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ABSTRACT

Recently, simultaneous wireless information and power transfer

(SWIPT) has received considerable attention. In this paper, we con-

sider a multicast SWIPT system, where a multi-antenna transmit-

ter broadcasts common information to a group of single-antenna

information receivers (IRs) and at the same time provides certain

amount of energy transfer to a group of single-antenna energy re-

ceivers (ERs). Assuming imperfect channel state information (CSI)

at the transmitter, two transmit schemes are proposed to maximize

the IRs’ outage-constrained multicast rate subject to a minimum pro-

vision of average energy transfer to ERs. In the first transmit scheme,

we consider transmit beamforming and develop a safe approxima-

tion approach to obtain a conservative beamforming solution for

maximizing the outage-constrained multicast rate. To further im-

prove the performance of transmit beamforming, in the second trans-

mit scheme, we consider a stochastic beamforming (SBF) approach,

which allows the beamformer to randomly change over time accord-

ing to some prescribed distribution. By doing so, the SBF scheme is

able to fully exploit the temporal degree of freedom to achieve more

balanced outage-constrained achievable rates among IRs. Simula-

tion results demonstrated that the SBF scheme is generally better

than the transmit beamforming scheme.

Index Terms— Energy harvesting, chance-constrained optimiza-

tion, semidefinite relaxation, stochastic beamforming.

1. INTRODUCTION

In wireless communication, radio-frequency (RF) wave is commonly

used for conveying information from the transmitter to the informa-

tion receiver. Recently, there is flourishing interest in using RF wave

to transfer power, when some of the receivers in the system aim for

receiving energy rather than information. The dual usage of RF wave

naturally motivate a unified study on simultaneous wireless infor-

mation and power transfer (SWIPT). Recent studies on SWIPT are

mainly inspired by Varshney’s work [1], where a non-trivial trade-

off between information transfer and energy transfer is shown for a

single-input single-output (SISO) AWGN channel. Extensions to

more complex SWIPT scenarios have been considered in several

endeavors; e.g., point-to-point parallel fading channels [2], multi-

input multi-output (MIMO) broadcast channels with one information

receiver (IR) and one energy receiver (ER) [3], three-node multi-

input single-output (MISO) downlink channels with imperfect chan-

nel state information at the transmitter (CSIT) [4], MISO multicast-

ing without CSIT [5], and MIMO two-hop relay channels [6].

This work is supported by a Direct Grant of The Chinese University
of Hong Kong (Project ID: 2050506) and the Hong Kong Research Grants
Council (RGC) General Research Fund (GRF) (Project ID: CUHK 416012).

In this paper, we consider transmit optimization for a multicast

SWIPT system, where a multi-antenna transmitter broadcasts com-

mon information to a group of IRs and at the same time provides

wireless energy transfer to a group of ERs. All the IRs and ERs are

assumed to have a single antenna, i.e., MISO downlink. Assuming

imperfect CSI at the transmitter, we propose two transmit schemes

to maximize the IRs’ outage-constrained multicast rate subject to

a minimum provision of the average energy transfer to the ERs.

Specifically, the first transmit scheme focuses on transmit beam-

forming, and the resulting beamformer design problem is formulated

as a chance-constrained optimization problem. This kind of problem

is in general hard to solve, and as a compromise we resort to a safe

approximation approach. Specifically, the key to the safe approxima-

tion is to employ a recently-developed relaxation-restriction (RAR)

approach [7], which consists of semidefinite relaxation (SDR) [8]

and a Bernstein-type inequality-based conservative approximation

of the probabilistic constraints [9]. In the second transmit scheme,

we consider a stochastic beamforming (SBF) approach, which has

been proposed in our recent work [10] for approaching the multi-

cast capacity of an MISO downlink channel (without ERs). The idea

of SBF is to allow the beamformer to randomly change over time

according to some prescribed distribution. By doing so, we can in-

tentionally and judiciously create fluctuated channels for the IRs,

such that all the IRs’ average (ergodic) rates are well balanced in a

long-term average sense. Our numerical results demonstrated that

the SBF scheme is generally better than the transmit beamforming

scheme.

There are some related works that are worthwhile to mention.

In [4], Xiang and Tao considered a robust beamformer design for a

SWIPT system with one IR and one ER. Here we consider a more

general setting — multiple IRs and ERs. Moreover, the CSI error

model here is based on the Gaussian random model, which is differ-

ent from the norm-bounded deterministic model in [4]. Also, [11]

considered MISO unicast beamforming in a SWIPT system. How-

ever, each user therein aims at simultaneous information delivery

and energy harvesting, and their design criterion is to split the power

for both purposes. Another related work is [5], which considered an

MISO multicast SWIPT system with co-located IR and ER; i.e., each

receiver can work in either IR mode or ER mode. The focus of [5]

is to study the mode switching scheme using random beamforming

when no CSIT is available, while our work considers separate IRs

and ERs, with an emphasis on the novel SBF transmit signal design

when erroneous CSIT is known.

2. SYSTEM MODEL FOR TRANSMIT BEAMFORMING

Consider a simultaneous wireless information and power transfer



(SWIPT) system, where a multi-antenna transmitter attempts to send

a common message to a group of information receivers (IRs), de-

noted as GI , and at the same time provides wireless energy transfer

to a group of energy receivers (ERs), denoted as GE . We assume that

all the IRs and ERs are single-antenna and GI ∩ GE = ∅; i.e., each

receiver is either IR or ER, but not both. Suppose that all channels

are frequency-flat and block fading, the received signal yi(t) at the

ith receiver can be expressed as

yi(t) = h
H
i x(t) + ni(t), ∀ i ∈ GI ∪ GE, t = 1, . . . , T, (1)

where hi ∈ C
N is the channel from the transmitter to the ith re-

ceiver, T is the frame length during which the channel hi is invari-

ant, ni(t) is a complex Gaussian noise with mean zero and variance

σ2
i , and x(t) ∈ C

N is the transmit signal. For the time being, we

consider the transmit beamforming scheme, for which the transmit

signal x(t) takes the form

x(t) =
√
Pws(t), t = 1, . . . , T, (2)

where P > 0 is the average transmit power of x(t), w ∈ C
N is

the transmit beamforming vector satisfying ‖w‖2 ≤ 1, and s(t)
is a stream of data symbols with unit power, i.e., E[|s(t)|2] = 1.

We should mention that the beamfomer w in (2) is assumed to be

fixed during the whole frame length T , just like most of the existing

transmit beamforming studies, e.g., [12–14].

According to (1) and (2), an achievable rate at IR i and the har-

vested energy (normalized by baseband symbol duration) at ER j
may respectively be calculated as [1–3]

Ri(w,hi) = log(1 + P |hH
i w|2/σ2

i ), ∀ i ∈ GI ,

Qj(w,hj) = µjP |hH
j w|2, ∀ j ∈ GE,

where log(·) is the natural logarithm (and thus Ri is in units of

nats/s/Hz); 0 < µj < 1 denotes the energy harvesting efficiency

at the ER j [15, 16]. Clearly, with knowledge of hi, we can appro-

priately design the beamformer w to achieve good multicast rates for

the IRs and energy transfer for the ERs. However, in practice, due

to imperfect channel estimation and/or outdated CSI feedback, the

transmitter usually has only a rough knowledge of hi. To account for

imperfect CSI, we consider the following random CSI error model:

hi = h̄i + ei, ∀ i ∈ GI ∪ GE , (3)

where h̄i is an estimate of the actual CSI hi at the transmitter, and ei

is the associated random estimation error, whose distribution follows

ei ∼ CN (0,Ωi). (4)

Here, Ωi ∈ H
N
+ is given for all i ∈ GI ∪ GE ; HN

+ denotes the set of

all N ×N Hermitian positive semidefinite matrices.

Based on the above uncertainty model, our problem of interest

is formulated as follows:

max
w,R

R (5a)

s.t. Probei

{

Ri(w, h̄i + ei) ≥ R
}

≥ 1− ρi, ∀ i ∈ GI , (5b)

E
[

Qj(w, h̄j + ej)
]

≥ ηj , ∀ j ∈ GE , (5c)

‖w‖2 ≤ 1, (5d)

where 0 < ρi < 1, ∀ i ∈ GI and ηj > 0, ∀ j ∈ GE are given

constants that specify the rate outage probability (i.e., the chance of

transmission rate falling below a prescribed value) at IR i and the

minimum average harvested energy at ER j, respectively. In words,

the goal of problem (5) is to optimize the beamformer w such that

the outage-constrained multicast rate at the IRs is maximized while

the average harvested energy at each ER is kept above a certain level.

Problem (5) is a chance-constrained optimization problem, which

in general could be difficult to deal with. Actually, even for the per-

fect CSI case, it has been shown in [12] that problem (5) (without

(5c)) is NP-hard in general. As such, in the ensuing section, we

will focus on developing an approximate safe1 solution for (5). The

key to our approach is to employ a recently-developed relaxation-

restriction (RAR) methodology [7], as we detail below.

3. RELAXATION-RESTRICTION APPROACH TO (5)

The relaxation-restriction (RAR) approach consists of two key ingre-

dients — semidefinite relaxation (SDR) and a Bernstein-type inequality-

based conservative approximation of the probabilistic constraints (5b).

We now describe the RAR approach in two steps.

Step 1: Relaxation. For ease of exposition, let us define W =
wwH and

Qi = PΩ
1

2

i WΩ
1

2

i /σ
2
i , ri = PΩ

1

2

i Wh̄i/σ
2
i , si = P h̄

H
i Wh̄i/σ

2
i

for all i ∈ GI . Note that

W = ww
H ⇐⇒ W � 0 and rank(W) ≤ 1.

After some algebraic manipulations, it can be verified that prob-

lem (5) amounts to the following problem:

max
W,γ

γ (6a)

s.t. Probēi
{fi(W, ēi) ≥ γ} ≥ 1− ρi, ∀ i ∈ GI , (6b)

Tr((h̄jh̄
H
j +Ωj)W) ≥ ηj

Pµj

, ∀ j ∈ GE, (6c)

Tr(W) ≤ 1, W � 0, (6d)

rank(W) ≤ 1, (6e)

where ēi ∼ CN (0, IN ), γ = 2R − 1 and fi(W, ēi) , ēH
i Qiēi +

2Re(ēH
i ri)+ si. As a standard procedure of SDR, we drop the hard

rank constraint (6e) to obtain a relaxed problem of (6), i.e.,

max
W,γ

γ (7a)

s.t. Probēi
{fi(W, ēi) ≥ γ} ≥ 1− ρi, ∀i ∈ GI , (7b)

(6c) − (6d) satisfied. (7c)

Step 2: Restriction. Note that the inequality fi(W, ēi) ≥ γ is

quadratic with respect to (w.r.t.) the Gaussian random vector ēi. As

such, we can use a Bernstein-type inequality [7, 9] to construct an

efficiently computable restricted or safe approximation of the proba-

bilistic constraint (7b). The crux of the construction is the following

lemma, which has been previously established in [7] to tackle a dif-

ferent chance-constrained optimization problem.

Lemma 1 ([7]). For any (Q, r, c) ∈ H
n
+×C

n×R, e ∼ CN (0, In)
and ρ ∈ (0, 1], the following implication holds true:

Probe

{

e
H
Qe+ 2Re{eH

r}+ c ≥ 0
}

≥ 1− ρ

⇐=







Tr(Q)−
√

−2 log(ρ) · x+ c ≥ 0,
∥

∥

∥

∥

[

vec(Q)√
2r

]∥

∥

∥

∥

2

≤ x,

(8)

1Here “safe” means that the obtained solution must fulfill the probabilistic
constraints (5b).



where x is a slack variable. Moreover, the system (8) is convex in

(Q, r, c, x).

By applying Lemma 1 to (7b), we get the following safe approx-

imation of (7):

max
W,γ,{xi}i∈GI

γ (9a)

s.t. Tr(Qi)−
√

−2 log(ρi) · xi + si − γ ≥ 0, ∀ i ∈ GI , (9b)
∥

∥

∥

∥

[

vec(Qi)√
2ri

]∥

∥

∥

∥

2

≤ xi, ∀ i ∈ GI , (9c)

Tr((h̄j h̄
H
j +Ωj)W) ≥ ηj

Pµj

, ∀ j ∈ GE , (9d)

Tr(W) ≤ 1, W � 0. (9e)

Problem (9) is a convex conic optimization problem, which can be

solved using some general-purpose conic optimization solvers, e.g.,

CVX [17]. Let W⋆ be an optimal solution of (9). If rank(W⋆) =
1, then one can perform eigen-decomposition W⋆ = w⋆w⋆H to

obtain a beamforming solution w⋆. It can be checked that w⋆ fulfills

(5b)-(5d) (cf. Lemma 1), and thus is a safe approximate solution for

problem (5). If rank(W⋆) > 1, then a Gaussian randomization

procedure can be employed to yield a safe approximate solution for

problem (5); see Algorithm 1.

Remark 1. Generally speaking, the SDR-based transmit beamform-

ing scheme can work well when there are not too many IRs. How-

ever, as revealed in [10,12], the performance of transmit beamform-

ing could deteriorate as the number of IRs increases. According to

our numerical experience, for a large number of IRs, it is possible

that problem (9) is feasible, but Algorithm 1 fails to output a fea-

sible solution for problem (5) (cf. line 12 of Algorithm 1). Part of

the reason is that when W⋆ has a higher rank, it may be difficult

to use a single beamformer w to well approximate W⋆. In light of

this, we will propose in the next section another transmit scheme —

stochastic beamforming [10], which is demonstrated to have better

performance than the transmit beamforming scheme, especially for

a large number of the IRs.

4. STOCHASTIC BEAMFORMING FOR THE MULTICAST

SWIPT SYSTEM

Stochastic beamforming (SBF) was proposed in our recent work [10]

for approaching the multicast capacity of a multiuser MISO down-

link system (without ERs). The main idea of SBF is to allow the

beamformer to randomly change over time according to a certain

distribution as determined by W⋆. By doing so, we can exploit the

additional temporal degree of freedom (d.o.f.) to better approximate

W⋆, especially for higher rank W⋆. Readers are referred to [10]

for a more detailed description of SBF; here we provide only some

of its key aspects, with an emphasis on its outage-rate performance

analysis for the multicast SWIPT system.

For SBF, the transmit signal x(t) and the received signal yi(t)
at the ith receiver take the form

x(t) =
√
Pw(t)s(t), t = 1, . . . , T,

yi(t) =
√
Ph

H
i w(t)s(t) + ni(t), t = 1, . . . , T.

In contrast to (2), SBF replaces the fixed beamformer w with a time-

varying random beamformer w(t), thereby resulting in a virtual fast

fading SISO channel hH
i w(t) (though the physical channel hi is

still invariant over the whole frame). As demonstrated in [10], by

Algorithm 1 Gaussian Randomization Procedure

1: Input: an optimal solution W⋆ of (9), number of randomizations

L ≥ 1;

2: for ℓ = 1 to L do

3: generate an independent random vector ξℓ ∼ CN (0,W⋆);

4: let ŵℓ = ξℓ/‖ξℓ‖ and Qi = PΩ
1

2

i ŵℓŵ
H
ℓ Ω

1

2

i /σ
2
i , ri =

PΩ
1

2

i ŵℓŵ
H
ℓ h̄i/σ

2
i , si = P h̄H

i ŵℓŵ
H
ℓ h̄i/σ

2
i , ∀ i ∈ GI ;

5: if Tr(h̄j h̄
H
j ŵℓŵ

H
ℓ + Ωjŵℓŵ

H
ℓ ) <

ηj
Pµj

for some j ∈ GE

then

6: set pℓ = 0;

7: else

8: let pℓ = mini∈GI
{Tr(Qi) −

√

−2 log(ρi) · xi + si},

where xi =

∥

∥

∥

∥

[

vec(Qi)√
2ri

]∥

∥

∥

∥

2

, ∀ i ∈ GI ;

9: end if

10: end for

11: if maxℓ=1,...,L pℓ = 0 then

12: Output: Fail.

13: else

14: set ℓ⋆ := argmaxℓ=1,...,L pℓ and output: w⋆ = ŵℓ⋆ .

15: end if

judiciously choosing the distribution for w(t), every IR is able to

enjoy a good average (ergodic) rate (assuming ideal channel coding

over sufficiently large T ). By contrast, when a fixed beamformer is

used, each IR undergoes distinct slow fading channel, and thus the

overall multicast rate performance will be dominated by the worst

user’s achievable rate.

From the above discussion, it is clear that choosing the distribu-

tion for w(t) is crucial for SBF. However, finding an optimal distri-

bution for w(t) seems to be a challenging task. For simplicity, we

focus on the complex Gaussian distribution2; i.e.,

w(t) ∼ CN (0,W⋆)

for t = 1, . . . , T , where W⋆ is an optimal solution of problem (9).

Denote by w a random variable for w(t). Then, the achieved ergodic

rate at IR i and the harvested energy at ER j by SBF are respectively

given by

RSBF

i (hi) = Ew[log(1 + P |hH
i w|2/σ2

i )], ∀ i ∈ GI ,

QSBF

j (hj) = Ew[µjP |hH
j w|2] = µjPh

H
j W

⋆
hj , ∀ j ∈ GE .

The description of SBF is now complete. Next, we analyze its rate-

energy performance under the random CSI error model (3)-(4).

First of all, let us verify that SBF satisfies the total power con-

straint (5d) and the average energy harvesting constraints (5c). The

total transmit power of SBF is

Ew[‖w‖2] = Tr(Ew[ww
H ]) = Tr(W⋆) ≤ 1,

where the last inequality follows from (9e), and the average har-

vested energy is

Eej
[QSBF

j (h̄j+ej)] = µjPTr((h̄jh̄
H
j +Ωj)W

⋆) ≥ ηj , ∀ j ∈ GE ,

where the last inequality is due to (9d). Next, we identify the outage-

constrained achievable rate performance of SBF. With a slight abuse

2There are other more sophisticated distributions that one can choose,
such as elliptic and Bingham [10].



of notations, we denote by

RSDR

i (W⋆,hi) , log(1 + Ph
H
i W

⋆
hi/σ

2
i ),∀ i ∈ GI

the ith IR’s “rate” associated with the SDR solution W⋆, and by

RSDR(W⋆) ,

sup
v

{v | Probei
{RSDR

i (W⋆, h̄i + ei) ≥ v} ≥ 1− ρi, ∀ i ∈ GI}
(10)

the “outage-constrained multicast rate” associated with W⋆. We

are now ready to state our main result on the Gaussian SBF outage-

constrained achievable rate.

Proposition 1. Let RSBF , supv{v | Probei
{RSBF

i (h̄i + ei) ≥
v} ≥ 1− ρi, ∀ i ∈ GI}. Then, we have

RSDR(W⋆)−RSBF ≤ 0.5772 for all P ≥ 0.

The proof of Proposition 1 is given in the Appendix. Propo-

sition 1 implies that the Gaussian SBF is at most 0.8314 bits/s/Hz

(0.5772/ log(2) = 0.8314) away from the outage-constrained mul-

ticast rate specified by the SDR solution W⋆. In the next section,

we will verify this result by numerical simulations.

5. SIMULATION RESULTS AND CONCLUSION

In this section, numerical results are provided to compare the rate-

energy performances of the transmit beamforming scheme (cf. Sec. 3)

and the Gaussian SBF scheme (cf. Sec. 4). The simulation set-

tings are as follows: The number of transmit antennas is N = 8.

There are 16 IRs and 16 ERs. Each element of the channel vec-

tor hi,∀ i ∈ GI (resp. hj ,∀ j ∈ GE) is generated by complex

Gaussian distribution with mean zero and variance −50dBm (resp.

−10dBm). Each entry of the channel error ei,∀ i ∈ GI (resp.

ej ,∀ j ∈ GE ) follows an i.i.d. complex Gaussian distribution with

mean zero and variance −77dBm (resp. −37dBm), and the receive

noise at the IRs is white Gaussian with variance −70dBm. For sim-

plicity, we assume that all the IRs have the same outage probability

ρi = 0.1, ∀ i ∈ GI , and that all the ERs have the same energy har-

vesting efficiency µj = 50%, ∀ j ∈ GE .

Fig. 1 shows the IRs’ outage-constrained multicast rate against

the transmit power P by fixing the energy harvesting threshold ηj =
0.05mW for all j ∈ GE . In the legend, “SDR bound” and “Gaussian

SBF” correspond to the outage-constrained multicast ratesRSDR(W⋆)
and RSBF, respectively, which were evaluated via Monte-Carlo sim-

ulations. The transmit beamforming result is obtained in a similar

manner. As seen, Gaussian SBF outperforms transmit beamform-

ing over the whole range of powers. In particular, when P is small,

there is a notable rate gap between Gaussian SBF and transmit beam-

forming. However, as P increases, transmit beamforming is able to

approach Gaussian SBF. In addition, the performance of Gaussian

SBF is quite close to that of the SDR bound (about 0.7 bits/s/Hz rate

gap) over the whole power range, which further corroborates the re-

sult in Proposition 1. Fig. 2 plots the rate-energy region of the three

methods for P = 39dBm. Again, Gaussian SBF outperforms trans-

mit beamforming over the whole rate-energy region. Moreover, with

the increase in the energy threshold, transmit beamforming drops

quickly to zero. One reason is that when compared to (9), (5) has a

higher probability to be infeasible; see Remark 1.

In this paper we have considered an MISO downlink multicast

SWIPT system with imperfect CSI at the transmitter. Two transmit

schemes, namely transmit beamforming and stochastic beamforming
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Fig. 1. IRs’ outage-constrained multicast rate versus the transmit

power P .
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Fig. 2. Rate-energy region for P = 39dBm.

(SBF), were proposed to maximize the outage-constrained multicast

rate for an SWIPT system. In particular, the transmit beamforming

scheme employs a Bernstein-type inequality to obtain a safe beam-

forming solution, while SBF uses a randomize-in-time transmit strat-

egy to further improve the performance of transmit beamforming.

Simulation results demonstrated that SBF yields better rate-energy

tradeoff than transmit beamforming.

6. APPENDIX

Given W⋆, we partition the ith IR’s CSI errors ei into the following

two disjoint sets:

B0
i (W

⋆) = {ei | RSDR

i (W⋆, h̄i + ei) ≥ RSDR(W⋆)},
B1

i (W
⋆) = {ei | RSDR

i (W⋆, h̄i + ei) < RSDR(W⋆)},

for all i ∈ GI . In words, B1
i (W

⋆)[B0
i (W

⋆)] characterizes the set of

errors that [does not] induce outage. According to the definition of

RSDR(W⋆) [cf. Eq. (10)], we have

Probei
{ei ∈ B0

i (W
⋆)} ≥ 1− ρi, ∀ i ∈ GI . (11)

To complete the proof, we need the following key lemma:

Lemma 2. For any h̄i and ei ∈ C
N , it holds true that

RSDR

i (W⋆, h̄i + ei)−RSBF

i (h̄i + ei) ≤ 0.5772 for all P ≥ 0.

The proof of Lemma 2 is almost identical to that of Theorem 1

in [10], and thus we omit it for brevity. It follows from Lemma 2 and

the definition of B0
i (W

⋆) that for all P ≥ 0

RSBF

i (h̄i + ei) ≥ RSDR(W⋆)− 0.5772

holds for all ei ∈ B0
i (W

⋆) and all i ∈ GI , which together with (11)

implies that

Probei
{RSBF

i (h̄i+ei) ≥ RSDR(W⋆)−0.5772} ≥ 1−ρi, ∀ i ∈ GI .

Therefore, RSBF ≥ RSDR(W⋆)− 0.5772 holds.
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