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ABSTRACT

Consider a wireless scenario in which a multi-antenna transmit-

ter wants to send a confidential message to a single-antenna informa-

tion receiver (IR) while transferring wireless energy to a number of

multi-antenna energy receivers (ERs). In order to keep the ERs from

retrieving the confidential message, an artificial noise (AN)-aided

physical-layer secrecy approach is employed at the transmitter. The

AN has dual purpose: First, it can interfere with the ERs’ informa-

tion receptions and thus help improve security. Secondly, it provides

wireless energy for the ERs to harvest. Assuming imperfect chan-

nel state information at the transmitter, we jointly optimize the co-

variances of confidential information and AN such that the secrecy

rate at the IR is maximized, while each ER receives a prescribed

amount of wireless energy. Although this secrecy-rate maximization

problem is non-convex, we show that it can be handled by solving

a sequence of convex optimization problems. Numerical results are

provided to demonstrate the efficacy of the proposed design.

Index Terms— Physical-layer security, energy harvesting, arti-

ficial noise, convex optimization

1. INTRODUCTION

Traditionally, electric power transfer and wireless information trans-

mission are independently investigated in the fields of power engi-

neering and communication engineering. Recently, there is grow-

ing interest in combining these two topics together to realize si-

multaneous wireless information and power transfer (SWIPT) [1–

10]. The idea is that radio-frequency (RF) signals can not only

convey information for the receiver to decode, but also naturally

provides electromagnetic energy for receivers to harvest. The lat-

ter is particularly important for prolonging receivers’ operation time

when no sustainable power supply is available at the receiver side

— e.g., the receivers are sensors randomly scattered on the battle-

field. While the concept of SWIPT is quite simple, it gives rise

to a new capacity-energy paradigm for wireless transmission. This

has thus triggered lots of recent research endeavors on characteriz-

ing capacity-energy tradeoffs for SWIPT under various scenarios,

such as point-to-point single-input and single-output (SISO) chan-

nels [1, 2], multiuser multiple access channels (MAC) [3], multiuser

multi-input and single/multi-output (MISO/MIMO) broadcast chan-

nels [4–6], relay channels [9,10] and wiretap channels [6–8]. Among

the various studies, the work in [6] proposed an interesting SWIPT

This work is supported by a Direct Grant of The Chinese University
of Hong Kong (Project ID: 2050489) and the Hong Kong Research Grants
Council (RGC) General Research Fund (GRF) (Project ID: CUHK 416012).

scenario, in which the transmitter or base station (BS) attempts to

send confidential information to an information receiver (IR) while

transferring wireless energy to a group of energy receivers (ERs).

To prevent the ERs from eavesdropping the information, a physical-

layer (PHY) secrecy approach is employed at the BS to achieve per-

fectly secure transmission to IR. PHY secrecy is a means of provid-

ing confidentiality at PHY by exploiting the channel capacity dif-

ference between the legitimate channel and the eavesdropping chan-

nels [11]. The study of PHY secrecy can be traced back to Wyner’s

seminal work [12] in the 1970s, and recently this kind of approach

has gained renewed interest [13–16]. This may partly be attributed

to recent advances in multi-antenna techniques, by which one can

either employ transmit beamforming or intentionally send spatially

selective artificial noise (AN) [13, 15, 16] to degrade eavesdroppers’

receptions.

In this work, we consider a similar SWIPT setting as [6]; i.e. one

multi-antenna BS sends confidential information to a single-antenna

IR while transferring wireless energy to a group of ERs. Differ-

ent from [6], where ERs are assumed to be single-antenna and the

BS has perfect channel state information (CSI) of all the receivers,

herein we focus on multi-antenna ERs with their CSI imperfectly

known at the BS. Under the considered setting, our goal is to max-

imize an achievable secrecy rate for the IR while providing certain

amount of energy to the ERs by jointly optimizing the confidential

information covariance and the artificial noise (AN) covariance at the

BS. This secrecy rate maximization (SRM) problem is non-convex.

To handle it, we first reformulate the SRM problem as a two-level

optimization problem. Then, we show that the outer problem can

be handled by performing an one-dimensional search over a unit in-

terval, while the inner problem admits a tight convex relaxation and

hence can be exactly solved in an efficient manner. The crux of our

approach is to establish the existence of a rank-one optimal informa-

tion covariance to the convex relaxation of the inner problem.

We now briefly review some works that are related to our ap-

proach. PHY secrecy with energy harvesting has been considered

in [6–8]. In particular, the works [7, 8] considered a scenario in

which the transmitter/jammer is an energy harvester, but the trans-

mission from the transmitter to the destination does not involve any

energy transfer. The work that is most relevant to ours is [6]. As

mentioned before, the work [6] focuses on MISO ERs and perfect

CSI at the BS, while here we consider a more general setting —

MIMO ERs and imperfect CSI at the BS. Finally, we should also

mention that the approach developed in this paper is reminiscent of

that in our previous work [15], where no energy harvester is present.

However, due to the additional energy harvesting constraints, the ap-

proach in [15] cannot be directly applied to the problem here.



2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a scenario of simultaneous wireless information and power

transfer, in which a multi-antenna transmitter sends private informa-

tion to a single-antenna information receiver (IR) while transferring

wireless energy to multiple multi-antenna energy receivers (ER). To

prevent the ERs from eavesdropping the private information, an ar-

tificial noise (AN)-aided PHY secrecy approach is employed at the

transmitter. Specifically, the transmit baseband signal takes the fol-

lowing form:

x(t) = s(t) + z(t), (1)

where s(t) ∈ C
Nt conveys the coded confidential information in-

tended for the IR, which is Gaussian distributed with mean zero and

covariance W ∈ H
Nt
+ , i.e., s(t) ∼ CN (0,W) [11]; Nt denotes

the number of transmit antennas; z(t) ∈ C
Nt is the superimposed

artificial noise, which is assumed to be Gaussian distributed and in-

dependent of s(t), i.e., z(t) ∼ CN (0,Σ) with Σ ∈ H
Nt
+ being the

covariance matrix of z(t). Herein, the AN has dual purpose: On

the one hand, it acts as interference to cripple the ERs’ information

reception, just as that in traditional physical-layer security. On the

other hand, it provides a source of wireless energy for the ERs.

Assuming frequency-flat and quasi-static fading channels, the

received signals at the IR and the kth ER are given by

yI(t) = h
H
x(t) + n(t), (2a)

yE,k(t) = G
H
k x(t) + vk(t), k ∈ K, (2b)

where K , {1, . . . ,K}; h ∈ C
Nt and Gk ∈ C

Nt×Ne,k are chan-

nel matrices from the transmitter to IR and to the kth ER, respec-

tively; Ne,k is the number of receive antennas at ER k; n(t) ∈ C and

vk(t) ∈ C
Ne,k are complex Gaussian noise, whose distributions fol-

low n(t) ∼ CN (0, σ2
IR) and vk(t) ∼ CN (0, σ2

e,kI), respectively.

According to the signal model (2), an achievable secrecy rate at

the IR can be calculated as [11]

Rs = CIR(W,Σ)−max
k∈K

Ce,k(W,Σ), (3)

where CIR(W,Σ) = log
(

1 + h
H

Wh

σ2

IR
+hHΣh

)

and Ce,k(W,Σ) =

log det(I+(σ2
e,kI+GH

k ΣGk)
−1GH

k WGk). The harvested energy

(normalized by the baseband symbol duration) at the kth ER is [4]

Qk(W,Σ) = ζkTr(G
H
k (W+Σ)Gk), ∀ k ∈ K, (4)

where 0 < ζk < 1 denotes the energy harvesting efficiency at ER k.

In this work, we assume that h is perfectly known at the trans-

mitter, while Gk,∀ k ∈ K is imperfectly known. The imperfect

channel Gk is modeled by a deterministically norm-bounded spher-

ical model [15, 16]; i.e.,

Gk ∈ Bk , {Ḡk +∆Gk | ‖∆Gk‖F ≤ ǫk} (5)

for some known constant ǫk ≥ 0, ∀ k ∈ K, where Ḡk and ∆Gk are

the presumed CSI and the associated CSI error of Gk , respectively.

We remark that the perfect CSI case can be recovered from (5) by

setting ǫk = 0, and all the results in the subsequent development

still hold.

Based on the above setting, our problem of interest is to maxi-

mize the IR’s secrecy rate while transferring certain amount of en-

ergy to the ERs by jointly designing the information covariance W

and the AN covariance Σ; i.e.,

R⋆
s = max

W,Σ

{

CIR(W,Σ)−max
k∈K

max
Gk∈Bk

Ce,k(W,Σ)
}

(6a)

s.t. min
Gk∈Bk

ζkTr(G
H
k (W+Σ)Gk) ≥ ηk, ∀k ∈ K, (6b)

Tr(W+Σ) ≤ P, W � 0, Σ � 0, (6c)

max
Φl∈Ξl

Tr(Φl(W +Σ)) ≤ ρl, l = 1, . . . , L, (6d)

where Bk is defined in (5); P > 0, ηk > 0, and ρl ≥ 0, ∀k, l
are given constants and Ξl denotes a norm-bounded spherical un-

certainty set for the Hermitian positive semidefinite (PSD) matrix

Φl ∈ H
Nt
+ (to be specified shortly). In particular, (6a) corresponds

to the worst secrecy rate when taking into account of all possible

Gk ∈ Bk for all k; (6b) is the energy harvesting constraint, which

ensures that the provision of energy for ER k is at least ηk; (6c) is the

standard total power constraint; (6d) is a robust covariance constraint

with

Ξl , {Φ̄l +∆Φl ∈ H
Nt
+ | ‖∆Φl‖F ≤ δl}, ∀l (7)

for some known PSD matrix Φ̄l ∈ H
Nt
+ and constant δl ≥ 0, ∀ l.

Generally speaking, the inclusion of (6d) is optional; herein we in-

corporate (6d) into the design to accommodate some additional de-

sign requirements arising from certain specific applications. For ex-

ample, (6d) may represent per-antenna power constraints by setting

δl = 0 and Φ̄l = ele
H
l for l = 1, . . . , Nt, where el ∈ R

Nt is the

lth column vector of INt . Also, (6d) may represent a robust interfer-

ence temperature constraint in cognitive radio systems [17]. Readers

are referred to [15] for more details on the physical meaning of (6d).

It can be verified that problem (6) is a non-convex semi-infinite

optimization problem. In the next section, we will develop a tractable

solution to (6) through convex relaxation.

Remark 1. As an alternative formulation to (6), one can maximize

the weighted sum of harvested energy subject to a minimum secrecy

rate constraint for the IR and a total power constraint at the BS. This

energy maximization problem is closely related to (6) and can be

solved using the same approach described in Sec. 3. Due to page

limit, we will only focus on problem (6).

3. A TRACTABLE APPROACH TO PROBLEM (6)

In this section, we develop a tractable approach to solving prob-

lem (6). To this end, we will first reformulate problem (6) into a

two-level optimization problem, and then show that it can be han-

dled by solving a sequence of convex optimization problems.

3.1. A Two-Level Reformulation of (6)

Let us introduce a slack variable τ to rewrite problem (6) as

R⋆
s = max

W,Σ,τ
{CIR(W,Σ) + log(τ )} (8a)

s.t. max
Gk∈Bk

Ce,k(W,Σ) ≤ log(1/τ ), ∀ k ∈ K, (8b)

(6b) − (6d) satisfied. (8c)

This can be further rewritten as a two-level optimization problem;

i.e., the outer problem with respect to (w.r.t.) the variable τ

R⋆
s = max

τ
log(1 + Γ(τ )) + log(τ ) (9a)

s.t. τmin ≤ τ ≤ 1, (9b)



where τmin = (1 + P‖h‖2/σ2
IR)

−1, and the inner problem that

calculates Γ(τ ) for a fixed τ :

Γ(τ ) = max
W,Σ

hHWh

σ2
IR + hHΣh

(10a)

s.t. max
Gk∈Bk

Ce,k(W,Σ) ≤ log(1/τ ), ∀ k ∈ K, (10b)

min
Gk∈Bk

ζkTr(G
H
k (W +Σ)Gk) ≥ ηk, ∀ k ∈ K, (10c)

Tr(W +Σ) ≤ P, W � 0, Σ � 0, (10d)

max
Φl∈Ξl

Tr(Φl(W+Σ)) ≤ ρl, l = 1, . . . , L. (10e)

In (9b), the upper bound on τ is due to (8b) and the lower bound

τmin can be deduced as follows: Since R⋆
s ≥ 0, it follows from

(8a) that τ ≥ (1 + h
H

Wh

σ2

IR
+hHΣh

)−1 ≥ (1 + h
H

Wh

σ2

IR

)−1 ≥ (1 +

λmax(W)‖h‖2

σ2

IR

)−1 ≥ (1+ Tr(W)‖h‖2

σ2

IR

)−1 ≥ (1+P‖h‖2/σ2
IR)

−1 ,

τmin, where the last inequality is due to the total power constraint.

The outer problem (9) is a single-variable optimization problem

with a bounded interval constraint [τmin, 1], which can be handled

by performing an one-dimensional line search, provided that Γ(τ )
can be evaluated at any feasible τ . Therefore, in the sequel, we will

focus on the inner problem (10).

3.2. A Tight Convex Relaxation of Problem (10)

Our approach to solving problem (10) is to first derive a convex re-

laxation of (10), and then show that the relaxation is tight. This

would then imply that Γ(τ ) is efficiently computable.

Let us consider (10c) first. Upon noting that Tr(GH
k (W +

Σ)Gk) = g
H
k (I⊗ (W +Σ))gk with gk , vec(Gk), we have

(10c) ⇐⇒ ζkg
H
k (I⊗ (W+Σ))gk ≥ ηk, ∀Gk ∈ Bk, ∀k. (11)

The inequality on the right-hand side (RHS) of (11) is quadratic in

gk, which lies in a bounded sphere (cf. (5)). Hence, by invoking the

S-lemma [18], the RHS of (11) is equivalent to a system of linear

matrix inequalities (LMIs); i.e.,

(10c) ⇐⇒ Fk(W,Σ, ξk) � 0 for some ξk ≥ 0, ∀k ∈ K, (12)

where Fk(W,Σ, ξk) ,
[

I, ḡk

]H(

I⊗ (W +Σ)
)[

I, ḡk

]

+

Diag(ξkI, − ηk/ζk − ξkǫ
2
k) and ḡk = vec(Ḡk).

Next we proceed with (10e). Substituting (7) into (10e) yields

(10e) ⇔ Tr(Φ̄l(W+Σ))+ max
‖∆Φl‖F≤δl

Tr(∆Φl(W+Σ)) ≤ ρl, ∀l.

By the Cauchy-Schwarz inequality, we have Tr(∆Φl(W +Σ)) ≤
‖∆Φl‖F ‖W +Σ‖F . Hence,

(10e) ⇐⇒ Tr(Φ̄l(W+Σ)) + δl‖W +Σ‖F ≤ ρl, ∀l. (13)

The RHS of (13) is a second-order cone constraint, which is convex

in (W,Σ).
Finally, to handle (10b), we resort to a certain relaxation ap-

proach to deriving a convex relaxation of (10b). To this end, we

need the following lemma.

Lemma 1 ( [15, Prop. 1]). The following implication holds:

log det
(

I+
(

σ2
I+G

H
ΣG

)−1
G

H
WG

)

≤ log β (14a)

=⇒ (β − 1)(σ2
I+G

H
ΣG) −G

H
WG � 0 (14b)

for any σ 6= 0, G ∈ C
N×M , W ∈ H

N
+ and Σ ∈ H

N
+ . Moreover,

(14a) and (14b) are equivalent if rank(W) ≤ 1.

By applying Lemma 1 to (10b), we have

(10b) ⇒ (τ−1−1)(σ2
e,kI+G

H
k ΣGk) � G

H
k WGk,∀Gk ∈ Bk,∀k.

(15)

While the inequality on the RHS of (15) is already convex in (W,Σ),
it is still not convenient to process as it involves an infinite number

of LMIs. Nevertheless, by employing a matrix form of S-lemma

(cf. Theorem 3.3 and Proposition 3.4 of [19]), the RHS of (15) can

be equivalently expressed as a single LMI:

RHS of (15) ⇔ Tk(τ,W,Σ, tk) � 0 for some tk ≥ 0, ∀k, (16)

where Tk(τ,W,Σ, tk) , [Ḡk, I]
H((τ−1 − 1)Σ−W)[Ḡk , I]+

Diag((σ2
e,k(τ

−1 − 1) − tk)I, tk/ǫ
2
kI).

Now by replacing (10b), (10c) and (10e) with (16), (12) and

(13), respectively, we obtain a relaxation of problem (10):

Γ̂(τ ) = max
W,Σ,{tk,ξk}k∈K

hHWh

σ2
IR + hHΣh

(17a)

s.t. Tk(τ,W,Σ, tk) � 0, tk ≥ 0, ∀ k ∈ K, (17b)

Fk(W,Σ, ξk) � 0, ξk ≥ 0, ∀ k ∈ K, (17c)

Tr(W +Σ) ≤ P, W � 0, Σ � 0, (17d)

Tr(Φ̄l(W+Σ)) + δl‖W +Σ‖F ≤ ρl, ∀ l. (17e)

We note that Γ̂(τ ) ≥ Γ(τ ) for any feasible τ , because the implica-

tion in Lemma 1 shows that (17b) is a relaxation of (10b). Moreover,

every feasible solution to problem (10) is feasible for problem (17).

Finally, if an optimal solution W⋆ to problem (17) is of rank one,

then it can be checked from Lemma 1 that Γ̂(τ ) = Γ(τ ) holds; i.e.,

the relaxation is tight. Interestingly, as we will show shortly, there

always exists a rank-one optimal solution W⋆ to problem (17). As a

result, it suffices to solve the relaxed problem to obtain Γ(τ ). Before

delving into the details of the tightness proof, let us explain how to

efficiently solve problem (17).

Problem (17) is a quasi-convex problem, which can be turned

into a convex problem by the Charnes-Cooper transformation [20].

Specifically, let us introduce the following change of variables:

W = W̃/µ, Σ = Σ̃/µ, ξk = ξ̃k/µ, tk = t̃k/µ, ∀ k ∈ K, (18)

where µ > 0 is a parameter. Then, problem (17) amounts to

Γ̂(τ ) = max
W̃,Σ̃,µ,{t̃k,ξ̃k}k∈K

h
H
W̃h (19a)

s.t. σ2
IRµ+ h

H
Σ̃h = 1, (19b)

T̃k(τ, µ, W̃, Σ̃, t̃k) � 0, t̃k ≥ 0, ∀ k ∈ K, (19c)

F̃k(µ, W̃, Σ̃, ξ̃k) � 0, ξ̃k ≥ 0, ∀ k ∈ K, (19d)

Tr(W̃+ Σ̃) ≤ µP, W̃ � 0, Σ̃ � 0, (19e)

Tr(Φ̄l(W̃ + Σ̃)) + δl‖W̃ + Σ̃‖F ≤ µρl, ∀ l, (19f)

where T̃k(τ, µ, W̃, Σ̃, t̃k) , [Ḡk, I]
H((τ−1−1)Σ̃−W̃)[Ḡk, I]+

Diag((µσ2
e,k(τ

−1 − 1) − t̃k)I, t̃k/ǫ
2
kI) and F̃k(µ,W̃, Σ̃, ξ̃k) ,

[

I, ḡk

]H(

I⊗ (W̃+ Σ̃)
)[

I, ḡk

]

+Diag(ξ̃kI, −µηk/ζk − ξ̃kǫ
2
k).

For the equivalence between problems (17) and (19), readers are re-

ferred to [15] for a detailed proof. Problem (19) is a convex conic

optimization problem, which can be efficiently solved with interior-

point methods [18]. Once (19) is solved, an optimal solution to (17)

can be recovered through (18).



3.2.1. Tightness Proof for the Relaxation (17)

Suppose that we have solved (19) with the optimal value Γ̂(τ ). Then,

we consider the following power minimization problem:

min
W,Σ,{tk,ξk}k∈K

Tr(W) (20a)

s.t. hH(W − Γ̂(τ )Σ)h ≥ Γ̂(τ )σ2
IR, (20b)

(17b) − (17e) satisfied. (20c)

Here, (20b) is rewritten from h
H

Wh

σ2

IR
+hHΣh

≥ Γ̂(τ ). Problem (20) is

closely related to (17) and has some interesting properties:

Property 1. Every feasible solution to (20) is optimal for (17).

Property 2. Every optimal W⋆ to (20) satisfies rank(W⋆) ≤ 1.

Property 1 can be easily deduced from (20b) and (20c). Prop-

erty 2 is obtained by checking the Karush-Kuhn-Tucker (KKT) con-

ditions of (20). The detailed proof is given in the Appendix. From

Properties 1 and 2, the following theorem is immediate:

Theorem 1. Suppose that problem (17) is feasible. Then, there ex-

ists an optimal solution (W⋆,Σ⋆) to (17) with rank(W⋆) ≤ 1.

Moreover, such an optimal solution can be obtained by solving (20).

From Theorem 1, we conclude that (17) is a tight relaxation of

(10) (cf. Lemma 1), and that Γ̂(τ ) = Γ(τ ) holds for all feasible τ .

Remark 2. We should point out that the construction of problem (20)

is crucial for the tightness proof. Also, it is different from that in [15]

(cf. problem (11) in [15]), as Property 2 may not hold for prob-

lem (11) in [15] when the EH constraints are present.

4. SIMULATION RESULTS AND CONCLUSIONS

Two numerical results are provided to demonstrate the efficacy of the

proposed design. For comparison, we also present the result of an

isotropic AN-based design [13], which fixes W = αPhhH/‖h‖2

and Σ = (1−α)P/(Nt−1)(I−hhH/‖h‖2). Here, 0 ≤ α ≤ 1 is

an optimal power allocation ratio that can be computed by substitut-

ing the above W and Σ into (6) and solving (6) w.r.t. α. The simula-

tion settings are as follows, unless otherwise specified: The number

of transmit antenna is Nt = 5. There are two ERs, each having two

receive antennas, i.e., K = 2 and Ne,k = 2, ∀k. All the receivers

have the same noise level σ2
IR = σ2

e,k = −40dBm for all k. Each

element of h (resp. Gk) is i.i.d. and generated from a complex

Gaussian distribution with mean zero and variance −30dB (resp.

−10dB). The channel uncertainty level for Gk is ǫk = 0.1, ∀ k.

The energy harvesting efficiency ζk = 50%, ∀ k and all the ERs

have the same energy harvesting threshold, i.e., η1 = η2.

Fig. 1 shows the achievable rate-energy regions of the proposed

design and the isotropic AN design for one random channel realiza-

tion. Here, the transmit power P is fixed at 10dBm, and for sim-

plicity, the general covariance constraint (6d) is not considered. As

seen, the proposed design can achieve a much larger rate-energy re-

gion than isotropic AN.

Fig. 2 plots the worst-case secrecy rate against the transmit power

P for the two schemes when fixing η1 = η2 = 0.5mW. In this ex-

ample, besides the total power constraint, we also consider the per-

antenna power constraints; i.e., by setting L = Nt, ρl = 2P/Nt,

δl = 0 , ∀ l and Φl = ele
H
l in (6d). From Fig. 2, we see that

the proposed design outperforms the isotropic AN design over the

whole range of powers tested. In particular, with the increase of the

transmit power, the two designs grows nearly linearly w.r.t. P , and

there is a constant rate gap 1.5 bps/Hz between the two schemes.

To conclude, we have considered transmit covariances optimiza-

tion for simultaneous confidential information transmission and wire-

less energy transfer. While the transmit covariances optimization

problem is non-convex in its original form, we show that it can be

recast as a two-level optimization problem, which can be handled by

solving multiple convex optimization problems. As a future direc-

tion, it would be interesting to consider multiple MIMO IRs case.
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5. APPENDIX

We check the KKT conditions of (20). Let λ ∈ R+, Ak ∈ H
Nt+Ne,k

+ ,

Bk ∈ H
NtNe,k+1

+ , ν ∈ R+, γl ∈ R+, Q ∈ H
Nt
+ and M ∈ H

Nt
+ be

the Lagrangian multipliers associated with (20b), Tk � 0, Fk � 0,

Tr(W+Σ) ≤ P , (17e), W � 0 and Σ � 0, respectively. Assum-

ing that problem (20) satisfies some constraint qualifications [18],

we have the following KKT conditions of (20):

Q =I− λhhH +
∑

k ḠkAkḠ
H
k −

∑

k ∇WTr(BkFk)

+
∑

l γl
(

Φ̄l + δl‖W +Σ‖−1
F I

)

+ νI, (21a)

M =λΓ̂(τ )hhH − (τ−1 − 1)
∑

k ḠkAkḠ
H
k −

∑

k ∇ΣTr(BkFk)

+
∑

l γl
(

Φ̄l + δl‖W +Σ‖−1
F I

)

+ νI, (21b)

QW = 0, M � 0, Ak � 0, ∀ k ∈ K, (21c)

where Ḡk , [Ḡk, I]. It can be easily shown that ∇ΣTr(BkFk) =
∇WTr(BkFk) by checking the gradients directly. Hence, subtract-

ing (21b) from (21a) yields

Q−M = I− λ(1 + Γ̂(τ ))hhH + τ−1 ∑

k ḠkAkḠ
H
k . (22)

By post-multiplying (22) by W and making use of (21c), we get

W = λ(1+Γ̂(τ ))(I+M+τ−1 ∑

k ḠkAkḠ
H
k )−1hhHW. (23)

Clearly, the rank of the matrix on the right-hand side of (23) is no

greater than 1, which completes the proof.
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