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ABSTRACT

In this work, we consider the robust beamforming design for sec-
ondary downlink multicasting channels, where primary users are
present with norm-bounded channel errors. In particular, the max-
min-fair formulation is considered and the resulting design problem
is a quadratically constrained quadratic program (QCQP) with a set
of semi-infinite constraints, which is NP-hard in general. As a rem-
edy, we apply the semidefnite relaxation (SDR) technique and S-
lemma to approximate the problem into a tractable form. The key
contribution of this paper is to study the approximation quality. Our
analytical results show that, the SDR solution achieves an objective
value that is at least Ω( 1

MN log J
) times the optimal objective value,

where M is the number of secondary users, J is the number of pri-
mary users, and N is the number of antennas at the secondary base
station. This is a fundamentally new result for SDR applied to ro-
bust QCQPs. Practically, it provides a performance guarantee for
the robust beamforming design. All these results are verified by our
numerical simulations.

Index Terms— MISO, multicast, semidefinite relaxation (SDR),
S-lemma, approximation bounds, robust, beamforming.

1. INTRODUCTION

The design of multi-user multi-antenna communication systems has
attracted much attention in recent years. Therein, sophisticated beam-
forming strategies, together with spectrum sharing techniques can
help accommodate more users in the same system while guarantee-
ing users’ quality-of-service (QoS). In this work, we study the ro-
bust transmit beamforming design [1–4] for physical-layer multicas-
ting channels with primary users. Due to the nature of the existing
communication protocols, the channel state information (CSI) of the
primary users (PUs) is usually difficult to be fully perceived at the
secondary base station (SBS). Hence, our beamformer design should
be robust against the primary channel errors.

In this work, we consider the worst-case robust design; i.e., the
channel error lies in a norm bounded ball, under a max-min-fair de-
sign criterion. In particular, we aim at maximizing the worst sec-
ondary users’ (SUs’) signal-to-noise ratio (SNR), subject to the total
power constraint at the SBS, as well as the interference temperature
(IT) constraints (subject to channel uncertainty) associated with the
PUs. The resulting problem is a quadratically constrained quadratic
program (QCQP) with semi-infinite constraints, which is generally
an NP-hard problem [1,2]. Nevertheless, the QCQP can be tackled in
a unified manner by the semidefinite relaxation (SDR) technique [5]
(see [6] for an overview of SDR), while the semi-infinite constraints
can be reformulated as linear matrix inequalities (LMIs). The out-
come of the above framework is a rank-one SDR solution, which is
generally sub-optimal. Empirical results from prior works [1, 6, 7]

have suggested that SDR approximation has high approximation ac-
curacy. Thus, a natural question is whether one can provide a prov-
able performance guarantee for the beamforming strategy by deriv-
ing SDR approximation bounds for robust QCQPs.

There are some prior works that give provable bounds on the ap-
proximation accuracy of SDR solutions. The first is due to Chang et
al. [8], who considered the transmit beamforming scheme for multi-
group multicast and showed that the approximation accuracy of the
SDR solution is on the order of 1/M , where M is the number of
users. The second is due to the authors in [9], which further stated
that the approximation quality with the number of power constraints
J is on the order of 1/ log J . However, none of these results can be
applied to robust cases. The difficulty lies in the presence of semi-
infinite constraints, which prevents a straightforward application of
the union bound in evaluating the constraint-violation probabilities.
In this work, we propose to make use of the ε-net technique [10–12]
circumvent this difficulty. Our results show that for the robust QCQP
we considered, the SDR solution achieves an objective value that is
at least Ω( 1

MN log J
) times the optimal objective value, where N is

the number of antennas at the secondary base station. Compared
with the previous bounds [8,9], the N factor here is due to the semi-
infinite constraints. The intuition here is that as the dimension of the
the uncertainty set increases, it is less likely that a rank-one solution
can account for all channel uncertainty. To our best knowledge, this
is the first provable result of SDR approximation bounds for robust
QCQPs. Numerical results are provided to validate our analysis and
algorithms. The organization of this paper is as follows. The system
model and problem formulation are provided in Section 2. In Sec-
tion 3, based on the Gaussian randomization algorithm, we establish
the approximation bounds under the robust IT constraints. Numeri-
cal results are provided in Section 4 and the conclusions are given in
Section 5.

Our notation is standard: Cn stands for the sets of complex n-
dimensional vectors, respectively; X � 0 means that X is a com-
plex Hermitian matrix that is positive semidefinite; ‖ · ‖ is the vector
Euclidean norm; | · | is the cardinality operator; Re{·} stands for
the real part; (·)H denotes the Hermitian transpose; Tr(X) stands
for the trace of X; CN (0,W ) denotes the circularly symmetric
complex Gaussian distribution, with mean vector 0 and covariance
matrixW .

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a physical-layer multicasting cognitive radio system,
where the SBS, equipped with N antennas, aims to transmit a com-
mon signal to M single-antenna SUs while restricting their interfer-
ence to PUs. In particular, we assume that the SUs’ channels are
perfectly known while the PUs’ channels are partially known at the



SBS. The designed strategy should be robust against the erroneous
primary channels.

2.1. Problem Formulation

Suppose that all the channels are quasi-static. We then consider the
transmit design for each code block and thus we shall omit the time
index from the notations henceforth. Our design criterion is to maxi-
mize the worst SU’s SNR while suppressing IT to PUs, subject to the
total power constraint at the SBS. For i = 1, . . . ,M , let hi ∈ CN
denote the perfectly estimated channel between the SBS and SU i.
To tackle the effect of imperfect CSI, we model the actual channel
between the SBS and PU j as

gj = aj + fj , j = 1, . . . , J, (1)

where aj ∈ CN is the estimated channel vector and fj ∈ CN is the
channel error vector. We only assume that fj is bounded in norm;
i.e., ‖fj‖ ≤ δj for some given parameter δj ≥ 0. Such an assump-
tion is rather standard for robust designs and has been adopted in
many previous works; see, e.g., [13–20] and the references therein.

In this paper, we consider the transmit beamforming scheme and
model the received signal of secondary user i is as

yi = hHi ws+ ni, ∀ i = 1, 2, ...,M, (2)

where P > 0 is the average transmit power of x, w ∈ CN is the
transmit beamforming vector satisfying ‖w‖2 ≤ P , s is a stream
of data symbols with unit power (i.e., E[|s|2] = 1), ni is a com-
plex Gaussian noise with mean zero and variance σ2

i , and x ∈ CN
is the transmit signal. We should mention that the beamfomer w
in (2) is assumed to be fixed during the whole frame length, just
like most of the existing transmit beamforming studies; see, e.g.,
[1,13,21]. Based on the model (2), the SNR at SU i is given by γi =
|hHi w|2/σ2

i . At the meanwhile, the maximum IT at PU j may re-
spectively be calculated as max‖fj‖≤δj (aj+fj)

HwwH(aj+fj).
Then, our design problem is formulated as

max
W

min
i=1,...,M

hHi Whi

s.t. max
‖fj‖≤δj

(aj + fj)
HW (aj + fj) ≤ ηj , j = 1, . . . , J,

(3a)

Tr (W ) ≤ P, W � 0, (3b)
rank(W ) ≤ 1, (3c)

where ηj is the prescribed IT tolerance level for PU j.

2.2. The SDR and S-lemma Techniques

Problem (3) is NP-hard, as it encapsulates the NP-hard problem of
MMF transmit beamforming for multigroup multicasting [2]. In
fact, (3) describes a class of QCQP problems, for which some of
the power constraints (e.g., the IT constraints) are subject to errors.
Solving this problem has been well studied in the literature [15, 21].
Usually, the first step is to drop the rank constraint (3c) by using
the SDR. Then, at the second step, we observe that for a given j,
constraint (3a) can be expressed as

∀‖fj‖2 ≤ δ2j ,
(
fHj Wfj + 2Re

{
cHj fj

}
+ ζj

)
≤ ηj , (4a)

where cj = Waj , ζj = aHj Waj . Then, a natural idea is to apply
the S-lemma and convert the relaxed problem into a system of linear

matrix inequalities (LMIs). As such, we can reformulate (3) as

W ? = arg max
W ,γ,κj

γ (5)

s.t. hHi Whi ≥ γ, i = 1, . . . ,M,[
κjIN −W −cj
−cHj ηj − ζj − δ2jκj

]
� 0, j = 1, . . . , J,

κj ≥ 0, j = 1, . . . , J,

(3a)− (3b) satisfied.

Note that Problem (5) is convex, and actually an SDP, which is
polynomial-time solvable [22]. However, since (5) is a relaxation
of (3), the optimal solution W ? could violate the rank constraint
in (3c), especially when M is large. Therefore, we need a procedure
that can convert an optimal solution to Problem (5) into a feasible
solution to Problem (3). One simple yet powerful strategy for de-
signing such procedure is to employ Gaussian randomization; see,
e.g., [6]. Algorithm 1 shows our proposed Gaussian randomization
procedure. It takes as input of the optimal solution to Problem (5)
and outputs a feasible solution, as can be easily verified from Steps 2
and 6. It is worth mentioning that in Step 4, by using the triangular
inequality, we can obtain ιjr with a closed-form expression:

ι`j = max
‖fj‖≤δj

∣∣∣(aj + fj)
H ξ̂`

∣∣∣2 =
(∣∣∣aHj ξ̂`∣∣∣+ δj

∥∥∥ξ̂`∥∥∥)2 ,
where the maximum is attained at f?j = δj · ξ̂`/

∥∥∥ξ̂`∥∥∥.

Algorithm 1 Gaussian Randomization Procedure for Problem (3)
1: input: an optimal solution W ? to Problem (5), number of ran-

domizations NR ≥ 1
2: for ` = 1, . . . ,NR do
3: generate ξ` ∼ CN (0,W ?)

4: set ξ̃` = ξ̂`
/√

max
{
π`,maxj=1,...,J

{
ι`j
}}

, where

π` = Tr(Ŵj)/P

ι`j = max
‖fj‖≤δj

(aj + fj)
H ξ̂`(ξ̂`)H(aj + fj)/ηj

5: end for
6: let `? = arg max`=1,...,NR |hHi ξ̃`|2

7: output: a feasible solution ŵ = ξ̃`
?

3. APPROXIMATION ACCURACY ANALYSIS

Now, we are ready to consider the key problem in this work, which
is to evaluate the quality of the solution ŵ returned by Algorithm 1.
Although there are some works studying SDR approximation bounds
for QCQPs [5,8,9,23], none of them is applicable to imperfect CSIs,
i.e., with constraints in the form of (3a), to our best knowledge. In
this paper, we fill this gap by proving the following theorem.

Theorem 1. Considering Problem (5) and Algorithm 1, we have

Pr
(

min
i=1,...,M

hHi ŵŵ
Hhi = Ω

( 1

MN log J

)
min

i=1,...,M
hHi W

?hi
)

≥ 1− (3/4)NR, (6)

where NR is the number of randomizations, M is the number of SU,
J is the number of PU, and N is the number of antennas.



The proof of this theorem is Section 3.1 and Section 3.2. This re-
sult is insightful, since it implies that the proposed SDR method can
guarantee an SNR performance, which in the worst case scales with
M , N and J with orders of 1/M , 1/N and log J , respectively. It
is worth noting that for the perfect CSI cases, the SDR bound only
scales with M and J [9, 23]. Now we strengthen those results by
showing that when CSI error is present, the number of antennas also
influences the quality of the solution.

3.1. Proof of Theorem 1

We can prove (6) by determining parameters β ∈ (0, 1) and γ1, γ2 >
1 such that

Pr
(

min
i

∣∣∣hHi ξ̂`∣∣∣2 ≥ βmin
i
hHi W

?hi⋂ ∣∣∣(ξ̂`)H ξ̂`∣∣∣2 ≤ γ1Tr(W ?)
⋂

max
‖fj‖≤δj

∣∣∣(ξ̂`)H(aj + fj)
∣∣∣2

≤ γ2 max
‖fj‖≤δj

(aj + fj)
HW ?(aj + fj), ∀j

)
≥ p, (7)

where ξ̂` (cf. Step 4) is the randomized solution (may be infeasible)
for randomization `. The reason is that (7) implies (6) if we set
γ1 = π`, γ2 = maxj=1,...,J

{
ι`j
}

and ξ̃` = ξ̂`
/√

max {γ1, γ2},
and the resulting approximation ratio would be β/max {γ1, γ2},
with a probability at least 1 − (1 − p)NR. We now determine β, γ1
and γ2 as follows.

Following our previous work in [9,23] and [24, Proposition 2.1],
by setting β = (4eM)−1, γ1 = log 64 ≈ 4.16 in (7) and then using
the union bounds, we obtain

Pr
(

min
i

∣∣∣hHi ξ̂`∣∣∣2 ≤ βmin
i
hHi W

?hi
)
≤M · e1+log β = 1/4;

Pr
( ∣∣∣(ξ̂`)H ξ̂`∣∣∣2 ≥ γ1 · Tr(W?)

)
≤ e−

1
2 (γ1+2 log 1

2 ) = 1/4

for the first two events in (7). However, the difficulty in establishing
(7) lies in the robust IT constraint, since the union bound cannot be
applied to a uncountable set. In this work, we introduce the ε-net
technique [10–12] to fix this problem.

Definition 1. [12, Chapter 5] Let S be a set. A subset N ⊆ S
is called an ε-net of S if for any point x ∈ S, there exists a point
z ∈ N such that ‖z − x‖ ≤ ε.

In particular, we make use of the ε-net to approximate the uncount-
ably infinite set ‖f‖ = δ by a finite set. The following lemma gives
a upper bound of the cardinality of the ε-net:

Lemma 1. Let S(δ) ⊂ Cn define a sphere with radius δ. There
exists an (δ/2)-netN δ/2

δ on S(δ) with cardinality |N δ/2
δ | ≤ 52n.

Proof: Lemma 1 is a direct consequence of Lemma 5.2 in [12] by
putting ε = δ/2 and it gives the minimal cardinality of an ε-net of S
(which is also called the covering number of S at scale ε.)

Based on the above results, we can have the following lemma.

Lemma 2. Let |N ε
δ | be the cardinality of an ε-net N ε

δ of the sphere
S = S(δ) of radius δ. Given a ∈ Cn and X? ∈ Hn+, let ξ ∼
CN (0,X?). Then, for any κ > 1, 0 < ε < δ, we have

Pr
(

max
‖f‖≤δ

|ξH(a+ f)| ≥ κ
(1 + ε

1− ε

)2
max
‖f‖≤δ

(a+ f)HX?(a+ f)
)

≤ (|N ε
δ |+ 1) exp (−(κ− 1)/6) . (8)

Armed by this lemma, we can choose ε = δj/2 and γ2 =(
6 log(4J(52N + 1)) + 1

) ( 2+δj
2−δj

)2
to obtain

Pr

(
max
‖fj‖≤δj

∣∣∣(ξ̂`)H(aj + fj)
∣∣∣2 ≤

γ2 max
‖fj‖≤δj

(aj + fj)
HW ?(aj + fj), ∀j,

)
≤ 1/4. (9)

Thus, by further using the union bound, we let p = 1 − 3/4 = 1/4
and the approximation bound is β/max {γ1, γ2} = β/γ2 since we
always have γ2 > γ1 in this case. This immediately leads to (6) in
Theorem 1, which completes the proof.

3.2. Proof of Lemma 2

Since for anyX?, the maximum in (8) is attained at a point f?(X?)
with ‖f?(X?)‖ = δ, we focus on the set

U = {a+ f : ‖f‖ = δ} .

For simplicity, let us assume that δ = 1. Fixing u ∈ U , we have
u = a + f(u) for some ‖f(u)‖ = 1. By using the concept of the
ε-net on the unit sphere S = S(1), there exists an f0(u) ∈ N ε

1 such
that ‖f(u)− f0(u)‖ ≤ ε, which implies that

u = a+ f0(u) + ε1(u)f̃(u)

for some ‖f̃(u)‖ = 1 and 0 ≤ ε1(u) ≤ ε. In this way, we can
express u as

u = a+
∑
k≥0

εk(u)fk(u),

where 0 ≤ εk(u) ≤ εk and fk(u) ∈ N ε
1 for all k ≥ 0. Continuing

this fashion, by setting

D =

∑
k≥0

εk(u)

−1

,

we can compute∣∣∣uHξ∣∣∣ ≤∑
k≥0

εk(u)
∣∣∣(Da+ fk(u))Hξ

∣∣∣
and∣∣∣(Da+ fk(u))Hξ

∣∣∣ ≤ ∣∣∣(a+ fk(u))Hξ
∣∣∣+ |1−D|

∣∣∣fHξ∣∣∣ .
It follows that

∣∣∣uHξ∣∣∣2 ≤
∑
k≥0

εk(u)
∣∣∣(a+ fk(u))Hξ

∣∣∣+ |(1−D)/D|
∣∣∣aHξ∣∣∣

2

≤ 2

(
1

D

)2

sup
k≥0

∣∣∣(a+ fk(u))Hξ
∣∣∣2 + 2

(
1−D
D

)2 ∣∣∣aHξ∣∣∣2 .



Observe that for any f ∈ N ε
1 , we have{∣∣∣(a+ f)Hξ

∣∣∣2} ≤κ · {(a+ f)HX?(a+ f)
}

with probability at least 1− exp
(
−κ−1

6

)
[24], [9, Lemma 2]. Now,

let f? = arg max‖f‖≤1(a+ f)HX?(a+ f). Since fk(u) ∈ N ε
1

for all u ∈ U and k ≥ 0, the inequalities

sup
u∈U
k≥0

{∣∣∣(a+ fk(u))Hξ
∣∣∣2} ≤κ · max

f∈Nε1

{
(a+ f)HX?(a+ f)

}
≤κ · (a+ f?)HX?(a+ f?)

hold with probability at least 1−|N ε
1 | exp

(
−κ−1

6

)
for κ > 1, where

the second inequality is due to the optimality of f?.
Similarly, the inequalities∣∣∣fHξ∣∣∣2 ≤ κ · fHX?f ≤ κ · (a+ f?)HX?(a+ f?)

hold with probability at least 1−exp
(
−κ−1

6

)
for κ > 1. Observing

thatD−1 ≤ 1/(1−ε) and combining all the pieces together, we have

max
‖f‖=1

∣∣∣(a+ f)Hξ
∣∣∣2 ≤ κ(1 + ε

1− ε

)2
max
‖f‖=1

(a+ f)HX?(a+ f).

It is easy to see that for any δ > 0, we can scale the problem to
δ = 1. Hence, the bound (8) holds under our choices of paramters.
This completes the proof of Lemma 1.

4. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations to verify the the-
oretical results. The setup of the experiment is as follows: SU ac-
tual channels and PU estimated channels are generated by hi,aj ∼
CN (0, I) independently; the noise power at each user is set to be
1; the PU channel errors are bounded by ηj = 0.1, ∀j. We solve
Problem (5) using the cvx solver [25]. The number of Gaussian ran-
domizations is set to be 1000. In all the figures, we averaged 100
channel realizations to get the plots. If the principal eigenvalue is
104 times larger than the second large eigenvalue, we consider the
SDR solution as rank-one.

In Figure 1, we show the worst SU’s SNR (Left) and the ratio
of objectives associated with SDR solution and the optimal solution
(Right) scaling with the number of SU, i.e., M , for different number
of antennas, i.e., N = 4 and N = 8, respectively. The transmit
power is set to be P = 20dB. We assume that there is only one PU
in the system and the prescribed IT threshold ηj is set to be 1dB. In
the left subfigure, we see that as M increases, the SNR performance
degrades and the gap between the SNRs associated with the SDR
solution and the optimal solution is enlarged. In the right subfigure,

we calculate the ratio by mini=1,...,M hHi ŵŵHhi

mini=1,...,M hHi W ?hi
. It shows that the

ratio scales like 1/M . Moreover, we can tell that the ratio is larger
forN = 8 than that forN = 4. This is consistent with the scaling of
N in Theorem 1. In Figure 2, we show the worst SU’s SNR scaling
with N (Left) and J (Right), respectively. In both subfigures, we set
ηj = 1dB for all j. In the left subfigure, we set P = 20dB and
J = 1. We see that as N increases, SNR becomes better but the
gap between the two lines becomes wider. In the right subfigure, we
set P = 5dB, N = 4 and M = 32. It shows that as J increases,
SNR becomes worse and the gap between the two lines also becomes
winder. These observations are consistent with the analytical results
in Theorem 1.

5. CONCLUSIONS

To conclude, the robust design for physical-layer multicasting, even
with primary users present in the system, has been studied for many
years. The classic way is to use the SDR technique and S-lemma,
and then resort to a Gaussian randomization algorithm to find an
approximate solution. However, there is one important problem re-
main unsolved; i.e., with the imperfect IT constraints, how to derive
the approximation bound for the SDR solution? This paper answers
this question by providing a rigorous proof. We have also provided
numerical results to verify the analysis.
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