1(a) still holds with J = L+U+R+1.
However, the analogous result to Proposition 1(b) holds only
when R = 1. This can be proven using Theorem 2 in [42].
Since our focus is on the BFA AF scheme, we shall not indulge
in the proof here.



6

III. THE BEAMFORMED ALAMOUTI
AMPLIFY-AND-FORWARD SCHEME

Since a multigroup multicast relay network typically aims at
serving groups of users and has a number of design constraints,
our discussion in the previous section suggests that the BF
AF scheme could experience serious performance degradation
when deployed in such network. This motivates us to search
for more sophisticated AF schemes whose performance can
better scale with the size of the network. One approach is
to observe that the performance degradation of the BF AF
scheme is due to the use of a rank-one AF weight Ŵ =
ŵŵH to approximate the high-rank SDP solution W ?; see
Proposition 1. By incorporating the Alamouti space-time code
structure in the AF process, we can effectively introduce an
extra DoF in the design of the AF weight, thereby allowing
us to use two rank-one AF weights to approximate the SDP
solution.

A. The BFA AF Scheme for MIMO Relay

To realize the above idea for an MIMO relay network,
we parse the transmit signal in every two time slots as a
group—i.e., s(m) = [s(2m), s(2m+1)]T—and transmit s(m)
in each source-to-relay hop. Specifically, following (3), we
denote the AF weighting matrix at time slot p as Vp =
[vp1 , . . . ,v

p
` , . . .v

p
L], where vp` = [vp1,`, . . . , v

p
`,`, . . . , v

p
L,`]

T

and p = 1, 2. Then, we modify the transmit signal at relay
` (for every two time slots) to

X`(m) =
[
X`(2m), X`(2m+ 1)

]
=

L∑
c=1

[v1
`,c, v

2
`,c] C(rc(m)),

where C : C2 → C2×2 is the Alamouti space-time code given

by C(x) =

[
x1 x2

−x∗2 x∗1

]
and r`(m) = [r`(2m), r`(2m+ 1)]T

with r`(2m) defined in (2). To demonstrate the signal struc-
ture, we illustrate the transmit signal at each relay in Figure 3.
The corresponding receive signal at user-(k, i) is given by (19).
Similar to the derivation of the signal-to-noise ratio (SNR) for
the Alamouti-coded signal in point-to-point communication
[43, Chapter 3.3.2], we can derive the SINR expression from
(19) by treating interference as white noise. Specifically, by
letting w1 = vec(V1) and w2 = vec(V2), the SINR at user-
(k, i) can be written as

wH
1 Ak,iw1 +wH

2 Āk,iw2

wH
1 Ck,iw1 +wH

2 C̄k,iw2 + 1
, (20)

where Ak,i, Āk,i, Ck,i, and C̄k,i are defined in (8), (21),
(9), and (22), respectively; see the companion technical re-
port [44] for details. Similarly, we can obtain D̄0, D̄`, and
Ḡu in (23), (24), and (25), respectively.

B. The BFA AF Scheme for Distributed Relay

The BFA AF scheme for a distributed relay network is
similar to that for the MIMO relay network, except that we
have w1 = Diag(V1) and w2 = Diag(V2). We relegate the
derivation to the companion technical report [44].

Phase II :   Relay to Destination 

Fig. 3. The BFA AF signal structure for the MIMO relay.

C. The BFA AF Design Problem and Its SDR

Based on the preceding discussion and the ideas in Sec-
tion II-C, we can formulate the BFA AF design problems
associated with MIMO relay and distributed relay networks
as the two-block fractional QCQP problem (R2BF) shown
in Table II. Note that Problem (R2BF) reduces to Problem
(R1BF) when Āk,i = 0, C̄k,i = 0 for i = 1, . . . ,mk and
k = 1, . . . , G, D̄` = 0 for ` = 0, 1, . . . , L, and Ḡu = 0
for u = 1, . . . , U . As such, Problem (R2BF) is also NP-hard.
Nevertheless, we can apply the SDR technique to it to obtain
the relaxation (R2SDR) shown in Table II. Now, define

θ(W1,W2) = min
i=1,...,mk
k=1,...,G

Ak,i •W1 + Āk,i •W2

Ck,i •W1 + C̄k,i •W2 + 1
. (31)

It is immediate that ifW is feasible for (R1SDR), then (W ,0)
is feasible for (R2SDR) with θ(W ,0) = γ(W ). Thus, the
performance of our proposed BFA AF scheme cannot be worse
than that of the BF AF scheme. Moreover, if we denote the
optimal solutions to (R2BF) and (R2SDR) by (w?

1 ,w
?
2) and

(W ?
1 ,W

?
2 ), respectively, then clearly

θ(W ?
1 ,W

?
2 ) ≥ θ(w?

1w
?
1
H ,w?

2w
?
2
H), (32)

and equality holds whenever Problem (R2SDR) has an optimal
solution of rank at most one.3 If either rank(W ?

1 ) > 1 or
rank(W ?

2 ) > 1, then a natural generalization of the Gaussian
randomization algorithm in [9], which we develop in Algo-
rithm 1, can be used to generate a feasible solution (ŵ1, ŵ2)
to Problem (R2BF). However, to the best of our knowledge, the
approximation accuracy of the SDR solution (ŵ1, ŵ2) has not
been studied in the literature before. In the next sub-section,
we shall tackle this issue and provide a provable performance
guarantee for our proposed BFA AF scheme. Curiously, our

3By a slight abuse of terminology, we say that a feasible solution
(W1,W2) to Problem (R2SDR) is of rank (at most) one if both W1 and
W2 are of rank (at most) one.
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yk,i(m) = [yk,i(2m), yk,i(2m+ 1)] =

L∑
`=1

(g`k,i)
∗

L∑
c=1

[v1
`,c, v

2
`,c] C(rc(m)) + [µk,i(2m), µk,i(2m+ 1)]

=

L∑
`=1

(g`k)∗
L∑
c=1

[v1
`,c, v

2
`,c]

[
rc(2m) rc(2m+ 1)

−rc(2m+ 1)∗ rc(2m)∗

]
+ [µk,i(2m), µk,i(2m+ 1)]

=

L∑
`=1

L∑
c=1

[(g`k,i)
∗v1
`,cf

c
k , (g

`
k,i)
∗v2
`,c(f

c
k)∗]

[
sk(2m) sk(2m+ 1)

−sk(2m+ 1)∗ sk(2m)∗

]
︸ ︷︷ ︸

desired signal

+

L∑
`=1

L∑
c=1

∑
j 6=k

[(g`k,i)
∗v1
`,cf

c
j , (g

`
k,i)
∗v2
`,c(f

c
j )∗]

[
sj(2m) sj(2m+ 1)

−sj(2m+ 1)∗ sj(2m)∗

]
︸ ︷︷ ︸

interference signal

+

L∑
`=1

L∑
c=1

[(g`k,i)
∗v1
`,c, (g

`
k,i)
∗v2
`,c]

[
n`(2m) n`(2m+ 1)

−n`(2m+ 1)∗ n`(2m)∗

]
+ [µk,i(2m), µk,i(2m+ 1)]︸ ︷︷ ︸

noise

. (19)

Algorithm 1 Gaussian Randomization for (R2BF)
1: Input: optimal solution (W ?

1 ,W
?
2 ) to (R2SDR), number

of trials N ≥ 1
2: if rank(W ?

1 ) ≤ 1 and rank(W ?
2 ) ≤ 1 then

3: compute ŵp such that W ?
p = ŵpŵ

H
p for p = 1, 2

4: return (ŵ1, ŵ2)
5: end if
6: for n = 1, . . . , N do
7: generate ξnp ∼ CN (0,W ?

p ) for p = 1, 2
8: set ŵn

p = min{tn1 , tn2} · ξnp for p = 1, 2, where

tn1 = min
`

√
P̄`

D` • ((ξn1 )(ξn1 )H) + D̄` • ((ξn2 )(ξn2 )H)
,

tn2 = min
u

√
ηu

G` • ((ξn1 )(ξn1 )H) + Ḡ` • ((ξn2 )(ξn2 )H)

9: set θn = θ
(
(ŵn

1 )(ŵn
1 )H , (ŵn

2 )(ŵn
2 )H

)
10: end for
11: set n? = arg maxn=1,...,N θn
12: return

(
ŵn?

1 , ŵn?

2

)
analysis suggests that in terms of approximability by the SDR
technique, the two-block optimization problem (R2BF) can be
quite different from its single-block counterpart (R1BF).

D. Approximation Bound for Two-Block Fractional QCQPs

The following result, which constitutes one of the main
contributions of this paper, reveals how well (R2BF) can be
approximated by its SDR (R2SDR):

Theorem 1 Let M ≥ 1 be the total number of users in the
relay network and J = L+U+1 ≥ 1 denote the total number
of constraints in (R2BF). Then, the following hold:

a) If every optimal solution (W̃1, W̃2) to (R2SDR) satisfies
W̃1 6= 0 and W̃2 6= 0, then one can find in polynomial

time an optimal solution to (R2SDR) of rank at most
one whenever M + J ≤ 5. Otherwise, one can find in
polynomial time an optimal solution to (R2SDR) of rank
at most one only when M + J ≤ 4.

b) When M + J ≥ 5, let (ŵ1, ŵ2) be the solution returned
by Algorithm 1 after N trials. Then, with probability at
least 1− (7/8)N , we have

θ(ŵ1ŵ
H
1 , ŵ2ŵ

H
2 ) ≥ c · θ(w?

1w
?
1
H ,w?

2w
?
2
H),

where

c =
max

{
ω

6
√
M
, 1

18M

}
2 log(16J)

< 1,

ω = min
i=1,...,mk
k=1,...,G

{
min{Ak,i •W ?

1 , Āk,i •W ?
2 }

Ak,i •W ?
1 + Āk,i •W ?

2

}
.

We relegate the proof of Theorem 1 to the Appendix. Theo-
rem 1 is significant, as it not only establishes the first approx-
imation bound for the two-block fractional QCQP (R2BF) but
also quantifies the performance gain of our proposed BFA AF
scheme over the classic BF AF scheme. In particular, it shows
that in the regime where ω

6
√
M
≥ 1

18M , the approximation
accuracy of the SDR solution under the BFA AF scheme is
on the order of 1√

M log J
, which has a much better scaling with

respect to the number of users M than the 1
M log J -bound under

the BF AF scheme; cf. Proposition 1. Even in the ω
6
√
M
< 1

18M

regime, the approximation accuracy of the SDR solution under
the BFA AF scheme, which is on the order of 1

M log J , matches
that under the BF AF scheme. Although the definition of
ω involves the optimal solution (W ?

1 ,W
?
2 ) to (R2SDR) and

hence it may be difficult to determine ω a priori, in the next
sub-section, we will present two relay scenarios in which it
can be shown that ω = 1/2. Consequently, Theorem 1 still
yields useful information for these scenarios. In particular, we
can conclude that the SINR performance of the SDR-based
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TABLE II
SUMMARY OF THE DESIGN PROBLEMS UNDER THE BF ALAMOUTI AF SCHEME

(R2BF) (w?
1 ,w

?
2)

= arg max
w1,w2∈CL

min
i=1,...,mk
k=1,...,G

wH
1 Ak,iw1 + wH

2 Āk,iw2

wH
1 Ck,iw1 + wH

2 C̄k,iw2 + 1

subject to wH
1 D`w1 + wH

2 D̄`w2 ≤ P̄`, ` = 0, 1, . . . , L,

wH
1 Guw1 + wH

2 Ḡuw2 ≤ ηu, u = 1, . . . , U.

(R2SDR) (W ?
1 ,W

?
2 )

= arg max
W1,W2∈HL

+

min
i=1,...,mk
k=1,...,G

Ak,i •W1 + Āk,i •W2

Ck,i •W1 + C̄k,i •W2 + 1

subject to D` •W1 + D̄` •W2 ≤ P̄`, ` = 0, 1, . . . , L,

Gu •W1 + Ḡu •W2 ≤ ηu, u = 1, . . . , U.

MIMO Relay:

L =L2,

Āk,i =Pk(fk ⊗ gk,i)(fk ⊗ gk,i)
H/σ2

k,i, (21)

C̄k,i =
∑
m 6=k

Pm(fm ⊗ gk,i)(fm ⊗ gk,i)
H/σ2

k,i

+ Σ⊗ (gk,ig
H
k,i)/σ

2
v,i, (22)

D̄0 =

 G∑
j=1

Pjfjf
H
j + Σ

⊗ I, (23)

D̄` =

 G∑
j=1

Pjfjf
H
j + Σ

⊗ (e`e
H
` ), (24)

Ḡu =

G∑
j=1

Pj(fj ⊗ hu)(fj ⊗ hu)H/σ2
u. (25)

Distributed Relay:

L =L,

Āk,i =Pk(fk � gk,i)(fk � gk,i)
H/σ2

k,i, (26)

C̄k,i =
∑
m 6=k

Pm(fm � gk,i)(fm � gk,i)
H/σ2

k,i (27)

+ Diag(|g1k,i|
2σ2

1 , |g2k,i|
2σ2

2 , . . . , |gLk,i|
2σ2

L)/σ2
k,i,

D̄0 =

G∑
j=1

PjDiag(fjf
H
j ) + Σ, (28)

D̄` =

 G∑
j=1

PjDiag(fjf
H
j ) + Σ

� (e`e
H
` ), (29)

Ḡu =

G∑
j=1

Pj(fj � hu)(fj � hu)H/σ2
u. (30)

BFA AF scheme only degrades at a rate of
√
M log J in these

scenarios.

Remark 2: The reader may observe that (R2BF) simply
reduces to (R1BF) if one stacks the decision vectors w1 and
w2 into a single decision vector w and uses appropriate block-
diagonal matrices to define the objective function and con-
straints. Thus, Proposition 1 applies to (R2BF) and (R2SDR)
as well. However, the conclusions of Proposition 1 are not as
sharp as those of Theorem 1. This is because the latter exploits
the block structure of (R2BF).

Remark 3: In the case where Ak,i = Āk,i and Ck,i = C̄k,i
for i = 1, . . . ,mk and k = 1, . . . , G; D` = D̄` for ` =
0, 1, . . . , L; Gu = Ḡu for u = 1, . . . , U , Problem (R2BF)
admits the following equivalent formulation:

max
W1,W2∈HL

+

min
i=1,...,mk
k=1,...,G

Ak,i • (W1 +W2)

Ck,i • (W1 +W2) + 1

subject to D` • (W1 +W2) ≤ P̄`, ` = 0, 1, . . . , L,

Gu • (W1 +W2) ≤ ηu, u = 1, . . . , U,

rank(W1) ≤ 1, rank(W2) ≤ 1.
(33)

The above design problem arises in the study of the BFA
scheme for multigroup multicast transmission in a network
without relays [21]. By relaxing the rank constraints in (33)
and noting W = W1 +W2 ∈ HL+, we see that (R1SDR) and
(R2SDR) are equivalent in this case. In our prior work [21], we
developed a Gaussian randomization algorithm for converting

an optimal solution to (R1SDR) into a feasible solution
to (33) and analyzed its approximation accuracy. Our results in
Theorem 1 can be viewed as a generalization of those in [21].
In particular, by noting that ((W ?

1 +W ?
2 )/2, (W ?

1 +W ?
2 )/2)

is optimal for (R2SDR) whenever (W ?
1 ,W

?
2 ) is, we can

achieve ω = 1/2 in this case. Consequently, the approximation
accuracy of the solution (ŵ1, ŵ2) returned by Algorithm 1 is
on the order of 1√

M log J
.

E. Application to Multicasting in Relay Networks

In this sub-section, we consider single-group multicasting
(i.e., G = 1 and m1 = M ) in both MIMO relay and
distributed relay networks and use Theorem 1 to demonstrate
how the two DoFs offered by the BFA AF scheme can lead to
provable performance improvement over the BF AF scheme in
these two scenarios. Before we proceed, let us note that since
G = 1, we can drop the index k and write Ai, Āi,Ci, C̄i
for Ak,i, Āk,i,Ck,i, C̄k,i, respectively. Let φ` = arg(f `1) and
φ = [ej2φ1 , . . . , ej2φ` , . . . , ej2φL ]T , where j =

√
−1.

1) MIMO Relay: A simple calculation shows that f⊗gi =
(f∗ ⊗ gi)� (φ⊗ e). It follows from (21) that

wH
2 Āiw2 = (w2 � (φ⊗ e)∗)HAi(w2 � (φ⊗ e)∗).

Similarly, we can use (25) to get

wH
2 Ḡuw2 = (w2 � (φ⊗ e)∗)HGu(w2 � (φ⊗ e)∗).
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Next, since Σ is diagonal, Σ⊗(gig
H
i ) is block diagonal. This,

together with the structure of w2 � (φ⊗ e)∗ and (22), yields

wH
2 C̄iw2 = (w2 � (φ⊗ e)∗)HCi(w2 � (φ⊗ e)∗).

Lastly, we see from (23) and (24) that D̄` is also block
diagonal. Hence, by a similar reasoning, we have

wH
2 D̄`w2 = (w2 � (φ⊗ e)∗)HD`(w2 � (φ⊗ e)∗).

Since the map w2 7→ w2 � (φ ⊗ e)∗ is invertible, the above
derivation shows that Problem (R2BF) in this scenario has
exactly the features discussed in Remark 3 and hence can be
put into the form (33). In particular, the discussion in Remark 3
immediately leads to the conclusion that the approximation
accuracy of the SDR solution under the BFA AF scheme is
on the order of 1√

M log J
.

2) Distributed Relay: Using (26), (30), and the identities
f � gi = (f∗ � φ) � gi and f � hu = (f∗ � φ) � hu, we
have

wH
2 Āiw2 =(w2 � φ∗)HAi(w2 � φ∗),

wH
2 Ḡuw2 =(w2 � φ∗)HGu(w2 � φ∗).

Moreover, by (27)–(29), both C̄i and D̄` are diagonal. This,
together with the structure of w2 � φ∗, implies that

wH
2 C̄iw2 =(w2 � φ∗)HCi(w2 � φ∗),

wH
2 D̄`w2 =(w2 � φ∗)HD`(w2 � φ∗).

Hence, using the reasoning in Section III-E1, we can see that in
this scenario, the approximation accuracy of the SDR solution
under the BFA AF scheme is again on the order of 1√

M log J
.

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations to com-
pare the performance of different AF schemes and demonstrate
the superiority of the proposed BFA AF scheme. Due to page
limit, in Sections IV-A to IV-D, we only present the numerical
results for the distributed relay network. Numerical results
for the MIMO relay network can be found in the companion
technical report [44]. We assume without loss of generality
that each multicast group has an equal number of users (i.e.,
mk = M/G for k = 1, . . . , G). The channels fk, gk,i,
where i = 1, . . . ,mk and k = 1, . . . , G, are identically and
independently distributed according to CN (0, I). The power
of the transmitted signal at each transmitter is 0dB (i.e.,
Pj = 0dB for j = 1, . . . , G). Each single-antenna relay has
the same noise power (i.e., σ2

` = σ2
ant, where ` = 1, . . . , L),

and all users have the same noise power (i.e., σ2
k,i = σ2

user for
i = 1, . . . ,mk and k = 1, . . . , G). We assume that σ2

ant > 0
and σ2

user > 0. The total power threshold for all the relays
is P̄0; the power threshold at the `th relay is P̄`, where
` = 1, . . . , L. For each AF scheme, 100 channel realizations
were averaged to get the plots, and 1, 000 trials were made in
the Gaussian randomization algorithm to generate the BF AF
and BFA AF weights.

A. Worst User’s SINR versus Total Power Threshold

In this simulation, we vary the total power threshold for
all the relays to see the worst user’s SINR performance in
the relay network. For simplicity, we impose only the total
power constraint. In Figure 4, we assume that there are L = 8
single-antenna relays and G = 2 multicast groups with a total
of M = 16 users. For both cases, we set σ2

ant = σ2
user = 0.25.

The objective values (obj.) of (R1SDR) and (R2SDR) serve
as upper bounds for the SDR-based BF AF scheme and the
SDR-based BFA AF scheme, respectively. From the figure,
we see that the BFA AF scheme has significantly better SINR
performance than the BF AF scheme in all power regimes.

Total Power Allowed at the Relays (in dB)
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obj. of (R1SDR)
obj. of (R2SDR)
SDR-based BF AF
SDR-based BF Alamouti AF

Fig. 4. Worst user’s SINR versus total power threshold in the distributed
relay network: L = 8, G = 2, M = 12, σ2

ant = σ2
user = 0.25.

B. Worst User’s SINR versus Number of Users

In this simulation, we show how the worst user’s SINR
scales with the number of users served in the relay network.
Again, we impose only the total power constraint. In Figure 5,
we have L = 8, G = 2, σ2

ant = σ2
user = 0.25, and the total

power threshold is P̄0 = 10dB. From the figure, we see that
the objective value of (R2SDR) is larger than that of (R1SDR),
which is consistent with our earlier discussion. Moreover, it
shows that the BFA AF scheme has a better SINR performance
than the BF AF scheme for all values of M . This corroborates
the results in Proposition 1 and Theorem 1.

C. Worst User’s SINR versus Number of Per-Relay Power
Constraints

In this simulation, we impose both the total power constraint
and per-antenna power constraints and investigate how the
worst user’s SINR scales with the number of per-relay power
constraints. Specifically, in Figure 6, we assume that L = 8,
G = 2, M = 16, the total power threshold is P̄0 = 7dB, and
the per-relay power threshold is P̄` = −5dB for ` = 1, . . . , L.
We set σ2

ant = σ2
user = 0.25 and vary the number of per-relay

power constraints from 0 to L to compare the SINR perfor-
mance of different AF schemes. Our results show that the BFA
AF scheme outperforms the BF AF scheme. Moreover, as the
number of per-relay power constraints increases, the SINRs
of both schemes diverge from their SDR upper bounds and
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Fig. 5. Worst user’s SINR versus number of users in the distributed relay
network: L = 8, G = 2, P̄0 = 10dB, σ2

ant = σ2
user = 0.25.

exhibit the same scaling with respect to L. This is consistent
with the results in Proposition 1 and Theorem 1.

Number of Per-relay Power Constraints
0 1 2 3 4 5 6 7 8

W
or

st
 U

se
r's

 S
IN

R
 (

in
 d

B
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

obj. of (R1SDR)
obj. of (R2SDR)
SDR-based BF AF
SDR-based BF Alamouti AF

Fig. 6. Worst user’s rate achieved by different AF schemes versus number of
per-antenna power constraints in the distributed relay network: L = 8, G = 2,
M = 16, P̄0 = 7dB, P̄` = −5dB for ` = 1, . . . , L, σ2

ant = σ2
user = 0.25.

D. Worst User’s SINR versus Number of Primary Users

In this simulation, we study how the worst user’s SINR
scales with the number of primary users in a distributed
CR relay network. Specifically, we consider the scenario in
which both the total power constraint and the primary users’
interference temperature constraints are present. We assume
that L = 8, G = 2, M = 12, the total power threshold is
P̄0 = 10dB, and the interference power threshold is ηu = 3dB
for u = 1, . . . , U . We set σ2

ant = σ2
user = 0.25 as before and

set the noise power at the primary users to be σ2
u = 0.25

for u = 1, . . . , U . Figure 7 shows the worst user’s SINR
as the number of primary users in the network increses.
From the figure, we see that as the number of primary users
increases, the SINRs of both the BF AF and BFA AF schemes
diverge from their SDR upper bounds. Moreover, the BFA
AF scheme shows a significantly better performance than the
BF AF scheme. These results are consistent with those in
Proposition 1 and Theorem 1.
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Fig. 7. Worst user’s SINR versus number of primary users in the distributed
CR relay network: L = 8, G = 2, M = 12, P̄0 = 10dB, ηu = 3dB for
u = 1, . . . , U , σ2

ant = σ2
user = 0.25, σ2

u = 0.25 for u = 1, . . . , U .

E. Simulation Results for Multicasting Relay Networks

In this sub-section, we present numerical results for the
multicasting scenarios (i.e., G = 1) discussed in Section III-E.
We consider the problem formulation with a total power
constraint and a single interference temperature constraint (i.e.,
U = 1). Figures 8 and 9 show how the worst user’s SINR
scales with the number of users. Specifically, in Figure 8, we
consider an MIMO relay network with L = 4, M = 16,
P̄0 = 10dB, ηu = 3dB, and σ2

ant = σ2
user = σ2

u = 0.25. The
simulation results show that the objective values of (R1SDR)
and (R2SDR) coincide, and that the BFA AF scheme has a
better SINR performance than the BF AF scheme. This is
consistent with the findings in Section III-E1. In Figure 9,
we consider a distributed relay network with L = 8, M = 16,
P̄0 = 10dB, ηu = 3dB, and σ2

ant = σ2
user = σ2

u = 0.25. Similar
to the case of an MIMO relay network, the objective values of
(R1SDR) and (R2SDR) are equal, and the SINR performance
of the BFA AF scheme is better than that of the BF AF scheme.
This is consistent with the findings in Section III-E2.
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Fig. 8. Worst user’s SINR versus number of users in a multicast MIMO relay
network: L = 4, G = 1, M = 16, P̄0 = 10dB, ηu = 3dB, σ2

ant = σ2
user =

σ2
u = 0.25.
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Fig. 9. Worst user’s SINR versus number of users in a multicast distributed
relay network: L = 8, G = 1, M = 16, P̄0 = 10dB, bu = 3dB, σ2

ant =
σ2
user = σ2

u = 0.25.

F. Comparison with the Feasible Point Pursuit Algorithm

In this sub-section, we compare the proposed BFA AF
scheme with the state-of-the-art algorithm for solving single-
block QCQPs, namely, the Feasible Point Pursuit (FPP) al-
gorithm. Specifically, we compare our BFA AF scheme with
the FPP scheme [30] in a distributed relay network and with
the FPP-SCA scheme [29] in an MIMO relay network. In
the left sub-figure of Figure 10, we consider a single total
power constraint in a distributed relay network with the system
setting L = 8, G = 1, M = 16, and σ2

ant = σ2
user = 0.25.

In the right sub-figure of Figure 10, we consider both the
total power constraint and per-relay power constraints in an
MIMO relay network with the system setting L = 4, G = 1,
M = 16, σ2

ant = σ2
user = 0.25, and P̄0 = 3dB. We set the

per-relay power thresholds to be the same for all relays (i.e.,
P̄1 = · · · = P̄L). The results show that the BFA AF scheme
exhibits a substantial performance gain over the FPP schemes.
It is worth noting that the FPP schemes have been numerically
proven to outperform most of the existing algorithms for
solving single-block QCQPs.
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Fig. 10. Comparison with the Feasible Point Pursuit method.

G. Actual Bit Error Rate (BER) Performance

To further demonstrate the efficacy of the proposed BFA AF
scheme, we study the actual coded bit error rate (BER) perfor-
mance of the scenario considered in Section IV-A. Specifically,
for each time slot, we simulate the actual AF process by
generating sj(t), n

`(t) according to the SISO model in (4)
and (19) and detecting and decoding sj(t) at each receivers.
The resulting BERs are shown in Figure 11. To simulate the
SDR bound in the BER plots, we assume that there exists an
SISO channel whose SINR is equal to γ(W ?) or θ(W ?

1 ,W
?
2 ).

In our simulations, we adopt a gray-coded QPSK modulation
scheme and a rate-1/3 turbo code in [45] with a codelength
of 2,880 bits. We simulate 100 code blocks for each channel
realization and thus the BER reliability level is 10e−4. We
see that the actual BER performance of the proposed BFA AF
scheme indeed outperforms the BF AF scheme at almost all
power thresholds. The results are consistent with those SINR
results in Figure 4 and show that the BFA AF scheme can
achieve a good performance in real applications.
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Fig. 11. Worst user’s BER achieved by different AF schemes versus total
power threshold in the distributed relay network: L = 8, G = 2, M = 12,
σ2
ant = σ2

user = 0.25. A rate- 1
3

turbo code with codelength 2,880 is used.

V. CONCLUSIONS

In this work, we studied the AF design problem for
multigroup multicast transmission in both MIMO relay and
distributed relay networks, where the goal is to maximize
the worst user’s SINR while satisfying generalized power
constraints. We proposed a novel BFA AF scheme, which
uses two beamformers to process two data symbols jointly
and thus has one extra DoF over the classic BF AF scheme.
We showed that the design problem corresponding to the BFA
AF scheme can be formulated as a two-block fractional QCQP.
We then tackled the two-block fractional QCQP using the SDR
technique and established a new bound on the approximation
accuracy of the SDR solution. Such a bound allows us to
demonstrate in a rigorous manner how the two DoFs in
the BFA AF scheme can enhance system performance and
improve upon the BF AF scheme, especially in large-scale
systems. In particular, we used the aforementioned bound to
obtain provable guarantees on the performance of our proposed
scheme for the special case of multicasting in both the MIMO
relay and distributed relay networks. An interesting future
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direction would be to incorporate CSI uncertainty or consider
other types of C-RNs with limited link capacity.

APPENDIX

A. Proof of Theorem 1(a)

Let (W̄ ?
1 , W̄

?
2 ) be an optimal solution to (R2SDR). De-

fine θ?k,i =
Ak,i•W̄ ?

1 +Āk,i•W̄ ?
2

Ck,i•W̄ ?
1 +C̄k,i•W̄ ?

2 +1
for i = 1, . . . ,mk and

k = 1, . . . , G. Observe that (W̄ ?
1 , W̄

?
2 ) is feasible for the

following SDP:

max
(
A1,1 − θ?1,1C1,1

)
•W1 +

(
Ā1,1 − θ?1,1C̄1,1

)
•W2

s.t.
(
Ak,i − θ?k,iCk,i

)
•W1 +

(
Āk,i − θ?k,iC̄k,i

)
•W2

= θ?k,i, (k, i) 6= (1, 1),

D` •W1 + D̄` •W2 ≤ P̄`, ` = 0, 1, . . . , L,

Gu •W1 + Ḡu •W2 ≤ ηu, u = 1, . . . , U,

W1,W2 � 0.
(34)

Since D0 and D̄0 are positive definite, the feasible set of
Problem (34) is compact. This implies that Problem (34) has
an optimal solution. Hence, by [46, Theorem 3.2], we can
find in polynomial time an optimal solution (W ?

1 ,W
?
2 ) to

Problem (34) that satisfies rank(W ?
1 )2+rank(W ?

2 )2 ≤ (M−
1) + L+ 1 + U = M + L+ U .

Now, note that (W ?
1 ,W

?
2 ) is also optimal for (R2SDR).

Thus, if every optimal solution (W̃1, W̃2) to (R2SDR) satisfies
W̃1 6= 0 and W̃2 6= 0, then rank(W̃1) ≥ 1 and rank(W̃2) ≥
1, which implies that (W ?

1 ,W
?
2 ) must be a rank-one solution

when M+L+U ≤ 4, or equivalently, M+J ≤ 5. Otherwise,
one of W ?

1 or W ?
2 could be the zero matrix. In this case, we

can guarantee that the rank of (W ?
1 ,W

?
2 ) is at most one only

when M + L + U ≤ 3, or equivalently, M + J ≤ 4. This
completes the proof.

B. Proof of Theorem 1(b)

Consider a particular trial n in Algorithm 1 and let Ξp =
(ξnp )(ξnp )H for p = 1, 2. For any W1,W2 ∈ HL+, define

θk,i(W1,W2) =
Ak,i •W1 + Āk,i •W2

Ck,i •W1 + C̄k,i •W2 + 1

and set θ?k,i = θk,i(W
?
1 ,W

?
2 ). Furthermore, for any γ ∈ (0, 1)

and δ > 1, define the events

Ek,i(γ) =
{
θk,i(Ξ1,Ξ2) ≤ γ · θ?k,i

}
,

F0
` (δ) =

{
D` •Ξ1 + D̄` •Ξ2

≥ δ
(
D` •W ?

1 + D̄` •W ?
2

)}
,

F1
u(δ) =

{
G` •Ξ1 + Ḡ` •Ξ2

≥ δ
(
G` •W ?

1 + Ḡ` •W ?
2

)}
.

Our goal is to show that if we choose γ = max
{

ω
6
√
M
, 1

18M

}
,

where

ω = min
i=1,...,mk
k=1,...,G

{
min{Ak,i •W ?

1 , Āk,i •W ?
2 }

Ak,i •W ?
1 + Āk,i •W ?

2

}
,

and δ = 2 log(16J), then

Pr

 ⋃
i=1,...,mk
k=1,...,G

Ek,i(γ) ∪
L⋃
`=0

F0
` (δ) ∪

U⋃
u=1

F1
u(δ)

 ≤ 7

8
. (35)

Note that this would imply Theorem 1(b). Indeed, let Ŵp =
(ŵn

p )(ŵn
p )H for p = 1, 2, where ŵn

1 , ŵ
n
2 are defined in Algo-

rithm 1. Furthermore, let D be the event that none of the events
Ek,i(γ) (for i = 1, . . . ,mk and k = 1, . . . , G), F0

` (δ) (for
` = 0, 1, . . . , L), and F1

u(δ) (for u = 1, . . . , U ) occur. Clearly,
the solution

(
Ŵ1, Ŵ2

)
is feasible for (R2SDR). Moreover,

under the event D, we have t = min{tn1 , tn2} ≥ 1/
√
δ,

where tn1 , t
n
2 are defined in Algorithm 1. Since Ŵp = t2Ξp

for p = 1, 2 and Pr(D) ≥ 1/8 by (35), we see that with
probability at least 1/8,

θ
(
Ŵ1, Ŵ2

)
= min

i=1,...,mk
k=1,...,G

Ak,i • (t2Ξ1) + Āk,i • (t2Ξ2)

Ck,i • (t2Ξ1) + C̄k,i • (t2Ξ2) + 1

≥γ
δ
· θ(W ?

1 ,W
?
2 )

=c · θ(W ?
1 ,W

?
2 ).

It follows that after N independent trials, the probability of
finding an index n ∈ {1, . . . , N} such that (ŵn

1 , ŵ
n
2 ) is

feasible for (R2BF) and

θ
(
ŵn

1 (ŵn
1 )H , ŵn

2 (ŵn
2 )H

)
≥ c · θ (W ?

1 ,W
?
2 )

is at least 1− (7/8)N , as desired.
To prove (35), we proceed in two steps. First, let us bound

Pr
(⋃L

`=0 F0
` (δ) ∪

⋃U
u=1 F1

u(δ)
)

. This can be achieved with
the following proposition:

Proposition 2 Let Q1,Q2 ∈ HN+ be arbitrary and ξ ∼
CN (0,X?

1 ), η ∼ CN (0,X?
2 ) be independent. If Q1 •X?

1 +
Q2 • X?

2 = 0, then ξHQ1ξ + ηHQ2η = 0 almost surely.
Otherwise, for any δ ≥ 2, we have

Pr
(
ξHQ1ξ + ηHQ2η ≥ δ(Q1 •X?

1 +Q2 •X?
2 )
)

≤ 2 exp

(
−δ

2

)
.

Before we prove Proposition 2, observe that it immediately
implies that for any δ ≥ 2, we have Pr(F0

` (δ)) ≤ 2 exp(−δ/2)
for ` = 0, 1, . . . , L and Pr(F1

u(δ)) ≤ 2 exp(−δ/2) for u =
1, . . . , U . Hence, by setting δ = 2 log(16J) and applying the
union bound, we obtain

Pr

(
L⋃
`=0

F0
` (δ) ∪

U⋃
u=1

F1
u(δ)

)
≤ 2(L+ U + 1)

16J
=

1

8
. (36)

Proof of Proposition 2: If Q1 • X?
1 + Q2 • X?

2 = 0, then
E
[
ξHQ1ξ + ηHQ2η

]
= 0. Since Q1,Q2 ∈ HN+ , we have

ξHQ1ξ+ηHQ2η ≥ 0. It follows that ξHQ1ξ+ηHQ2η = 0
almost surely.

Otherwise, let U1 and U2 be unitary matrices satisfying
(X?

1 )1/2Q1(X?
1 )1/2 = UH

1 Λ1U1 and (X?
2 )1/2Q2(X?

2 )1/2 =
UH

2 Λ2U2, where Λ1 = Diag(λ1, . . . , λr1 , 0, . . . , 0) with
λ1 ≥ · · · ≥ λr1 > 0 and Λ2 = Diag(µ1, . . . , µr2 , 0, . . . , 0)
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with µ1 ≥ · · · ≥ µr2 > 0. Then, we have ξ ∼ (X?
1 )1/2UH

1 x
and η ∼ (X?

2 )1/2UH
2 y, where x,y ∼ CN (0, I) are indepen-

dent. It follows that

Pr
(
ξHQ1ξ + ηHQ2η ≥ δ(Q1 •X?

1 +Q2 •X?
2 )
)

= Pr

[
r1∑
i=1

λi|xi|2 +

r2∑
i=1

µi|yi|2 ≥ δ

(
r1∑
i=1

λi +

r2∑
i=1

µi

)]
.

Since Q1•X?
1 +Q2•X?

2 > 0, we have
∑r1
i=1 λi+

∑r2
i=1 µi >

0. Thus, we may let αi = λi/(
∑r1
j=1 λj +

∑r2
j=1 µj) for

i = 1, . . . , r1 and αr1+i = µi/(
∑r1
j=1 λj +

∑r2
j=1 µj) for

i = 1, . . . , r2, so that
∑r1+r2
i=1 αi = 1. Furthermore, let

g1, . . . , g2(r1+r2) be 2(r1 + r2) independent real Gaussian
random variables with mean 0 and variance 1/2. Since both
|xi|2 and |yi|2 have the same distribution as g2

1 + g2
2 , we have

Pr
(
ξHQ1ξ + ηHQ2η ≥ δ(Q1 •X?

1 +Q2 •X?
2 )
)

= Pr

r1+r2∑
i=1

1∑
j=0

αig
2
2i−j ≥ δ

 .

The above probability can be bounded using the arguments
in [47, Section 2]. In particular, following the remark after the
proof of [47, Proposition 2.2]), we have

Pr

r1+r2∑
i=1

1∑
j=0

αig
2
2i−j ≥ δ

 ≤ 2 exp

(
−δ

2

)
.

This completes the proof. �

Next, we bound Pr
(⋃

i=1,...,mk
k=1,...,G

Ek,i(γ)
)

by establishing the
following proposition:

Proposition 3 Let A1,A2,C1,C2 ∈ HN+ be arbitrary with
rank(A1) = rank(A2) = 1. Furthermore, let ξ ∼
CN (0,X?

1 ), η ∼ CN (0,X?
2 ) be independent. Suppose that

A1 •X?
1 +A2 •X?

2 > 0. Then, the following hold:
1) For any γ ∈ (0, ω/2), where ω =

min{A1•X?
1 , A2•X?

2 }
A1•X?

1 +A2•X?
2

> 0,

Pr

(
ξHA1ξ + ηHA2η

ξHC1ξ + ηHC2η + 1
≤ γ A1 •X?

1 +A2 •X?
2

C1 •X?
1 +C2 •X?

2 + 1

)
≤
(

3γ

ω − 2γ

)2

. (37)

2) For any γ ∈ (0, 1/4),

Pr

(
ξHA1ξ + ηHA2η

ξHC1ξ + ηHC2η + 1
≤ γ A1 •X?

1 +A2 •X?
2

C1 •X?
1 +C2 •X?

2 + 1

)
≤ 10γ

1− 4γ
. (38)

Let us defer the proof of Proposition 3 to later and first see
how it implies a bound on Pr

(⋃
i=1,...,mk
k=1,...,G

Ek,i(γ)
)

. From

Tables I and II, we see that rank(Ak,i) = rank(Āk,i) =
1 for i = 1, . . . ,mk and k = 1, . . . , G. Set ωk,i =
min{Ak,i•W ?

1 , Āk,i•W ?
2 }

Ak,i•W ?
1 +Āk,i•W ?

2
and ω = min i=1,...,mk

k=1,...,G
{ωk,i}. If

ω > 0, then by taking γ = ω
6
√
M

in (37), we obtain

Pr(Ek,i) ≤
(

3

6
√
M − 2

)2

<
3

4M
. (39)

On the other hand, regardless of the value of ω, we can take
γ = 1

18M in (38) to get

Pr(Ek,i) ≤
10

18M − 4
<

3

4M
. (40)

Thus, we see from (39), (40), and the union bound that when
γ = max

{
ω

6
√
M
, 1

18M

}
,

Pr

 ⋃
i=1,...,mk
k=1,...,G

Ek,i

 ≤ ∑
i=1,...,mk
k=1,...,G

Pr (Ek,i) <
3

4
. (41)

Now, by combining (36), (41) and applying once again the
union bound, we obtain (35). Thus, to complete the proof of
Theorem 1(b), it remains to prove Proposition 3.
Proof of Proposition 3: The proof can be seen as a general-
ization of that in [21]. Let

Q = Pr

(
ξHA1ξ + ηHA2η

ξHC1ξ + ηHC2η + 1

≤ γ A1 •X?
1 +A2 •X?

2

C1 •X?
1 +C2 •X?

2 + 1

)
be the probability that we wish to bound. Let U1,U2 be
unitary matrices satisfying (X?

1 )1/2A1(X?
1 )1/2 = UH

1 Λ1U1

and (X?
2 )1/2A2(X?

2 )1/2 = UH
2 Λ2U2, where Λ1 =

Diag(λ1, 0, . . . , 0) and Λ2 = Diag(µ1, 0, . . . , 0) (recall that
rank(A1) = 1 and rank(A2) = 1). Note that λ1 + µ1 > 0
because A1 •X?

1 +A2 •X?
2 > 0 by assumption. Moreover,

we have ξ ∼ (X?
1 )1/2UH

1 x
1 and η ∼ (X?

2 )1/2UH
2 x

2, where
x1,x2 ∼ CN (0, I) are independent. Hence, we obtain

Q = Pr

(
λ1|x1

1|2 + µ1|x2
1|2

λ1 + µ1

≤ γ
(x1)HB1(x1) + (x2)HB2(x2) + 1

B1 • I +B2 • I + 1

)
,

(42)

where B1 = U1(X?
1 )1/2C1(X?

1 )1/2UH
1 � 0 and B2 =

U2(X?
2 )1/2C2(X?

2 )1/2UH
2 � 0. In particular, we may write

B1 = V H
1 Σ1V1 and B2 = V H

2 Σ2V2, where V1, V2 are uni-
tary matrices satisfying Σ1 = Diag(ν1, . . . , νr1 , 0, . . . , 0) with
ν1 ≥ · · · ≥ νr1 > 0 and Σ2 = Diag(ζ1, . . . , ζr2 , 0, . . . , 0)
with ζ1 ≥ · · · ≥ ζr2 > 0. In the sequel, we shall assume that∑r1
j=1 νj +

∑r2
j=1 ζj > 0, though our proof works (and in fact

simplifies considerably) even when
∑r1
j=1 νj +

∑r2
j=1 ζj = 0.

Let α = λ1/(λ1 + µ1), β = µ1/(λ1 + µ1), φ1
i =

νi/(
∑r1
j=1 νj +

∑r2
j=1 ζj) for i = 1, . . . , r1, and φ2

i =
ζi/(

∑r1
j=1 νj +

∑r2
j=1 ζj) for i = 1, . . . , r2. It is then clear

that α + β = 1, ω = min{α, β}, and
∑2
i=1

∑ri
j=1 φ

i
j = 1.

Now, let z1 = V1x
1, z2 = V2x

2 and consider the following
two cases:
Case 1: ω > 0 and γ ∈ (0, ω/2). Let (Vi)jk denote the (j, k)th
element of Vi. We then have the chain of inequalities (43)–
(47), where (43) follows from (42) and the definitions of ω, z1,
and z2; (44) follows from the inequality (a+b)2 ≤ 2(a2+b2),
which is valid for any a, b ∈ R; (45) follows from the fact that
Vi is unitary and hence |(Vi)j1| ≤ 1; (46) follows from the fact
that

∑2
i=1

∑ri
j=1 φ

i
j = 1; (47) follows from the fact that x1

1, x
2
1
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Q ≤Pr

ω(|x1
1|2 + |x2

1|2) ≤ γ

 2∑
i=1

ri∑
j=1

φij

∣∣∣∣∣(Vi)j1xi1 +

N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2

+ 1

 (43)

≤Pr

ω(|x1
1|2 + |x2

1|2) ≤ 2γ

 2∑
i=1

ri∑
j=1

φij

∣∣(Vi)j1xi1∣∣2 +

∣∣∣∣∣
N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2
+

1

2

 (44)

≤Pr

ω(|x1
1|2 + |x2

1|2) ≤ 2γ

 2∑
i=1

ri∑
j=1

φij

|xi1|2 +

∣∣∣∣∣
N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2
+

1

2

 (45)

≤Pr

|x1
1|2 + |x2

1|2 ≤
2γ

ω − 2γ

 2∑
i=1

ri∑
j=1

φij

∣∣∣∣∣
N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2

+
1

2

 (46)

≤ 2γ2

(ω − 2γ)2
E


 2∑
i=1

ri∑
j=1

φij

∣∣∣∣∣
N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2

+
1

2

2
 . (47)

are standard complex Gaussian random variables and hence for
all t > 0, Pr(|x1

1|2 + |x2
1|2 ≤ t) = 1 − (t + 1)e−t ≤ t2/2.

Note that the expectation in (47) is taken with respect to the
random variables xik for i = 1, 2 and k = 2, . . . , N . Now,

define W i
j =

∣∣∣∑N
k=2(Vi)jkx

i
k

∣∣∣2 for i = 1, 2 and j = 2, . . . , ri.
We compute

E


 2∑
i=1

ri∑
j=1

φijW
i
j +

1

2

2


=

2∑
i=1

E


 ri∑
j=1

φijW
i
j

2
+

1

4
+

2∑
i=1

E

 ri∑
j=1

φijW
i
j


+ 2E

 r1∑
j=1

φ1
jW

1
j

 r2∑
j=1

φ2
jW

2
j

 . (48)

Let us consider each term on the right-hand side of the above
expression separately. First, we have (49) at the top of the
next page. Using the fact that

∑2
i=1

∑ri
j=1 φ

i
j = 1 and Vi is

unitary, we deduce that

2∑
i=1

E


 ri∑
j=1

φijW
i
j

2
 ≤ 2∑

i=1

ri∑
j,k=1

φijφ
i
k ≤ 2. (50)

Next, we compute

2∑
i=1

E

 ri∑
j=1

φijW
i
j

 =

2∑
i=1

ri∑
j=1

φij

N∑
k,l=2

(Vi)jk(Vi)
∗
jlE[xik(xil)

∗]

=

2∑
i=1

ri∑
j=1

φij

N∑
k=2

|(Vi)jk|2 ≤ 1. (51)

Finally, since W 1
j and W 2

k are independent for j = 1, . . . , r1

and k = 1, . . . , r2, it follows from (51) that

E

 r1∑
j=1

φ1
jW

1
j

 r2∑
j=1

φ2
jW

2
j

 ≤ 1

4
. (52)

Upon substituting (50)–(52) into (48), we obtain

E


 2∑
i=1

ri∑
j=1

φijW
i
j +

1

2

2
 ≤ 15

4
.

This, together with (47), yields

Q ≤ 15γ2

2(ω − 2γ)2
<

(
3γ

ω − 2γ

)2

.

Case 2: γ ∈ (0, 1/4). Without loss of generality, suppose that
0 ≤ β ≤ α ≤ 1. Then, we have α ≥ 1/2. It follows from (42)
that

Q ≤ Pr

|x1
1|2 ≤ 2γ

 2∑
i=1

ri∑
j=1

φij |zij |2 + 1

 .
Since x1

1 is a standard complex Gaussian random variable,
we have Pr(|x1

1|2 ≤ t) = 1 − e−t ≤ t for all t > 0. Thus,
using similar arguments as in the derivation of the chain of
inequalities (43)–(47), we obtain

Q ≤ 4γ

1− 4γ
E

 r2∑
j=1

φ2
j

∣∣(V2)j1x
2
1

∣∣2
+

2∑
i=1

ri∑
j=1

φij

∣∣∣∣∣
N∑
k=2

(Vi)jkx
i
k

∣∣∣∣∣
2

+
1

2

 ,
where the expectation is taken with respect to the random
variables x2

1 and xik for i = 1, 2 and k = 2, . . . , N . Now,
a simple calculation gives

∑r2
j=1 φ

2
j |(V2)j1|2 E[|x2

1|2] ≤ 1,

which, together with (51), implies that Q ≤ 10γ
1−4γ . This

completes the proof of Proposition 3. �
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E


 ri∑
j=1

φijW
i
j

2
 = E

 ri∑
j,k=1

φijφ
i
kW

i
jW

i
k

 (49)

=

ri∑
j,k=1

φijφ
i
k

N∑
l,m=2

N∑
p,q=2

(
(Vi)jl(Vi)

∗
jm(Vi)kp(Vi)

∗
kq × E[xil(x

i
m)∗xip(x

i
q)
∗]
)

=

ri∑
j,k=1

φijφ
i
k

 N∑
l=2

|(Vi)jl|2|(Vi)kl|2
N∑

l,m=2

|(Vi)jl|2|(Vi)km|2
 .
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