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Semidefinite Relaxation of
Quadratic Optimization Problems

Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, afthuzhong Zhang

I. INTRODUCTION

In recent years, the semidefinite relaxation (SDR) techaiqu
has been at the center of some of the very exciting develop-
ments in the area of signal processing and communications,
and it has shown great significance and relevance on a va-
riety of applications. Roughly speaking, SDR is a powerful,
computationally efficient approximation technique for astho
of very difficult optimization problems. In particular, ian be
applied to many nonconvex quadratically constrained catadr
programs (QCQPs) in an almost mechanical fashion. These
include the following problems:

min zTCzx
xeR”

st. 2TFx>g;, i=1,...,p, (1)
;I;THim =1, i1=1,...,q, Fig. 1. A nonconvex QCQP iik2. Colored lines: contour of the objective
] ) function; gray area: the feasible set; black lines: boundéreach constraint.
where the given matrice€’, F1, ..., F, Hy,...,H, are as-

sumed to be general real symmetric matrices, possibly in-
definite. The class of nonconvex QCQPs (1) captures magy.,-acy of no worse than.8756 for the Maximum Cut
problems that are of interest to the signal processing and coan)

L ) : . roblem (the BQP with some conditions ad). In other
munications community. For instance, consider the Boole rds, even though the Maximum Cut problem is NP-hard
quadratic program (BQP) ) ’

one could efficiently obtain a solution whose objective ealu

min z’Cz is at least0.8756 times the optimal value using SDR. Since
meth" 2=1 i=1 n (2)  then, we have seen a number of dedicated theoretical asalyse
boo2i=1, i=1,...,n.

that establish the SDR approximation accuracy under @éiffer
The BQP is long-known to be a computationally difficulproblem settings [3]-[11], and that have greatly improved o
problem. In particular, it belongs to the class of NP-harghderstanding of the capabilities of SDR. Today, we are even
problems. Nevertheless, being able to handle the BQP wghle to pin down a number of conditions under which SDR
has an enormous impact on multiple-input-multiple-outpgovides an exact optimal solution to the original probléf [
(MIMO) detection and multiuser detection. Another impaita [12]-[16].

yet NP-hard problem in the nonconvex QCQP class (1) is | the field of signal processing and communications, the in-

min T Czx troduction of SDR since the early 2000’s has reshaped the way
weRe , (3) we see many topics today. Many practical experiences have
st. @Rzl i=1...,m, already indicated that SDR is capable of providing accurate
where C, Fy,..., F,, are all positive semidefinite. Prob-(and sometimes near-optimal) approximations. For inganc

lem (3) captures the multicast downlink transmit beamfoigmi in MIMO detection, SDR is now known as an efficient high-

problem; see [1] for details. An illustration of an instarmie performance approach [17]-[23] (see also [24]-[26] fondbli

Problem (3) is provided in Fig. 1. As seen from the figuraVIMO detection). The promising empirical approximation

the feasible set of (3) is the intersection of the exteridrs performance of SDR has motivated new endeavors, leading

multiple ellipsoids, which makes the problem difficult. to the creation of new research trends in some cases. One
As a matter of fact, SDR has been studied and appliedsnch example is in the area of transmit beamforming, which

the optimization community long before it made its impadtas attracted much recent interest; for a review of thistiexgi

on signal processing and communications. The idea of SDépic, please see the article by Gershneaml. in this special

can already be found in an early paper of Lovasz in 197€sue [1], and [27]. The effectiveness of transmit beamfogm

[2], but it was arguably the seminal work of Goemans andepends much on how well one can handle (often nonconvex)

Williamson in 1995 [3] that sparked the significant intereSPCQPs, and its technical progress could have been slower

in and rapid development of SDR techniques. In that work,ift SDR had not been known to the signal processing com-

was shown that SDR can be used to provide an approximatiomnity. Another example worth mentioning is sensor network
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localization, a practically important but technically dkaging Problem (4):

problem. SDR has proven to be an effective technique for .
. - . min  Tr(CX)
tackling the sensor network localization problem, both in Xesn '
theory and practice [28]-[31]. In addition to the three majo st. Tr(A;X) b, i=1,...,m, ®)
applications mentioned above, there are many other diftere X =0, rank(X)=1.

applications of SDR, such as waveform design in radar [33}ere, we useX > 0 to indicate thatX is PSD.

[33], phase unwrapping [34], robust blind beamforming [35] At this point, it may seem that we have not achieved much,

large-margin parameter estimation in speech recognisee ( 35 Problem (5) is just as difficult to solve as Problem (4).

the article by Jiang and Li in this special issue [36] for fignt However, the formulation in (5) allows us to identify the

details), transmii3, shim in MRI [37], and many more [38]- fyndamental difficulty in solving Problem (4). Indeed, théyo

[41]. It is anticipated that SDR would find more applicationgitficult constraint in (5) is the rank constrairink(X) = 1,

in the near future. which is nonconvex (the objective function and all other
This paper aims to give an overview of SDR, with agonstraints are convex itX). Thus, we may as well drop

emphasis on showing the underlying intuitions and varioysto obtain the following relaxed version of Problem (4):
applications of this powerful tool. In fact, we will soon see

that the implementation of SDR can be very easy, and that }Eleléln Tr(CX)
allows signal processing practitioners to quickly test viee st. Tr(A;X)>; b, t=1,...,m, (6)
bility of SDR in their applications. Several highly sucdess X = 0.

applications will be showcased as examples. We will alﬁpgoblem (6) is known as an SDR of Problem (4), where the

ende_avqr tq tOUCh. on some z?\dvanced, key th_eore_ztlcal resW e stems from the fact that (6) is an instance of semidefinit
by hlghllghtmg their p_ract|cal impacts and _|mpI|cat|on§. rogramming (SDP). The upshot of the formulation in (6) is

This paper is organized as follows. Section Il describes the, it can be solved, to any arbitrary accuracy, in a nuratyic
basic ideas of SDR and its operations. Section Ill showcasgfizple and efficient fashion. In fact SDRs can now be
an SDR application, namely, MIMO detection. In Section I\,5jeqd very conveniently and effectively by readily zabie

yve.shed light into the randomizatiqn concept, WhiCh plays ?Qnd free) software packages. Let us give an example: Seppos
indispensable role in both theoretical and practical adean g o+ ¢ equal >’ for i = 1,....p, and ;" equal '

of SDR. Section V considers extensions of SDR to mo i=p+1,....,m. Using the convex optimization toolbox

general cases. This is immediately followed by Section Vi, ,y [42], we can solve (6) in MATLAB with the following
where another application exampl81-shimming in MRI, piece of code:

is demonstrated. Section VII presents a theoretical stibjec

namely_SDR rank reduction, wh_|ch has |mpo_rtant |mpl|ca$!on Box 1. A CVX code for SDR

for the tightness of SDR approximation. Section VIl delses cvx_begin

the application of SDR in sensor network localization. We  variable X(n,n) symmetric
draw conclusions and discuss further issues in Section IX. | ~ Minimize(trace(C  +X));

subject to
for i=1l:p
trace(A(:,:,i) *X) >= b(i);
II. THE CONCEPT OFSEMIDEFINITE RELAXATION end
for i=p+1:m
trace(A(:,:,i) *X) == b(i);

To make the notation more concise, let us write our problem end
of interest—namely, the real-valued homogeneous QCQP fin X == semidefinite(n);

(1)—as follows: cvx_end
min zTCz While advances in convex optimization and software have
“”G‘Rt"’ T Ao b 4 (4) enabled us to solve SDPs easily and transparently, one might
st. A0, 1=1,...,m. guestion how effective is the process (how fast or slow ithou
Here, ©;’ can represent either>’, ‘=', or ‘<’ for each; Ee?gl lnSIch: ba(_:kstagg qut co_nve>i op_'urzmzatlon tkc;;litzioxes
andC,A,,..., A, € S, whereS" denotes the set of all andi€ Sbrs u5|r_lghan mtenor-pnga ggﬂt T a sopk_ h
real symmetrion x n matrices; andy, ..., b,, € R. A crucial top:;: in 'tbsl own6r|g t (l;see, Ie.g(.j, [_ h]). Imply spea mgelt .
first step in deriving an SDR of Problem (4) is to observe th%}D problem (6) can be solved with a worst case complexity
z’Cx = Tr(z" Cx) = Tr(Cxx™), O(max{m,n}*n'/?log(1/e))
T Ajx = Tr(z? Asx) = Tr(A;zz?). given a solution accuragy> 0 1. The complexity above does
not assume sparsity or any special structures in the daté& mat
In particular, both the objective function and constraiims cesC, Ay,..., A,,. Some algorithms, such &DuMi [46]

(4) arelinear in the matrixza”. Thus, by introducing a new

variableX = zz7 and noting thatX = 227 is equivalent to lOu_r reported comple_xity _order_ is obtained by coun_ting thithametic
erations of a specific interior-point method, namely thiengl-dual path-

X b_eing a ranklone symme'Fric po_sitive Semideﬁn.ite (PS[ﬁfllowing method in [44]. See [45] for a more detailed degticn on the
matrix, we obtain the followingequivalentformulation of operation count.
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(employed as one of the core solvers @VX), can utilize quality of the extracted solutiog. It turns out that
data matrix sparsity to speed up the solution process. Ve als  there are several measures available to address this issue.
refer the readers to the article [47] in this special issue fo Although we will not discuss them at this point, it should

other fast real-time convex optimization solvers. For a@ert be emphasized that regardless of which measure we use,
specially structured SDR problems, one can even exploit the quality will certainly depend on the method by which
the problem structures to build fast customized interioirp we extract the solutiott.

algorithms. For example, for BQP, a custom-built interior- 2) Apart from the rank relaxation interpretation of SDR
point algorithm [44] can solve SDR with a complexity of as described above, there is another interpretation that
O(n3?log(1/¢)) [instead of O(n*®log(1/¢))]. Furthermore, is based on Lagrangian duality. Specifically, it can be
the SDR complexity scales slowly (logarithmically) witland shown that the SDR (6) is a Lagrangian bidual of the
most applications do not require a very high solution pienis original problem (4). We refer the reader to, e.g., [48]
Hence, simply speaking, we can say that for detalils.

IIl. APPLICATION: MIMO DETECTION

SDR is a computationally efficient approximation approach

to QCQP, in the sense that its complexity is polynomial Qelézgnustc??l?:tvhgpaz)\(grglez ggrithsagrﬁgcstlo;;c:tei}cf)?\;e pro-
the problem sizex and the number of constraints. g b PP )

The problem we consider is MIMO detection, a frequently

encountered problem in digital communications. To puttibin

Of course, there is no free lunch in turning the NP-hargOntext consider a generi§-input M-output model
Problem (4) (which is equivalent to Problem (5)) into the '

polynomial-time solvable Problem (6). Indeed, a fundarakent yo = Heoseo + ve. (7
issue that one must address when using SDR is how to con\ﬁét

M R MXN ;
a globally optimal solutionX* to Problem (6) into a feasible h re'\’/lglﬁoe (E ISI the recg]\\/]ec.i V;CtotrHC e'tt(cd 'E |
solution & to Problem (4). Now, ifX* is of rank one, then € channél,sc € IS the transmitied Symbo

there is nothing to do, for we can writ&* = z*z*” vector, andvc € CM is an additive white Gauss_ian nois_e
and =* will be a feasi,ble—and in fact optimal—solut,ionvecmr' Eq. (7) is popularly used to moqlel p0|r_1t-to-.p0|nt
to Problem (4). On the other hand, if the rank &f* is muIane—antenpa sy;tems such as the_ spanal multiple¢ong
larger thanl, then we must somehO\;v extract from it, in aV'BLAST) depicted in Fig. 2. In fact, it is known (see, e.g.,

' ' rE49]) that the same model as in (7) can be used to formulate

efficient manner, a vectat that is feasible for Problem (4). . . o .
. detection problems in many other communication scenarios,
There are many ways to do this, and they generally follow

some intuitively reasonable heuristics (true even in ezgjiimg such as multiuser systems, space-time coding systemss-spac

sense). However, we must emphasize that even though f[heé?tgen(;y coding ?ystem%]and_gomblnlgt|o§|s_tsucfhtﬁs W'\t/'llés
extracted solution is feasible for Problem (4), it is in gethe multi-antenna systems. The wide applicabiity of the

not an optimal solution (for otherwise we would have solve'amd(.EI (7) makes its respective detection problem attractiv
i o and important to tackle.
an NP-hard problem in polynomial time).
As an illustration, consider the intuitively appealing adef

applying a rank-one approximation oK *. Specifically, let _\f/ 7 Y_
r = rank(X™), and let Deteoted
Symbols : : Symbols

‘¢l Spatal : : MIMO 5
* . T Multiplexer : . Detector
X" = Z Aiqid; _\i/ VA Y_
i=1 MIMO channel
H(,‘

denote the eigen-decomposition &*, where A\; > Ay >
...> A, >0 are the eigenvalues and, . .., ¢, € R™ are the
respective eigenvectors. Since the best rank-one appatigim Fig- 2. The spatial multiplexing system.

X} to X* (in the least 2-norm sense) is given Y = ) o )
A\qig”, we may definez = /X, q; as our candidate solution In this application example we assume th:_:\t the transmitted
to Problem (4), provided that it is feasible. Otherwise, e ¢ SYMPOIs follow a quaternary phase-shift-keying (QPSK)-con

try to mapz to a “nearby” feasible solutios of Problem (4). Stellation; i.e.sc; € {£1 4 j} for all i. We are interested

In general, such a mapping is problem dependent, but it can'Bghe maximum-likelihood (ML) MIMO detection, which is
quite simple. For example, for the BQP (2) whefe= 1 for optimal in yielding the minimum error probgbmty pf detawy
all i, we can obtain a feasible solution fraervia & = sgn(&), SC- It can be shown that the ML problem is equivalent to the

wheresgn(-) is the element-wise signum function. discrete least squares problem
Our basic description of SI_DR is now complete. Before we min _|lyc — Hescl)?, 8)
proceed, some remarks are in order. sce{£1+j}V

1) Now that we have seen one method of extracting vehich is NP-hard [50]. Recent advances in MIMO detection
feasible solutionz to Problem (4) from a solution have provided a practically efficient way of finding a glolall
X* to the SDP (6), it is natural to ask what is theptimal ML solution; viz., the sphere decoding methods [49]
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10° T

Sphere decoding has been found to be computationally fast
for small to moderate problem sizes; e.g.,< 20. However,
it has been proven that the complexity of sphere decoding is 107
exponential inN even in an average sense [51].

On the other hand, SDR can be used to produce an approxi-
mate solution to the ML MIMO detection problem @(N3-)
time, which is polynomial inN. The trick is to turn (8) into
a real-valued homogeneous QCQP. Indeed, by letting

=
Ow

Bit Error Probability
.
o

_ 8%{yC} s = §R{SC} H — §R{I_IC} _%{HC} iﬁl‘:\ASEfDF
= = = || Ty SE D
S{yc}t|’ S{sc}]’ S{Hc} R{Hc} |’ L CLRAMSE-OF
—&— SDR, w?lh randomization
we can rewrite (8) as the following real-valued problem: A e | |
0 5 10 15 20 25
min,, v - Hs|?. 9) SR in dB
se{*1
. Fig. 3. Bit error probability performance of various MIMO tdetors in a
Prqblgm (9) IS not a homOgeneous QCQP! but we can homQﬁ'SK 40 x 40 MIMO system. ‘ZF'— zero forcing, ‘MMSE'— minimum
enize it as follows: mean square error, ‘DF'— decision feedback, ‘LRA— lattieeluction aided.
. ||t H ”2 ‘performance lower bound’ is the bit error probability wher MIMO
min Yy—1s interference exists.
SER2N t€R (20)
st. t2=1, s2=1, i=1,...,2N. }
10 T
Problem (10) is equivalent to (9) in the following sense: if jfEA_MMSE_pF i
(z*,t*) is an optimal solution to (10), them* (resp. —x*) 10 e e Henen) g

is an optimal solution to (9) whetrr = 1 (resp.t* = —1).
With the introduction of the extra variablte Problem (10) can
then be expressed as a homogeneous QCQP:

HTH —H"y] s
. T t
seitin I8 J[—yTH wHJ (11)

st. t2=1, s?=1, i=1,...,2N.

Average Running Time, in Seconds

Subsequently, SDR can be applied.

We now show some simulation results to illustrate how
well SDR performs in practice. The simulation follows a
standard MIMO setting (see, e.g., [49]), with problem size Problem Size N
(M, N) = (40, 40). Note that for such a problem size, sphere
decoding is computationally too slow to run in practice. W&
tested other benchmarked MIMO detectors, such as the linear
and decision-feedback detectors, and the lattice-remucti. endeavors to extend SDR MIMO detection to other con-

aided detectors. The results are plotted in Fig. 3. We can d8eene
that SDR provides near-optimal bit error probability, aieg s%ellatlons, such ad/-ary PSK [20] and)M-ary QAM [22],

3], [52]-[55]. Moreover, treatments for coded MIMO sys-
Pe(;:[tlebly better performance than other MIMO detectors undt[germs [19], [56] and fast practical implementations [21F]j4

57] have been considered. On another front, the theotetica

In Fig. 3 two performance curves are provided for SDR[. : .
The one labeled ‘SDR with rank-1 approx. is the eigenvect(g)rerformémce of SDR MIMO detection has been analyzed in

o . . . . various settings. For instance, it has been shown that SDR
approximation method described in the last section. Whike t . . : X
method is already competitive in performance, the altéreat can achieve full receive diversity for BPSK [58]. Furthema,o

‘SDR with randomization’ is even more promising. The notioSDR approximation accuracies relative to the true ML have

of randomization will be discussed in Section IV. been investigated in [59], [60].
Next, we evaluate the computational complexities of the
various MIMO detectors. The results are plotted in Fig. 4. Of |\ RANDOMIZATION AND PROVABLE APPROXIMATION
particular interest is the comparison between SDR and aptim ACCURACIES
sphere decoding. We see that SDR maintains a polynomial-
time complexity with respect t@&V. For sphere decoding, the Besides the eigenvector approximation method mentioned
complexity is attractive for small to moderaté, sayN < 16, in Section Il, randomization is another way to extract an
but it increases very significantly (exponentially) otheev  approximate QCQP solution from an SDR soluti¥. The
We conclude this section by pointing out the current adntuitive ideas behind randomization are not difficult te sget
vances of this SDR application. In essence, the promisitige theoretical implications that follow are far from tak—
performance of SDR MIMO detection in QPSK and binarynany theoretical approximation accuracy results for SDiRs a
PSK (BPSK) has stimulated much interest. That has resulggeven using randomization. To illustrate the main idees, |

ig. 4. Complexity comparison of various MIMO detectors. F5N12dB.
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us consider again the real-valued homogeneous QCQP

min z7Cz
zER" (12) 10k
s.t. .’IZTAl'.’IZ 121 bi, = 1,...,m.
Now, let X € S™ be an arbitrary symmetric positive semidef-
inite matrix. Consider a random vect@ € R™ drawn
according to the Gaussian distribution with zero mean and
covarianceX; or ¢ ~ N(0,X) for short. The intuition

Bit Error Probability
=
o

of randomization lies in considering the following stodias =1
QCQP: w0l] —6- 1230
=% -1=50
min Ee.. Tc oEw
Xesn X»0 I3 N(O,X){S 5} #t;igg
s.t. ngN(O X){STAig} [Zl bi, = 1, ey 0 2 4‘1 8 fo fz 1‘4 16
’ (13) SNR, in dB

where we manipulate the Coyarlance.mafmxgof_so _that the Fig. 5.  Performance of various numbers of randomizationsMiviO
expected value of the quadratic objective is minimized &ed tgetection, under the same simulation settings as that in3Fig
guadratic constraints are satisfiledexpectationinterestingly,
through the simple relatio’X = E¢.x0,x){£¢7}, one can
see that the stochastic QCQP in (13) is equivalent to the SDR
XGS@}I}”O ex) (14) Example: Randomization in Proble(8)

st Tr(AiX) Bibiy, i=1,...,m. This example aims to geometrically illustrate how random-
Thus, the stochastic QCQP interpretation of SDR in (18)ation behaves. Consider Problem (3), restated here as
provides us with an alternative way to generate approximate i T
solutions to the QCQP (12). Indeed, after obtaining an ogitim T Cz (16)
solution X* to the SDP (14), we can generate a random st. zTAx>1, i=1,...,m,

vector ~ N'(0, X*) and use it to construct an approx'mat%vhereC,Al, ..., A, = 0. Recall that Problem (16) arises

solution to th? Q.CQP (12). the that the specific deS|qH the context of multicast downlink transmit beamforming.
of the randomization procedure is problem-dependent. As al .
e set up a numerical example whete= 2, m = 6,

illustration, let us consider two representative examples and then generate many random poiits N'(0, X*) to see
how they distribute in space. An instance of this is shown in
Fig. 6. From the distribution of (marked as black-"), one
tan see that the covariance matXx* is not of rank one, but
the density is higher over the direction of the globally oyl
QCQP solutions (marked as green«’). Also, note that the

Example: Randomization in BQP or MIMO detection
For the BQP in (2) or the MIMO detection problem in (11)
a typical randomization procedure is as follows.

Box 2. Gaussian Randomization Procedure for BQP random sampleg are not always feasible for (16), but we can
given an SDR solutionX *, and a number of randomizatiors .
fore=1,...,L apply a rescaling
generate€, ~ N(0, X*), and construct a QCQP-feasible point ¢
- x = 17
o = sgn(&e). (15) (€) Jmin—, . €T AL (17)
end . . .
determine(* = argming_, &1 Ciy. to turn them into feasible solutions. We apply the same
output & = &« as the approximate QCQP solution. rescaling to feasible&, too. The rescaled samplaeg&) are

shown as red ‘0’ in Fig. 6(a). Remarkably, one can see that

In Box 2, the problem dependent part lies in (15), wherbere is a significant amount cf(€) that lie close to the

we use rounding to generate feasible points from the rand@Rimal QCQP solutions.
samplest,. Moreover, we repeat the random samplingmes A prac_ncal _rand_omlza'uon procedure f(_)r Problem (16)
and choose the one that yields the best objective. is essentlglly identical to that presented in Box 2, except

In the MIMO detection example in Section 111, we have seefft@t (15) is replaced by (17). Such a procedure has been
that the Gaussian randomization procedure provides quadiPirically found to provide promising approximations for
optimal bit-error-rate performance; see Fig. 3. Here wee gifn® multicast downlink transmit beamforming applicatiorda
an additional result, plotted in Fig. 5, that shows how th&s variations, like the MIMO detection application. Reesle
performance improves with the number of randomizatiorfé€ referred to [27], [61] for the results.
L. We see a significant performance gain frdm= 1 to
L = 50. The gain becomes smaller fér > 50, approaching
a limit. This shows that randomization provides an effegtiv , _ _ _

In this example, the globally optimal QCQP solutions wer¢aoted by

approximation for _SD.R- for sufficient (but not excessive) fine grid search ofiR2. Such an exhaustive search would be prohibitive
number of randomizations. computationally for generaR™.
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™

=
o

random sample§

06 O QCQP approx. samples(£)
S + globally opt. QCQP solnz*

-

approx. ratiov()/vqp
)

°©

=
(=]

5 10 15 25 30

20
no. of randomizationg.

Fig. 7. A realization of the actual approximation accura¢ySBR for the
problem instance in Fig. 6.

L0k \ 5 9 ’ Now, let us turn to the following class of Boolean quadratic
\ \ \ \ maximization problems (BQP):
\
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
z1 vgp = max ! Cz
TR
st. 22=1, i=1,...,n,

Fig. 6. lllustration of randomizations iR2, for Problem (16). The gray area g

is the feasible set and colored lines the contour of the tiagec . .
g with C > 0. In the seminal work of Goemans and

Williamson [3], it is shown that wheid;; < 0 for all i # j,
one has
Although we have been using intuitions and illustrations
to introduce the randomization approach, the approachris fa
from being just a heuristic and can in fact yield significanyherey = 0.87856. In addition, if we adopt the randomization
insights into the performance of SDR. Indeed, it was thgrocedure in Box 2, then the expected objective value of the
idea of randomization that opened the gateway to a hostr@hdomized solutiom: will satisfy
theoretically provable worst-case approximation bounats f
SDR. These results have profound implications in appbcesti yugp < E{v(Z)} < vgp (21)
For instance, it allows one to get some idea on how well SDR
could do if it is to be applied to a new signal processingith the same constant. Although the bounds in (21)

problem. To give some flavor of these approximation accuragpPly only to the expected objective value, in practice the
results, let us first consider Problem (16). kétr) = 7 Ca randomized solutiore can often achieve a performance that

~Yuspr < vQp < VSDR, (20)

denote the objective function, and let is well within those bounds.
The analysis of approximation accuracy bounds is a sophis-
vQP = feliu{}l ' Cx ticated subject. Although it is beyond the scope of this pape
st. 2TAz>1, i=1,...,m to elaborate upon the mathematics behind those analyses, we

give a summary of some of the major approximation accuracy
denote the optimal objective. In [10] (see also [62]), it isesults in Tables | and Il. We refer the interested readers to
shown that with high probability, the objective valugz) of e.g., [27], for more technical insights of these resultsrira
a randomized solutiott will satisfy signal processing viewpoint.

vap < v(&) < yugp, (18)

V. EXTENSION TOMORE GENERAL CASES
where v = 27m?/r is the so-calledapproximation ra- . )
tio. Notice that this ratio accommodates the worst possible 0" €ase of exposition of the SDR idea, we have only con-
problem instance{C, A, A,,}, and that the practical centrated on the real-valued homogeneous QCQPs in previous

) sy LAm g, . . . . -
approximation accuracies can be much better. Fig. 7 giveS&Ftions. Here we illustrate the wide applicability of SDRR b
numerical evidence, where we show a realization of the actd&oWing how the same idea can be used in a number of related

approximation ratiow(&)/vge, for the problem instance in Problems.

Fig. 6. As can be seen from the figure, near optimality ig |nnomogeneous ProblemsConsider a general inhomoge-
attained forL > 15. In the same vein, such approximation,qq s QCQP

analysis enables us to know how far the optimal SDR objective

value, denoted byspr = Tr(CX*), is from the optimal min x7Cz +2cTx
QCQP value. Indeed, for Problem (16) and its SDR, we can EGSR,E 2T Agw+2aTa B b i=1,..m (22)

have
vspr < VQP < YUSDR, (19) for some appropriaté)_, ¢, A;,a;,b;. We have already seen

in Section Il how an inhomogeneous least squares problem

wherey = 27m?/x is as above. can be homogenized. Following the same spirit, we can
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TABLE |
KNOWN APPROXIMATION ACCURACIES OFSDRFOR QUADRATIC MINIMIZATIONS PROBLEMS.

problem | approx. accuracyy; see (18)-(19) for def. | references |
min x7C=z
xeCn v = 8m.
st. zflAxe>1,i=1,....,m Luo-Sidiropoulos-Tseng-Zhang  [10];
If the problem is reduced to the real-valued case, then see also So-Ye-Zhang [62].
where Ay, ..., Am = 0. B 27m2 Relevant applications: [61]
B i
MIMO Detection For o2 > 60n (which corresponds to the low signal-to-noise
min  |ly — Hz||3 ratio (SNR) region), with probability at least— 3 exp(—n/6),
2
xER™
st. 22=1,i=1,...,n N < E Kisialiou-Luo [59], So-Ye [60].
y N -2 Extensions: So-Ye [60].
e sy o 14,471 For (1) tich corespondst the ih SR reio) Folaed. Jakn Otrsten 56
;= =1,...,n; . P -~ B elevant applications: —{20],
andv € C" has i.i.d. complex mean zero GaussianWIth probability at leastl — exp(—~0(n)), [23]
entries with variances2. -1
’\/ b
i.e. the SDR is tight.
homogenize Problem (22) as where k > 2 is a given integer. Applications of the-ary
. c ¢cllx guadratic program includé/-ary PSK MIMO detection [20]
weiiter [CC t] |:CT O} [t} and coded waveform designs in radar [33]. Problem (25) can
’S t12—=1 be approximated by the following SDR:
.. ,
A a| |z in Tr(CX
T 1 7 1. s min r
[w t] {a;[ 0 ¢ >, bz, 1= 1, cee, M, X cH» ( ) (26)

s.t. XEO, X“:Lz:l,n

)

where both the problem size and the number of constraints ) ] -
increase by one. Hence, SDR can be applied to inhomogeneGtf&ously, while the SDR in (26) does not utilize the con-

QCQPs by operating on their homogenized forms. stellation sizek, it can yield satisfactory approximations, both
Readers are referred to [48], [64] for another interpretati Practically [20], [33] and theoretically [8], [9].

of SDR in the inhomogeneous case. C. Separable QCQPs: Consider a QCQP of the form
B. Complex-Valued ProblemsConsider a general complex- . ko Hpvoo
valued homogeneous QCQP oy o 2im a; Ciz

min z7Czx st S el Az Db, i=1,...,m.

zeCr , (23) (27)

st @l Az Biby, i=1,...m, Problem (27) is called a separable QCQP. A relevant appli-

whereC, Aq,..., A,, € H", with H" being the set of all cation for separable QCQPs is the unicast downlink transmit

complexn x n Hermitian matrices. Using the same SDR idebeamforming problem [65]; see [1] in this special issue for
as in the real case, we can derive the following SDR for (23he problem description.

min  Tr(CX) Let X; = x;x] fori = 1,....k. By re_Iaxing the rank
X eHn , constraint on eactX;, we obtain the following SDR of (27):
s.t. TI‘(AZX) [21' bi, 1= 1, e, M, (24) K
X -0, X min o 2 (G X
where the only difference is that the problem domain now s.t. ZfilTr(Aile) >, b, i=1,...,m,
becomedH™ (in our CVXcode insert in Box 1, all you need X, ~0,.. -:Xk = 0.
to do is to changesymmetric ' to ‘hermitian ') (28)

While the SDRs in the real and complex cases are developed
using essentially the same technique, it should be noted tha  y/| A ppLicaTiON: TRANSMIT B; SHIM IN MRI
the two can be quite different in their approximation aceura : : . )
. . At this point readers may have the following concern:
cies; see, for example, Tables | and Il and the literaturé. [27ince SDR is an aporoximation method. as an alternative
The current applications of complex-valued SDR lie i PP '

. . . Iso choose to approximate a nonconvex QCQP
various kinds of beamforming problems [1], [15], [16], [27 we may a . i
351, [37], [61] Complex-valgert)j SDR c:Em] a[lso] b[e EISEEd ]tBy an available nonlinear programming method (NPM) (e.g.,
hanale ak’-ary duadratic program: sequential quadratic programming, available in the MATLAB

. i Optimization Toolbox). Hence, it is natural to ask which
Ry - Czx method is better. The interesting argument is that they com-
st. x; € {176.7'%//@7 B _76.7'27r(k—1)/k}, i=1,...,n, plement each other, instead of competing. Indeed, thetguali

(25) of NPMs depends on the starting point, and the missing piece
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TABLE I
KNOWN APPROXIMATION ACCURACIES OFSDRFOR QUADRATIC MAXIMIZATION PROBLEMS.

problem approx. accuracyy; see (20)-(21) for def. | references
Boolean QP
max 2T Cx 0.87856, C>=0,C; <0Vi#j Goemans-Williamson [3],
wes t. 22=1,i=1 n y=1{ 2/m~0.63661, C >0 Nesterov [4], Zhang [7].
o T T ’ T L Relevant applications: [24]-[26]
1 (opt.), Cij > 0,¥i # j
Complexk-ary QP
max xHCux For C > 0,
zeln et (ksin(r/k))? Zhang-Huang [8],
s.t. Ti € {Lw, ..., w1 TE e So-Zhang-Ye [9].
i=1...,n Relevant applications: [33]

) e.g.,y = 0.7458 for k = 8, v = 0.7754 for k = 16.
wherew = ¢727/k andk > 1 is an integer.

Complex constant-modulus QP

ForC = 0,
max @ Cx v =7/4=0.7854. Zhang-Huang [8],
mect 2 1 =1 So-Zhang-Ye [9].
st Jzl®=1i=1...,n Remark: coincide with complek-ary QP ask — oo.
He The same approx. ratio as in complex constant-modulus [QP;
oax, ©Lm i.e.,vy=m/4for C = 0.
st (Jz|?,... |zn?) € F Ye [5], Zhang [7
If the problem is reduced to the real-valued case, then |the 51 971

o
where 7 C R™ is a closed convex set. approx. ratio results are the same as that in Boolean QP.

T
Inax @ Czx For anyC € S™, 1 Nemirovski-Roos-Terlaky [6].
st. xlTAx<1,i=1,....,m [/ Extensions:  Luo-Sidiropoulos-Tsend
here A A so0 2In(2mu) Zhang [10], So-Ye-Zhang [62], an
WETEAL oy Am 2 0 wherey = min{m, max; rank(A;)}. Zhang-So [63].

is generally in securing a reliable (or a ‘good enough’)tstgr
point. Thus, one can consider a two-stage approach, in which
SDR is used to provide a starting point for an NLM. In
particular, to SDR, nonlinear programming can provide loca
refinement of the solution, while to NLMs SDR can be used to
provide a good starting point. This two-stage approach bas n
only been proven to be viable in practice, but is also pramgisi

in performance [28]’ [37]' Fig. 8. An MRI illustration

In this example we demonstrate the effectiveness of the
two-stage approach. The application involved is transhit

shimming in magnetic resonance imaging (MRI) [37]. An

illustration is shown in Fig. 8 to help us explain the problentn€ field response from the array to tite pixel; tThat is to
A magnetic field, specifically aB; field is generated by S& theith pixel receives & field of magnitudda; x|. Our

an array of transmit RF coils. The ideal situation would beroblem then is to minimize the worst-case field magnitude

that the B, field is spatially uniform across the load (like difference

a human hea_d). Unf_ortunately, this is usually_ nqt the case. min max ]|a?w|2 -~ bQ\

The complex interactions between the magnetic field and the zeCr  i=1,..m (29)

loaded tissues often result in strong inhomogeneity (otigpa st 2Ge < p.

non-uniformity) across the load. The goal of transmit

shimming is to design the transmit amplitudes and phasesHdre,m is the total number of pixel$,> 0 is the desired pixel

the RF coils such that the resultaif map (or the MR image) value (which is uniform over all pixelsy:” Gz represents

is as uniform as possible. the average specific absorption rate (SAR), in wh&his
The transmitB; shimming problem is mathematically for-composed of the complex-valugd field coefficients and of

mulated as follows. Let: € C™ be the transmit vector of the the tissue conductivity and mass density, gnds a pre-

RF coil array, where: is the number of RF coils and, is SPecified SAR limit.

a complex variable characterizing the transmit amplitudeé a Let us consider an SDR of Problem (29), which, by fol-

phase of theth RF coil. Denote bya; € C", i = 1,...,m, lowing the SDR principles mentioned in previous sectioss, i

RF Coils
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given by rank constraint, then that solution will also be optimal fioe
in max \Tr(a*aiTX) B b2| 0r|g|r_1al problem. As_ the appllcanons we consider typycall
XeHr  i=1,...m (30) require that the solution matrix has low rank (e.g., the ot
st. X =0, Tr(GX) <p. matrix in Problem (5) must have rank one), it is natural to ask

Note that the SDR problem in (30) can be reformulated as wihether standard interior-point algorithms for solving F&D

SDP: will return a low rank solution or not. Unfortunately, the
min . answer is no in general. Specifically, it has been shown [66]
teR, X cHn that standard interior-point algorithms for solving SDP# w

st. —t<Tr(a*alX)-02<t, i=1,...,m

X >0, Tr(GX) < p.

always return a solution whose rank is maximal among all
optimal solutions. Thus, either the problem at hand possess
(31)  some very special structure, or we have to be somewhat lucky
A randomization procedure reminiscent of that given in BoX i order to obtain a low rank SDP solution. On the other hand,
can be used to generate an approximate solution to the akigiot all is lost. It turns out that if an SDP with anx n matrix
problem in (29); see [37] for the algorithm description.  variable andn linear constraints is feasible, then there always
A simulation result for transmitB; shimming is shown exists a solution whose rank is bounded abovedy,/m).
in Fig. 9. We employ al6-element RF strip line coil array, specifically, Shapiro [67], and later Barvinok [68] and Rata
operating at7 Tesla and loaded with a human head modeigo] independently showed that if the SDP (6) is feasiblenth
Fig. 9(a) shows &, map obtained by a simple, non-optimizeghere exists a solutioX * to (6) such that
transmit weightx = [ 1,e>7/16 . ¢307/16 1T From that . .
figure and its respective objective value (provided below rank(X™)(rank(X*) +1) _
the figure), we can see that the resulta®t map is not 2 B
uniform enough. Figs. 9(d) and (e) show the results for SD& equivalentlyrank(X*) < [(v/8m + 1 —1)/2]. Moreover,
randomized solutions, where the number of randomizatienssuch a solution can be found efficiently [69]. The Shapiro-
L = 200. Randomization would lead to variations in differenBarvinok-Pataki (SBP) result has many interesting conse-
runs or realizations. Due to space limit, we only display twquences. For instance, when < 2, we haverank(X*) < 1
realizations in Figs. 9(d) and (e). One can observe thaeth&vhenever (6) is feasible. This implies that the SDP (6) is
are some differences with th#8, maps of the two realizations, equivalent to the rank-constrained SDP (5). In particular,
but their objective values are quite similar. The randowhizeve can obtain an optimal solution to the seemingly difficult
SDR solutions also show improvements in uniformity wheRroblem (4) simply by solving an SDP.
compared to the non-optimized transmit weight in Fig. 9(a). As it turns out, a similar SDR rank result holds for the
Now, let us consider the two-stage approach mentioned in #b@mplex-valued homogeneous QCQP (23) and the separable
beginning of this section. The results are shown in Figs. 9@®CQP (27). Specifically, Huang and Palomar [16] showed that
and (g). We can see further improvements with the resultant if the SDR (24) of the complex-valued homogeneous QCQP
maps and objective values. This shows that SDR can provi@s) is feasible, then there exists a soluti¥it to (24) such
reliable initializations to NPMs. thatrank(X*) < \/m. On the other hand, consider the SDR
One may also be interested in seeing how an NPM perfoi®8) of the complex-valued separable QCQP (27). Suppose
without the aid of SDR. To do this comparison, we randomhat it is feasible. Then, as shown in [16], there exists atgm
generate a starting point for the NPM by an i.i.d. GaussigiX 1% | to (28) whose ranks satisfy
distribution. However, for fairness of comparison to SDR, w
generatel i.i.d. Gaussian random points (the sarheas in
randomization in SDR) and set the starting point to be the
one that yields the best objective. Tw® map realizations -
of such randomly initialized NPM are shown in Figs. g(an the case of a real-valued separable QCQP, the rank conditi
and (c). We can see that the performance shows significh@iven by
variations from one realization to another (it could be good
and it could be bad), making the final solution fidelity difficu
to say. In [37], some Monte Carlo simulations are provided to
further support our observations here.

3

(32)

)

k
Z rank(X})? < m.
i=1

re;nk(Xi )+ 1) -

k. rank(X*
> (X5)(

1

1=

To summarize:

VIl. RANK REDUCTION IN SDP

As the readers may have noticed by now, one of tf
recurring themes in the SDR methodology is the following
First, one formulates a given hard optimization problem as

For a real-valued (resp. complex-valued) homogeneous Q
"With 2 (resp. 3) constraints or less, SDR is not just
Jrelaxation. It is tight, i.e., solving the SDR is equivaleat

CQP

a

rank-constrained SDP. Then, one removes the rank corstr
to obtain an SDP. This is vividly illustrated as we pass frol
the QCQP (4) to the equivalent rank-constrained SDP (5), a
finally to the SDR (6). Now, if the algorithm we use to solvg
the SDP returns a solution whose rank satisfies the origir

il%)Iving the original QCQP.

rFor a homogeneous separable QCQP (27), suppose that
raf the solution{ X*}* , to the SDR (28) satisfieX = 0 for
ssomesi. Then, the SDR is tight ifn < k + 2 in the complex
nafse; and ifn < k + 1 in the real case.

none
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nonlinear prog. nonlinear prog. ) two-stage opt.:  two-stage opt.:

without with random  with random SDR with SDR with ooR V\?/ rar?d" SDR w/ rand.
optimization starting point, starting point, randqmlzatlon, rando_mlz_atlon, +nonlinear prdg +nonlinear prog.,

realization 1 realization 2 realization 1 realization 2 realization 1 " realization 2

(@) (b) (c) (d) (€) (f) (9)

25
0
obj. value= obj. value= obj. value= obj. value= obj. value= obj. value= obj. value=
24.56 3.364 6.330 6.049 6.009 3.244 3.310
Fig. 9. B; maps of various optimization methods.
An important application of the above result is in estab- structure

lishing _the tlghtnes§ of certain SDR for the unicast dowklin A —aal a — [ Gt gin=1)éi ]T

transmit beamforming problem; see [1], [16], [27] for fueth ! e T ’ L

discussions. for some anglep; € [0,27), then a rank-one solution

Before we proceed further, several remarks are in order.

1)

2)

3)

exists for SDR for anymn [15]. Another example is in
MIMO detection, where SDR tightness can be shown to

The SBP result is concerned with the existencéonf occur with high probability [57], [59], [60], [76].
rank solutions to an SDP, and we derive the tightness
of various SDRs as corollaries (by specializing the SBPY!!l- A PPLICATION: SENSORNETWORK LOCALIZATION
result to the rank one case). However, there are otherlLet us now consider another practical problem to which the
more direct, approaches for proving tightness of SDRSDR technique can be applied, namely, the sensor network
of various QCQPs; see, e.g., [12]-[14], [70], [71]. Moslocalization (SNL) problem. Although the SNL problem is
of these approaches rely on so-called rank-one decoeemputationally intractable, it can be relaxed to an SDP.
position theorems, which allow one to extractaptimal Moreover, simulation results showed that it can producé hig
QCQP solution from the SDR solution, provided that thguality solutions. Before we delve into the details, let ustfi
number of constraints in the QCQP is not too large—saytiefly describe and motivate the SNL problem.
at most3 for the complex-valued homogeneous QCQP. In recent years, the deployment of large-scale wireless
Recently, Aiet al.[71] have proven another rank-one desensor networks has become increasingly common. These net-
composition theorem and used it to show that the SDRrks are often used to collect location-dependent dath su
of a large class of complex-valued homogeneous QCQ#&3s motion at various points of a monitored area, temperature
with 4 constraints are in fact tight. The interested readevarious locations of a habitat, etc. In most applicatiorosy-h
may find the MATLAB implementations of the algo-ever, the sensors are deployed in an ad-hoc fashion. Mareove
rithms described in [71] attp://www.se.cuhk. it is often impractical or infeasible to equip every sensdhw
edu.hk/  ~ywhuang/dcmp/paper.html . We note a location device (such as GPS). Thus, the actual locatibns o
that the aforementioned tightness results have alreadglividual sensors may not be known, and we need to deduce
found many applications in signal processing and corthem from some other information. One common approach
munications; see, e.qg., [32], [33], [40], [41], [71]-[75].is to use the so-called communication graph of the sensors.
It is known [68] that the rank bound in (32) cannoBSpecifically, consider a graph in which the nodes represent
be improved in general. Specifically, there exist SDPensors, and an edge between two nodes indicates that the
with m constraints in whicheverymatrix that satisfies corresponding sensors can communicate with each other. We
all the constraints must have rank of order at leasssume that the distance between two sensors can be measured
/m. However, if one allows the linear constraints irwhenever they can communicate with each othdio add
a given SDP to be satisfied onipproximatelythen it some flexibility to the model, we allow for the possibilityath
is possible to find a solution matrix whose rank is mucthe locations of some of the sensors are given. These sensors
smaller thanO(y/m). We refer the readers to [62] forwill be referred to asanchorsin the sequel.
details. Under the above setting, our goal is to determine the coor-
The results mentioned in this section merely providdinates of the sensors in, s&Y, so that the distances induced
sufficient conditions for SDR tightness. As such, there,_ ) ) o o )

. . . . This can be achieved using, e.g., the arrival time or diffeeein arrival
are cases in which SDR tlghtness can be attained unqﬁl'é of the signal, the received signal strength, or anglardfal measure-
different conditions. For example, if eaeh; follows the ments (see, e.g., [77], [78] and references therein).
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by those coordinates match the measured distances. Fprmati particular, by dropping the rank constraint from (35), we
let Vs ={1,...,n} andV, = {n+1,...,n+m} be the sets obtain an SDR of Problem (33).
of sensors and anchors, respectively. Egf and F;, be the Now, if we solve the SDR of Problem (33) and obtain a rank
sets of sensor-sensor and sensor-anchor edges, respyectivesolutionZ, then we can extract from it a setdimensional
To fix ideas and keep our exposition simple, suppose fooordinates for the sensors such that those coordinais/sat
now that the measured distancg$;, : (i,k) € Ess} and the distance constraints [30]. In fact, if the solutighis of
{Jik : (i,k) € Ey,} are noise-free. Then, the SNL problenrank 2, then we can extract the two-dimensional coordinates
becomes that of finding, ..., x, € R? such that of the sensors directly from th& portion of the matrixZ
;s — 3|2 = &2 (i, k) € Ess (see (34)). For other interesting theoretical propertiethe
las — zu]? = Jﬁ:’ (Z.’k) cE ’ (33) above SDR, we refer_the readers to [28], [30], [80].
! A = So far our discussion has focused on the case where the
In general, Problem (33) is difficult to solve, as the quddratmeasured distances are noise-free. However, in practiee, t
constraints in it are nonconvex. Indeed, the problem ofreleteneasured distances are usually corrupted by noise (say, by
mining the feasibility of (33) is NP-hard [79]. However, onexn additive Gaussian noise). In this case, we are interésted
can derive a computationally efficient SDR of Problem (33)nding a maximum likelihood estimate (MLE) of the sensors’
as follows. First, observe that coordinates. Although the MLE problem is difficult to solve i
T general, one can derive an SDR of it using techniques similar
! to those introduced in this section. We refer the readers to
In particular, we see thatz; — x;||? is linear in the inner [28], [31] for details.
productsz; x;, ] x) andx] ;. Hence, we may write To demonstrate the power of the SDR approach, we applied
2 T T _ T it to a randomly generated network @b sensors ands
s = ell” = (e — en)” X7 X(es —ex) = Tr(BuX"X), o1 ohors over the unit squafe0.5,0.5]2. The connectivity of

s — l|* = 2] ®; — 2] ), + )z,

wheree; € R™ is thei-th unit vector,E;;, = (e; — e;)(e; — the network is determined by the so-called unit disk graph
er)! € S", and X is a2 x n matrix whosei-th column is model. Specifically, we assume that a pair of devices can
x;. In a similar fashion, we have communicate with each other if the distance between thein is a

most0.3. Furthermore, we assume that the measured distances
are corrupted by a Gaussian noise with small variance, say
Although the termalx; is linear only in xz;, we may 0.01.

homogenize it and write In Fig. 10(a) we show the positions of the sensors as

la; — zi||* = af a; — 2a] @ + x| .

I x o computed by the SDP, as well as the trajectories of a gradient
la; — zi||? = [ al el ] { XQT XTxX } [ ! ] search procedure after initializing it with the SDP solatio
_ ek We use circlesd’ to denote the true positions of the sensors
= Tr(MiZ), and diamonds{’ to denote the positions of the anchors. The
where initial positions of the sensors as computed by the SDP are
M, — [ a; ] [ ol e } denoted by starst', and the tail end of a trajectory gives the
¢ ex ' k computed position of a sensor aftériterations of the gradient
and search procedure. As can be seen from the figure, the final

computed positions of the sensors are very close to the true
Z = [ )?T X)T(X } = [ )?T ] [I, X |. (34) positions. For the purpose of comparison and to demonstrate

the high quality of the SDP solution, we show in Fig. 10(b)
Now, observe thatZ € S"*2 as given in (34) is a ranR the trajectories of the gradient search procedure when it is
positive semidefinite matrix whose upper leftx 2 block initialized by a random starting point. As can be seen from
is constrained to be an identity matrix. The latter can Hbe figure, even afteb0 iterations, the computed positions of
expressed as three linear constraints (i.e., linear in twes the sensors are still nowhere close to the true positions.
of Z). Moreover, using the Schur complement, it is not hard to Before we leave this section, we should mention that the
show that any rank positive semidefinite matriZ € S"*2 SDR technique can also be applied to the source localization
whose upper lef x 2 block is an identity matrix must have problem (see, e.g., [77], [78]), which is well-studied ireth
the form given in (34) for som& < R2*™. Thus, upon letting signal processing community and may be considered as a

special case of the sensor network localization problem. In
0 O S . .
M, = , that problem, one is given noisy distance measurements from
0 E; . .

. . . one sensor to a number of anchors, and the goal is to determine
we see that Problem (33) is equivalent to the following ranke MLE of the sensor position. For various SDR-based
constrained SDP: approaches to this problem, we refer the readers to [31], [38

find Z [39].
st. Tr(MyZ)=d%, (i,k) € Ess,
(M, Z) = Cp}ﬁ (i, k) € Ey, (35) IX. CONCLUSION AND DISCUSSION
Zy:21:2 = I, In this paper we have provided a general, comprehensive

Z >0, rank(Z)=2. coverage of the SDR technique, from its practical deploymen
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Fig. 10. Refinement through a gradient search method for aofi@ network

and scope of applicability to key theoretical results. Weeha [8] S. Zhang and Y. Huang, “Complex quadratic optimization @emidef-
also showcased several representative applications, Ipame
MIMO detection, B; shimming in MRI and sensor network
localization. Another important application, namely ddiwk

transmit beamforming, is described in the article [1] insthil10]
special issue. Due to space limit, we are unable to cover many
other beautiful applications of the SDR technique, althougii]
we have done our best to illustrate the key intuitive ideas th

resulted in those applications. We hope that this intrazhyct [12]
paper will serve as a good starting point for readers who g@voul

like to apply the SDR technique to their applications, and {3l
locate specific references either in applications or theory
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