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Abstract

We consider the regularized empirical risk minimization (ERM) of linear predictors, which arises in a variety
of problems in machine learning and statistics. After reformulating the original ERM as a bilinear saddle-point
problem, we can apply stochastic primal-dual methods to solve it. Sampling the primal or dual coordinates with
a fixed non-uniform distribution is usually employed to accelerate the convergence of the algorithm, but such a
strategy only exploits the global information of the objective function. To capture its local structures, we propose
an adaptive importance sampling strategy that chooses the coordinates based on delicately-designed non-uniform
and non-stationary distributions. When our adaptive coordinate sampling strategy is applied to the SPDC (Zhang
and Xiao, 2017), we prove that the resulting algorithm enjoys linear convergence. Moreover, we show that the ideal
form of our adaptive sampling exhibits strictly sharper convergence rate under certain conditions compared with
the vanilla SPDC. We also extend our sampling strategy to other algorithms including DSPDC (Yu et al., 2015) and
SPD1-VR (Tan et al., 2018), where both the primal and dual coordinates are randomly sampled. Our experiment
results show that the proposed strategy significantly improves the convergence performance of the methods when
compared with existing sampling strategies.

Keywords: primal-dual methods; stochastic optimization algorithms; adaptive importance sampling; machine learning

1. Introduction

A wide range of problems in machine learning and statistics boil down to the following empirical risk
minimization with linear predictor:

min
x∈Rd

{
P (x) =

1

n

n∑
i=1

φi(a
>
i x) + g(x)

}
, (1)

1



where ai ∈ Rd is the i-th feature vector, φi : R → R is the i-th convex closed loss function associated
with the linear prediction a>i x, and g : Rd → R is a convex regularization function for the predictor
x ∈ Rd. Problem (1) arises in many classification and regression tasks, where φi and g take different
forms, such as

• logistic regression with sigmoid loss:

φi(z) = log(1 + exp(−biz)), bi ∈ {±1}, (2)

• support vector machine with smoothed hinge loss:

φi(z) =

 0 if biz ≥ 1
1/2− biz if biz ≤ 0
(1/2)(1− biz)2 otherwise

, bi ∈ {±1}, (3)

• linear/ridge regression with squared loss:

φi(z) =
1

2
(z − bi)2, bi ∈ R, (4)

Two commonly used regularizers include the `2-norm g(x) = (λ/2)‖x‖22 where λ > 0, and the (`1+`2)-
norm g(x) = λ1‖x‖1 + (λ2/2)‖x‖22 where λ1, λ2 > 0.

Instead of directly solving the primal problem (1), it is often advantageous to tackle its equivalent
primal-dual reformulation (Esser et al., 2010)

min
x∈Rd

max
y∈Rn

{
F (x, y) =

1

n
y>Ax− 1

n

n∑
i=1

φ∗i (yi) + g(x)

}
, (5)

where A = [a>1 , . . . , a
>
n ]> ∈ Rn×d, φ∗i (yi) = supν∈R{νyi − φi(ν)} is the convex conjugate function

of φi. In this paper, we focus on the convex-concave saddle point problem (5). If φi is (1/γ)-smooth
(i.e., φi has Lipschitz continuous gradient with constant 1/γ), then its conjugate φ∗i is γ-strongly convex
(see Chapter E, Theorem 4.2.2 in Hiriart-Urruty and Lemaréchal (2012)). We consider a decomposable
regularizer g, i.e.,

g(x) =

d∑
j=1

gj(xj), (6)

where gj : R→ R is a univariate function of xj . Obviously, both the `1- and `2-norm regularizers satisfy
decomposability.

A favorable choice for solving problem (5) is the primal-dual hybrid gradient (PDHG) algorithm
(Chambolle and Pock, 2011). In PDHG, the primal variable x and dual variable y are alternately updated
by the proximal gradient method, and the sequence will finally converge to the saddle point of F (x, y).
Although PDHG is easy to implement, it is still computationally expensive when the number of examples
n is very large. To avoid evaluating full gradients in PDHG whose per-iteration complexity is O(nd),
a collection of stochastic primal-dual methods are proposed. Representative algorithms include SPDC



(Zhang and Xiao, 2017), DSPDC (Yu et al., 2015), and SPD1-VR (Tan et al., 2018). SPDC introduces
randomness to the selection of dual coordinates, achieving significantly reducedO(d) per-iteration com-
putational cost. DSPDC and SPD1-VR are doubly stochastic algorithms where both the primal and dual
coordinates are randomly selected. DSPDC and SPD1-VR have only O(n + d) and O(1) per-iteration
complexity respectively, while SPD1-VR requires computation of full gradients once every fixed number
of steps.

Although researchers have studied non-stationary sampling probabilities for stochastic gradient met-
hods (Needell et al., 2014; Zhao and Zhang, 2015; Csiba and Richtárik, 2018; Zhou et al., 2018; Horváth
and Richtarik, 2019; Qian et al., 2019). and random coordinate methods (Shalev-Shwartz and Tewari,
2011; Nesterov, 2012; Shalev-Shwartz and Zhang, 2013; Richtárik and Takáč, 2014; Lu and Xiao, 2015;
Richtárik and Takáč, 2016; Shalev-Shwartz, 2016; Zhang and Gu, 2016) to solve the primal problem
(1), there has not been any work that equips stochastic primal-dual methods with adaptive sampling
strategies. Taking SPDC as an example, the stationary sampling probability of the dual coordinate yk is
either 1/n, which uses no extra information, or (1− δ)(1/n) + δ(‖ak‖2/

∑n
i=1 ‖ai‖2), which only uses

the global property of objective function. Hence, we are motivated to design varying sampling distribu-
tions that can exploit more local information of the objective function, which may further improve the
convergence performance.

In this paper, we propose an adaptive coordinate sampling strategy, which dynamically adjusts the
sampling distribution based on first-order information collected in the past iterations. The sampling
probability of each coordinate is weighted by the so-called gradient map, which is very lightweight in
terms of both computation and storage. The probability update and adaptive sampling can be efficiently
implemented using a binary tree data structure. Specifically, we propose SPDC-AIS, DSPDC-AIS and
SPD1-VR-AIS, which are respectively SPDC, DSPDC, and SPD1-VR incorporated with our adaptive
sampling strategy. For SPDC-AIS, only dual coordinates are sampled based on some adaptive proba-
bilities, while for DSPDC-AIS, and SPD1-VR-AIS, both the primal and dual coordinates are sampled
adaptively. Theoretical analysis of our adaptive coordinate sampling strategy is based on SPDC-AIS. We
prove that SPDC-AIS converges linearly for strongly convex objective function. In addition, under pro-
per assumptions that can be empirically verified, we show that the ideal form of our adaptive importance
sampling contributes to faster convergence than the vanilla SPDC. Numerical evaluations on widely
used support vector machine (SVM) show that notably sharper convergence can be achieved compared
with the stochastic primal-dual methods with uniform sampling and traditional non-uniform sampling
methods.

2. SINGLY ADAPTIVE SAMPLING

In this section, we introduce our adaptive sampling rule and apply it to SPDC, where only the dual
coordinates are randomly chosen.

SPDC is basically an stochastic extension of PDHG (Chambolle and Pock, 2011) to approach the
saddle point of F (x, y) of problem (5). They both alternately maximize F with respect to y and minimize



F with respect to x. If we rewrite problem (5) as

min
x∈Rd

max
y∈Rn

{
F (x, y) =

1

n

n∑
i=1

(〈ai, x〉 yi − φ∗i (yi)) + g(x)

}
,

we can observe that for a fixed x, F (x, y) is decomposable in terms of the dual coordinates yi’s. In the
t-th iteration of SPDC, for fixed x̄t, we first uniformly choose an index it ∈ {1, . . . , n} and then perform
a proximal gradient ascent step on 〈ait , x〉 yit − φ∗it(yit). That is,

yt+1
it

= proxσφ∗it
(ytit + σ

〈
ait , x̄

t
〉
) = arg max

u∈R

{〈
ait , x̄

t
〉
u− φ∗it(u)− 1

2σ
(u− ytit)

2

}
, (7)

where σ is the dual step size. Subsequently, the whole primal vector is updated for fixed yt+1:

xt+1 = arg min
x∈Rd

{〈
st + (yt+1

it
− ytit)ait , x

〉
+ g(x) +

1

2τ
‖x− xt‖22

}
, (8)

where τ is the primal step size and st = (1/n)
∑n

i=1 y
t
iai ∈ Rd can be pre-computed and stored. An

extrapolation step is required to facilitate the convergence:

x̄t+1 = xt+1 + θ(xt+1 − xt). (9)

Steps (7)-(9) yield O(d) overall computational cost, which is much lower than the O(nd) per-iteration
cost of PDHG.

2.1. SPDC-AIS

To make the algorithm more adaptive to the local structures of F (x, y), we are motivated to design an
adaptive coordinate sampling rule for SPDC. Let us rewrite equation (7) as

yt+1
it

= ytit + σGσ(ytit), (10)

where

Gσ(ytit) =
1

σ

[
proxσφ∗it

(
ytit − σ

〈
ait , x

t
〉)
− ytit

]
(11)

denotes the gradient map. By the first-order optimality condition of proximal mapping, |Gσ(yi)| = 0 if
and only if yi maximizes 〈ai, x〉 yi − φ∗i (yi). Intuitively speaking, the larger the value of |Gσ(ytit)|, the
more often we wish to sample the it-th dual coordinate. Motivated by this, in the t-th iteration, we can
sample the dual index i ∈ {1, . . . , n} with probability proportional to |Gσ(yti)|κ, where κ usually takes
non-negative values like 0, 0.5 and 1 (Allen-Zhu et al., 2016) (Nesterov, 2012). However, |Gσ(yti)|κ
can be arbitrarily small, leading to little chance of sampling the i-th coordinate. Hence, a sampling
distribution that is mixed with the uniform distribution is more reasonable. For instance, the probability



of sampling i-th dual coordinate can be

pti = (1− δt)
1

n
+ δt

|Gσ(yti)|κ∑n
k=1 |Gσ(ytk)|κ

, ∀i ∈ {1, . . . , n}, (12)

where δ ∈ (0, 1] is the parameter used to balance these two distribution. Hence, pti is lower bounded,
i.e., pti ≥ (1− δt)/n. Nevertheless, (12) is an ideal sampling distribution since it requires the evaluation
of Gσ(yti) for all i ∈ {1, . . . , n}, which takes O(nd) computational cost at every iteration and is thus not
feasible. In our proposed method SPDC-AIS (see Algorithm 1 for details), we overcome this defect by
replacing each Gσ(yti) with Gσ(y

[i]
i ), where [i] denotes the most recent iteration in which the index i is

picked. We need to store and maintain a vector π = [π1, . . . , πn], where πi = Gσ(y
[i]
i ) for i ∈ {1, . . . , n}.

In other words, we use the historical gradient maps that are evaluated at different iterates to approximate
the sampling probabilities (12), in exchange for significantly lower per-iteration computational cost.

Algorithm 1 SPDC-AIS

1: Input: primal step size τ > 0, dual step size σ > 0, number of iterations T , initial points x0 and y0,
parameters δt ∈ [δ, δ], κ, θ > 0.

2: Initialize: x̄0 = x0, s0 = (1/n)
∑n

k=1 y
0
kak, πi = 1 for all i ∈ {1, . . . , n}

3: for t = 0, 1, 2, . . . , T − 1 do
4: Update probability distribution pt, where

pti = (1− δt)
1

n
+ δt

|πi|κ∑n
k=1 |πk|κ

, ∀i ∈ {1, . . . , n} (13)

5: Randomly pick it ∈ {1, 2, . . . , n} according to the distribution pt

6: Perform updates:

yt+1
it

= arg max
β∈R

{〈
ai, x̄

t
〉
β − φ∗i (β)−

nptit
2σ

(β − yti)2
}

yt+1
i = yti for all i 6= it

πit =
nptit
σ

(
yt+1
it
− ytit

)
xt+1 = arg min

x∈Rd

{〈
st +

yt+1
it
− ytit

nptit
ait , x

〉
+ g(x) +

‖x− xt‖22
2τ

}
st+1 = st +

1

n
(yt+1
it
− ytit)ait

x̄t+1 = xt+1 + θ(xt+1 − xt)

7: end for
8: Output: xT and yT



Fig. 1: Example of Binary Tree T7 (Each ci = |πi|κ)

2.2. Implementation of the Sampling

For SPDC-AIS, we need to choose the indices according to a varying non-uniform distribution. In other
words, we need to generate a random integer that follows a different distribution p in every iteration. To
achieve this in a computationally efficient way, we resort to a binary tree data structure.

Suppose that there are n data examples. Let ci = |πi|κ be the i-th leaf of Tn. By properly adding
”empty” nodes, we can group the nodes at each level in pairs. Fig. 1 illustrates an example of such
a binary tree with n = 7. Note that we need to add one more leaf at the bottom level, so that it can
be grouped with c7. According to Algorithm 1, some πi is changed in each iteration. Hence, all nodes
related to ci in Tn should be updated. The update of Tn can be done in a bottom-up way. It is known that
the height of Tn is dlog ne. Thus, by updating the tree in a bottom-up approach, the computational cost
is O(log n). Tn can contribute to generating a random integer following a given distribution. If we first
generate a uniformly distributed random number r ∈ [0, 1], we are supposed to find the index i such that∑i−1

k=1 p
t
k < r <

∑i
k=1 p

t
k, where for i ∈ {1, . . . , n},

i∑
k=1

ptk =
(1− δt)i

n
+ δt

∑i
k=1 |πk|κ∑n
l=1 |πl|κ

. (14)

Since all the partial sums on the right-hand side of (14) are stored in Tn, we can quickly find the desired
i by visiting Tn in a top-down fashion. Obviously, searching for i also takes O(log n) time.

To conclude, additional O(log n) per-iteration cost is needed to implement the adaptive sampling.
Since updating the primal and dual variables already requires O(d) per-iteration cost, our adaptive coor-
dinate sampling method does not increase the order of computational complexity.

2.3. Convergence Analysis

In this section, we provide a theoretical analysis of the proposed adaptive coordinate sampling method
SPDC-AIS.

SPDC-AIS shown in Algorithm 1 requires three control parameters τ , σ, and θ, and its convergence



is guaranteed provided that the parameters are properly specified and the sampling probabilities do not
vary drastically. Specifically, we have the following Theorem.

Theorem 1. Let {xt, yt} be the sequence generated by Algorithm 1. Suppose that each φi is convex and
(1/γ)-smooth, g is λ-strongly convex. Denote R := maxi ‖ai‖2. The parameters τ, σ, θ in Algorithm 1
are chosen as

τ =
1− δ
2R

√
γ

nλ
, σ =

1− δ
2R

√
nλ

γ
, θ = 1− µ,

where µ = min
{

2λτ
1+2λτ ,

γ

n/σ+n/(1−δ)

}
. Suppose that the following inequality holds for all t ≥ 1:

n∑
i=1

(
1

2σ
+
γ(1− pti)
npti

)
(yti − y∗i )2 ≤ θ ·

n∑
i=1

(
1

2σ
+

γ

npt−1i

)
(yti − y∗i )2. (15)

Then, we have

E

[(
1

2τ
+ λ

)
‖xt − x∗‖22 +

n∑
i=1

(
1

4σ
+
γ

n

)
(yti − y∗i )2

]

≤ θt
[(

1

2τ
+ λ

)
‖x0 − x∗‖22 +

n∑
i=1

(
1

2σ
+ γ

)
(y0i − y∗i )2

]
,

where (x∗, y∗) is the saddle point.

Theorem 1 shows that the sequence {(xt, yt)} will converge linearly to the unique saddle point in
expectation, which matches the results in (Zhang and Xiao, 2017). Before we present the detailed proof
of Theorem 1, we conduct simulations on three datasets (colon-cancer, a2a, gisette) to check the as-
sumption (15). We obtain an almost optimal value y∗ by running SPDC for sufficiently large number of
iterations, then we compute the term

θt =

n∑
i=1

(
1

2σ
+
γ(1− pti)
npti

)
(yti − y∗i )2

/
n∑
i=1

(
1

2σ
+

γ

npt−1i

)
(yti − y∗i )2,

and compare θt with θ. The results are presented in Fig. 2, which shows that θt ≤ θ holds in most of the
iterations. Therefore, we claim that the condition (15) holds on average empirically.

To prove Theorem 1, we first state the following key lemma, which is a direct consequence of inequa-
lities (62) and (63) in (Zhang and Xiao, 2017).



Fig. 2: Comparison of θt and θ for SPD1-AIS Algorithms

Lemma 1. Let {(xt, yt)} be the sequence generated by Algorithm 1. Then, we have

‖xt − x∗‖22
2τ

+

n∑
i=1

(
1

2σ
+
γ(1− pti)
npti

)
(yti − y∗i )2 ≥

E

[(
1

2τ
+ λ

)
‖xt+1 − x∗‖22 +

n∑
i=1

(
1

2σ
+

γ

nptit

)
(yt+1
it
− y∗it)

2

+
(yt+1 − y∗)TA(xt+1 − xt)

n
− θ(yt − y∗)TA(xt − xt−1)

n

+
‖xt+1 − xt‖22

2τ
+

(yt+1
it
− ytit)

2

2σ

− 1

nptit
‖yt+1
it
− ytit‖2‖ait‖2

(
‖xt+1 − xt‖2 + θ‖xt − xt−1‖2

)
| Ft

]
.

(16)

Based on Lemma 1, we can obtain the following proposition.

Proposition 1. Assume σ, τ are chosen such that στ ≤ (1− δ)2/4R2. Then, we have

‖xt − x∗‖22
2τ

+

n∑
i=1

(
1

2σ
+
γ(1− pti)
npti

)
(yti − y∗i )2 +

θ(yt − y∗)TA(xt − xt−1)
n

+
θ‖xt − xt−1‖22

4τ

≥ E

[
(

1

2τ
+ λ)‖xt+1 − x∗‖22 +

n∑
i=1

(
1

2σ
+

γ

npti

)
(yt+1
i − y∗i )2

+
(yt+1 − y∗)TA(xt+1 − xt)

n
+
‖xt+1 − xt‖22

4τ
| Ft

]
.

Proof. We need to lower bound the last term on the right-hand side of inequality (16). Observe that we



have

1

nptit
‖yt+1
it
− ytit‖2‖ait‖2‖x

t+1 − xt‖2 ≤
‖xt+1 − xt‖22

4τ
+

τ

(nptit)
2
‖ait‖22‖yt+1

it
− ytit‖

2
2

≤ ‖x
t+1 − xt‖22

4τ
+

τR2

(1− δ)2
‖yt+1
it
− ytit‖

2
2

≤ ‖x
t+1 − xt‖22

4τ
+

1

4σ
‖yt+1
it
− ytit‖

2
2.

The first inequality holds because of Young’s inequality; the second holds since we know that nptit ≥ 1−
δt ≥ 1− δ and ‖ait‖2 ≤ R; the last inequality holds because of the assumption that τ ≤ (1− δ)2/4R2σ.
Similarly, we have

1

nptit
‖yt+1
it
− yitt ‖2‖ait‖2‖xt − xt−1‖2 ≤

‖xt − xt−1‖22
4τ

+
1

4σ
‖yt+1
it
− ytit‖

2
2.

Thus, the last term on the right-hand side of inequality (16) can be lower bounded by

E
[
‖xt+1 − xt‖22

2τ
+

(yt+1
it
− ytit)

2

2σ

− 1

nptit
‖yt+1
it
− ytit‖2‖ait‖2

(
‖xt+1 − xt‖2 + θ‖xt − xt−1‖2

)
| Ft

]
≤ E

[
‖xt+1 − xt‖22

4τ
− θ‖x

t − xt−1‖22
4τ

]
.

Combining the above inequality and (16) completes the proof.

Now, we are ready to prove the Theorem 1.

Proof of Theorem 1. Define ∆t (t ≥ 0) as

∆t = E

[(
1

2τ
+ λ

)
‖xt − x∗‖22 +

n∑
i=1

(
1

2σ
+

γ

npt−1i

)
(yti − y∗i )2

+
(yt − y∗)TA(xt − xt−1)

n
+
‖xt − xt−1‖22

4τ

]
.

First, based on the assignment of the parameters, we have

1/(2τ)

1/(2τ) + λ
≤ θ.



Then, combining (15) and Proposition 1, we obtain the recursive relation ∆t+1 ≤ θ ·∆t. Thus,

E
[(

1

2τ
+ λ

)
‖xt − x∗‖22 +

n∑
i=1

(
1

2σ
+

γ

npt−1i

)
(yti − y∗i )2

+
(yt − y∗)TA(xt − xt−1)

n
+
‖xt − xt−1‖22

4τ

]
≤ θt∆0,

(17)

where

∆0 =

(
1

2τ
+ λ

)
‖x0 − x∗‖22 +

n∑
i=1

(
1

2σ
+ γ

)
(y0i − y∗i )2.

To bound the last two terms on the left-hand side of inequality (17), we note that

(yt − y∗)TA(xt − xt−1)
n

≥− ‖x
t − xt−1‖22

4τ
− τ‖yt − y∗‖22‖A‖22

n2

≥− ‖x
t − xt−1‖22

4τ
− (1− δ)2‖yt − y∗‖22

4nσ

≥− ‖x
t − xt−1‖22

4τ
− ‖y

t − y∗‖22
4σ

.

The first inequality holds because of Young’s inequality and the second inequality follows from the
assumption τ ≤ (1− δ)2/4R2σ. Finally, we can simplify inequality (17) as

E

[(
1

2τ
+ λ

)
‖xt − x∗‖22 +

n∑
i=1

(
1

4σ
+

γ

npt−1i

)
(yti − y∗i )2

]
≤ θt∆0. (18)

Applying the fact that pt−1i ≤ 1 to (18), the proof is completed.

Theorem 1 demonstrates that SPDC-AIS has a comparable convergence rate with SPDC, while theo-
retically it does not demonstrate the advantages of importance sampling. In the following theorem, we
show that importance sampling does enjoy a faster convergence rate. Before that, we need the following
assumption.

Assumption 1. There exists a constant ρ > 0 such that for any y ∈ Rn and σ > 0, we have

∑n
i=1 |Gσ(yi)|3∑n
i=1 |Gσ(yi)|

−

(
1

n

n∑
i=1

|Gσ(yi)|

)2

≥ ρ

n
‖y − y∗‖22, (19)

where Gσ(yi) is the proximal mapping defined in (11).



According to the generalized mean inequality, we have

1

n

n∑
i=1

|Gσ(yi)|3 ≥

(
1

n

n∑
i=1

|Gσ(yi)|

)3

.

Thus, the left-hand-side of (19) is always non-negative and the equality holds only when all Gσ(yi)’s take
the same value. Besides, we conduct simulations to approximate the exact value of ρ for three different
datasets (colon-cancer, a2a, gisette). We first obtain an almost optimal value y∗ by running SPDC for a
sufficient large number of iterations, then we compute the following term in each iteration:

ρt =

∑n
i=1 |Gσ(yti)|3∑n
i=1 |Gσ(yti)|

−

(
1

n

n∑
i=1

|Gσ(yti)|

)2
/(

1

n
‖yt − y∗‖22

)
.

The results are shown in Fig. 3. Then, we choose the minimum value of ρt as a reasonable approximation

Fig. 3: The Value of ρt in Each Iteration of SPD1-AIS

of ρ in Assumption 1. Table 1 reports the specific choices of ρ for the three different datasets. As it is
observed from Fig. 3 and Table 1, Assumption 1 always holds with some large enough constant ρ > 0,
especially when y is close to y∗.

Table 1: Parameters for Different Datasets

colon-cancer a2a gisette

ρ 56.6 0.7 13.6

Equipped with Assumption 1, we can establish an improved rate of convergence by adopting the
adaptive probability distribution given in (12).

Theorem 2. Suppose that each φi is convex, (1/γ)-smooth, g is λ-strongly convex and Assumption 1
holds. Besides, assume that

pti = (1− δt)
1

n
+ δt

|Gσ(yti)|∑n
k=1 |Gσ(ytk)|

, ∀i ∈ {1, . . . , n}.



Denote R := maxi ‖ai‖2. If the parameters τ, σ, θ are chosen as

τ =
1

2R

√
γ

nλ
, σ =

1

2R

√
nλ

γ
, θ = 1− µ̃,

where µ̃ = min
{

2λτ
1+2λτ ,

γ+ρσδ

n/σ+n/(1−δ)

}
, then we have

E

[(
1

2τ
+ λ

)
‖xt − x∗‖22 +

n∑
i=1

(
1

4σ
+
γ

n

)
(yti − y∗i )2

]

≤ θt
[(

1

2τ
+ λ

)
‖x0 − x∗‖22 +

n∑
i=1

(
1

2σ
+ γ

)
(y0i − y∗i )2

]
,

where (x∗, y∗) is the saddle point.

Proof. We know that

E

[
(yt+1
it
− ytit)

2

2σ
| Ft

]
=

n∑
i=1

σ

2
|Gσ(yti)|2pti =

(1− δt)σ
2n

n∑
i=1

|Gσ(yti)|2 +
δtσ

2

∑n
i=1 |Gσ(yti)|3∑n
i=1 |Gσ(yti)|

.

(20)

By the definition of pti and the fact that (ax+ by)(a/x+ b/y) ≥ (a+ b)2 for all x, y, a, b > 0, we have

1

pti
≤ (1− δt)n+ δt

∑n
k=1 |Gσ(ytk)|
|Gσ(yti)|

. (21)

Thus, we lower bound the last term on the right-hand side of inequality (16)

E
[

1

nptit
‖yt+1
it
− ytit‖2‖ait‖2‖x

t+1 − xt‖2 | Ft
]

≤ E
[
‖xt+1 − xt‖22

4τ
+

τ

(nptit)
2
‖ait‖22‖yt+1

it
− ytit‖

2
2 | Ft

]
= E

[
‖xt+1 − xt‖22

4τ
| Ft

]
+

n∑
i=1

τR2

n2pti
σ2|Gσ(yti)|2

≤ E
[
‖xt+1 − xt‖22

4τ
| Ft

]
+

(1− δt)σ
4n

n∑
i=1

|Gσ(yti)|2 +
δtσ

4n2

(
n∑
i=1

|Gσ(yti)|

)2

,

(22)

where the last inequality holds because of (21) and the fact that τσ = 1/4R2. Similarly with (22), we



also have

E
[

1

nptit
‖yt+1
it
− ytit‖2‖ait‖2‖x

t − xt−1‖2 | Ft
]

≤ E
[
‖xt − xt−1‖22

4τ
| Ft

]
+

(1− δt)σ
4n

n∑
i=1

|Gσ(yti)|2 +
δtσ

4n2

(
n∑
i=1

|Gσ(yti)|

)2

.

(23)

Combining (20), (22), and (23) gives

E

[
‖xt+1 − xt‖22

2τ
+

(yt+1
it
− ytit)

2

2σ

− 1

nptit
‖yt+1
it
− ytit‖2‖ait‖2(‖x

t+1 − xt‖2 + θ‖xt − xt−1‖2) | Ft

]

≥ E
[
‖xt+1 − xt‖22

4τ
− θ‖x

t − xt−1‖22
4τ

| Ft
]

+
δtσ

2

(∑n
i=1 |Gσ(yti)|3∑n
i=1 |Gσ(yti)|

− (
1

n

n∑
i=1

|Gσ(yti)|)2
)

≥ E
[
‖xt+1 − xt‖22

4τ
− θ‖x

t − xt−1‖22
4τ

| Ft
]

+
δtσρ

2n
‖yt − y∗‖22,

(24)

where the last inequality follows from Assumption 1. Furthermore, by Lemma 1, we obtain an improved
version of Proposition 1:

‖xt − x∗‖22
2τ

+

n∑
i=1

(
1

2σ
− δtσρ

2
+
γ(1− pti)
npti

)
(yti − y∗i )2

+
θ(yt − y∗)TA(xt − xt−1)

n
+ θ
‖xt − xt−1‖22

4τ

≥ E

[
(

1

2τ
+ λ)‖xt+1 − x∗‖22 +

n∑
i=1

(
1

2σ
+

γ

npti

)
(yt+1
i − y∗i )2

+
(yt+1 − y∗)TA(xt+1 − xt)

n
+
‖xt+1 − xt‖22

4τ
| Ft

]
.

The remaining part of the proof is just the same as the proof of Theorem 1. This completes the proof of
Theorem 2.

Comparing Theorem 2 with Theorem 1, we can see that µ̃ > µ, which actually indicates the benefit
brought by the importance sampling. In other words, under proper assumptions, the theoretical conver-
gence rate is improved from 1− µ to 1− µ̃.

Remark 1. According to Theorem 1 in (Zhang and Xiao, 2017), SPDC with the same parameters τ and



σ achieve the following convergence rate:

E[∆(t)] ≤ θt
(

∆(0) +
‖y(0) − y?‖22

4σ

)
where θ = 1−

(
n+ 2R

√
n

λγ

)−1
.

To compare the convergence rates of SPDC and SPDC-AIS, we only need to compare θ and θ given in
Theorem 2. Note that

θ = 1− µ̃ = 1−min

{
2λτ

1 + 2λτ
,

γ + ρσδ

n/σ + n/(1− δ)

}
= max

{
1−

(
1 +R

√
n

λγ

)−1
, 1−

(
n

(γ + ρσδ)(1− δ)
+

γ

γ + ρσδ
· 2R

√
n

λγ

)−1}
.

Assuming γ ≥ 1 (which is true for the three loss functions mentioned in Introduction), by choosing
δ = 1− 1/(γ + ρσδ) ∈ (0, 1), we have

θ = max

{
1−

(
1 +R

√
n

λγ

)−1
, 1−

(
n+

γ

γ + ρσδ
· 2R

√
n

λγ

)−1}

≤ 1−
(
n+ max

{
γ

γ + ρσδ
,
1

2

}
· 2R

√
n

λγ

)−1
< 1−

(
n+ 2R

√
n

λγ

)−1
= θ,

where the first inequality is due to max
{

γ
γ+ρσδ ,

1
2

}
< 1. Thus, ρ depends on how much the convergence

rate is improved. Besides, if there is no importance sampling, i.e., δ = δ = 0, then we have θ = θ, which
means that SPDC-AIS reduces to the standard SPDC.

3. DOUBLY ADAPTIVE SAMPLING

In this section, we extend the adaptive coordinate sampling strategy to the doubly stochastic algorithms
DSPDC (Yu et al., 2015) and SPD1-VR (Tan et al., 2018), where the coordinates of both the primal and
dual variables are randomly sampled.



Algorithm 2 DSPDC-AIS

1: Input: primal step size τ > 0, dual step size σ > 0, number of iterations T , initial points x0 and y0,
parameters δt ∈ [δ, δ], κ, θ > 0.

2: Initialize: x̄0 = x0, s0 = (1/n)
∑n

k=1 y
0
kak, πi = ψj = 1 for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d}

3: for t = 0, 1, 2, . . . , T − 1 do
4: Update probability distribution pt and qt, where

pti = (1− δt)
1

n
+ δt

|πi|κ∑n
k=1 |πk|κ

, ∀i ∈ {1, . . . , n} (25)

qtj = (1− δt)
1

d
+ δt

|ψj |κ∑d
k=1 |ψk|κ

, ∀j ∈ {1, . . . , d} (26)

5: Randomly pick it ∈ {1, 2, . . . , n} and jt ∈ {1, 2, . . . , d} according to the distribution pt and qt,
respectively

6: Perform updates:

yt+1
it

= arg max
β∈R

{〈
ai, x̄

t
〉
β − φ∗i (β)−

nptit
2σ

(β − ytit)
2

}
yt+1
i = yti for all i 6= it

πit =
nptit
2σ

(yt+1
it
− ytit)

ȳt+1 = yt+1 + n(yt+1 − yt)

xt+1
jt

= arg max
α∈R

{
1

n

〈
Aj , ȳt+1

〉
α− gj(α)−

dqtjt
2τ

(α− xtj)2
}

xt+1
j = xtj for all j 6= jt

ψjt =
dqtjt
2τ

(xt+1
jt
− xtjt)

x̄t+1 = xt+1 + θ(xt+1 − xt)

7: end for
8: Output: xT and yT

3.1. DSPDC-AIS

For DSPDC, instead of updating the whole vector xt+1, we randomly sample jt ∈ {1, 2, . . . , d} and
update xt+1

jt
as

xt+1
jt

= arg min
α∈R

{
1

n

〈
Ajt , ȳt+1

〉
α+ gjt(α) +

1

2τ
(α− xtjt)

2

}
,



where Aj denotes the j-th column of A and τ is the primal step size. The importance sampling strategy
for the primal variable x is similar to that for the dual variable y. First, we define the gradient mapping
for primal variables as

Gτ (xtj) =
[
xtj − proxτgj

(
xtj −

τ

n

〈
Aj , yt

〉)] /
τ.

Then, the sampling distribution is mixed with the uniform distribution, which is given by

qtj = (1− δt)
1

d
+ δt

|Gτ (xtj)|κ∑d
k=1 |Gτ (xtk)|κ

, ∀j ∈ {1, . . . , d}. (27)

For simplicity, we use the historical gradient maps Gτ (x
[i]
i ) evaluated in the most recent iteration to

approximate Gτ (xti). Besides, we need to use another binary tree, whose i-th leaf is |ψi| = |Gτ (x
[i]
i )|, to

store the gradient information and achieve non-uniform sampling. See Algorithm 2 for details.

3.2. SPD1-VR-AIS

SPD1-VR is a variant of DSPDC. Utilizing the decomposable structure of g as shown in (6), we can
further rewrite problem (5) as

min
x∈Rd

max
y∈Rn

 1

n

n∑
i=1

d∑
j=1

(
aijyixj −

1

d
φ∗i (yi) + gj(xj)

) .

Observe that both the primal and dual coordinates are decomposable by fixing the other one. We can
randomly choose a primal index and a dual index in every iteration and achieve only O(1) per-iteration
cost. Besides, variance reduction technique (Johnson and Zhang, 2013) is employed in SPD1-VR to
accelerate the convergence, where full gradients with regard to both the primal and dual variables are
re-computed once every fixed number of iterations.

Instead of picking the primal and dual coordinates uniformly, we propose SPD1-VR-AIS that incorpo-
rates SPD1-VR with our adaptive coordinate sampling strategy (see Algorithm 3). This is a double-loop
algorithm and full gradients are computed periodically, which takes O(nd) time every epoch. Instead
of updating the probability distribution in every inner iteration, we do it right after computing the full
gradients at the beginning of each epoch. The sampling probabilities are also defined by gradient maps
as in (12) and (27). The computation of the proximal mappings takes only an additional O(n + d) time
for each epoch. Since the epoch length is T , the sampling probability will be calibrated every T ite-
rations. In other words, the sampling in the inner iterations uses historical information no more than T
iterations ago. Moreover, non-uniform sampling is also performed at the beginning of each epoch, which
guarantees that the per-iteration cost (including sampling and iteration) is still O(1).



Algorithm 3 SPD1-VR-AIS

1: Input: primal step size τ > 0, dual step size σ > 0, number of iterations T , initial points x0 and y0,
parameters δt ∈ [δ, δ].

2: Initialize: x̃0 ∈ X and ỹ0 ∈ Y
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Compute full gradients Gkx = (1/n)A>ỹk and Gky = (1/d)Ax̃k

5: Compute probability distribution pk and qk, where

pki = (1− δk)
1

n
+ δk

|Gσ(ỹki )|κ∑n
l=1 |Gσ(ỹkl )|κ

, ∀i ∈ {1, . . . , n}

qkj = (1− δk)
1

d
+ δk

|Gτ (x̃kj )|κ∑d
l=1 |Gτ (x̃kl )|κ

, ∀j ∈ {1, . . . , d}

6: Independently sample nd/ log(nd) primal indices following pk, and nd/ log(nd) dual indices
following qk, and store them in set I and J respectively

7: Set (x0, y0) = (x̃0, ỹ0)
8: for t = 0, 1, . . . , T − 1 do
9: Uniformly pick it, i′t ∈ I and jt, j′t ∈ J

10: Perform updates:

x̄tjt = proxτgjt

(
xtjt − τ

(
ai′tjt(y

t
i′t
− ỹki′t) +Gkx,jt

))
ȳtit = prox(σ/d)φ∗it

(
ytit − σ

(
aitj′t(x

t
j′t
− x̃kj′t) +Gky,it

))
xt+1
jt

= proxτgjt

(
xtjt − τ

(
aitjt(ȳ

t
it − ỹ

k
it) +Gkx,jt

))
yt+1
it

= prox(σ/d)φ∗it

(
ytit − σ

(
aitjt(x̄

t
jt − x̃

k
jt) +Gky,it

))
xt+1
j = xtj for all j 6= jt

yt+1
i = yti for all i 6= it

11: end for
12: Set (x̃k+1, ỹk+1) = (xT , yT )
13: end for
14: Output: x̃k+1 and ỹk+1

4. EXPERIMENT RESULTS

In this section, we present the experiment results for `2-regularized support vector machine (SVM)
with smoothed hinge loss. Specifically, the objective function is P (x) = 1

n

∑n
i=1 φi(a

>
i x) + λ

2‖x‖
2
2,

where φi is defined in (3). For both the singly stochastic and doubly stochastic primal-dual frameworks,
we compare our adaptive importance sampling (AIS) method with other sampling methods, i.e., stati-



onary Lipschitz-based importance sampling (LIS) and uniform sampling (US). All the algorithms are
tested based on the real datasets a2a, w8a, gisette, and colon-cancer, where the the value of λ are set
as 10−2, 10−2, 10−1, 100, respectively. The attributes of these datasets and values of λ chosen for each
dataset are summarized in Table 2. The datasets basically cover three different types, i.e., n� d, n ≈ d,
and n� d.

Table 2: Parameters for Different Datasets

colon-cancer gisette a2a w8a

n 62 6000 2265 49746

d 2000 5000 123 300

λ 100 10−1 10−2 10−2

4.1. Experiments on SPDC-AIS

We compare the performance of three algorithms, which are respectively SPDC-AIS, SPDC-LIS, and
SPDC-US. For SPDC-AIS, we set κ = 0.5, δ = 0.2, δ = 0.8, and δt = δ + (δ − δ)t/T , where
T is the maximum number of iterations we run. All the hyper-parameters τ, σ, θ are chosen by their
theoretical values given in Theorem 1. For SPDC-LIS, we let the probability of sampling the i-th dual
coordinate be pLi = (1 − δt) 1

n + δt
‖ai‖2∑n

k=1 ‖ak‖2 , where ‖ai‖2 is the Lipschitz constant of the component

gradient ai∇φi(a>i x). As shown in Fig. 4, all three algorithms achieve linear convergence, while our
proposed SPDC-AIS always exhibits notably sharper convergence rate than the other two algorithms. As
for SPDC-LIS, it outperforms uniform sampling only in the case of colon-cancer dataset where n � d.
For other three datasets, SPDC-LIS is just comparable with SPDC-US.

We also conduct experiments on two high dimensional datasets, i.e., RCV1 and Covtype. Besi-
des, as suggested in (Zhang and Xiao, 2017), we choose three small regularization weights λ =
10−4, 10−6, 10−8 to guarantee good accuracy. The results are reported in Table 3, which shows that
our proposed SPDC-AIS always exhibits notably sharper convergence rate than other two algorithms.

4.2. Experiments on DSPDC-AIS & SPD1-VR-AIS

Similar to SPDC-based algorithms, we also test the performance of doubly stochastic algorithms. For
DSPDC-AIS and SPD1-VR-AIS, we also set κ = 0.5, and δk = δ + (δ − δ)k/K, where K is the
maximum number of epochs we run. We adopt best-tuned fixed stepsizes for the three algorithms. For
DSPDC-LIS and SPD1-VR-LIS, we let the probability of sampling the i-th dual coordinate and j-th
primal coordinate be respectively pLi = (1− δk) 1

n + δk
‖ai‖2∑n

k=1 ‖ak‖2 and qLj = (1− δk) 1
n + δk

‖αj‖2∑d
l=1 ‖αl‖2

.
As shown in Fig. 5 and Fig. 6, our adaptive sampling-based algorithms converge much faster than

the other two sampling methods for all datasets, while LIS-based algorithms has similar overall perfor-



Fig. 4: Experiment Results for SPDC-based Algorithms

mance with US-based algorithms. These empirical results on real datasets demonstrate that our proposed
adaptive importance sampling method noticeably accelerates the convergence of stochastic primal-dual
algorithms.

4.3. Results of Execution Time

For fair comparison of the empirical results, we provide the execution time of the experiments in Sections
4.1 and 4.2. All our experiments are conducted based on an Intel i5 processor with 3.1GHz main fre-
quency. Tables 2-4 present the specific running times (in seconds) per epoch. As expected, non-uniform
sampling methods is somewhat more time-consuming than uniform sampling, since non-uniform sam-
pling requires O(log n) time per iteration to generate a random number. Besides, adaptive sampling
takes a little more time than Lipschitz-based sampling, since adaptive sampling requires extra O(log n)
to update the binary tree. For the same dataset, the execution time does not differ much from each other.



λ Covtype RCV1

10−4

10−6

10−8

Table 3: Experiment Results for SDPC-based Algorithms with Different Regularizer Weights

In particular, for datasets with relatively large dimension d, the extra execution time of our adaptive sam-
pling is just marginal relative to the O(d) time for updating the primal and dual variables. Together with
the results in Fig. 4-6, we conclude that at the cost of slightly higher computational burden per epoch,
our adaptive coordinate sampling methods significantly boost the stochastic primal-dual algorithms.



Fig. 5: Experiment Results for DSPDC-based Algorithms

Table 4: Execution Time of SPDC-based Algorithms

colon-cancer gisette a2a w8a

US 0.0042 3.01 0.0060 0.796

LIS 0.0043 3.09 0.0067 0.839

AIS 0.0049 3.34 0.008 0.895

5. Conclusion

In this paper, we have investigated an adaptive importance sampling method for stochastic primal-dual
optimization algorithms. The proposed method samples the primal and dual coordinates by adapting to
the local structure of the objective function. We have taken advantage of a specific binary tree structure
to implement computationally efficient sampling. We have applied our sampling method to three com-



Fig. 6: Experiment Results for SPD1-based Algorithms

Table 5: Execution Time of DSPDC-based Algorithms

colon-cancer gisette a2a w8a

US 0.0150 2.05 0.0126 9.01

LIS 0.0185 2.21 0.0131 9.29

AIS 0.0195 2.30 0.0134 9.38

mon stochastic primal-dual algorithms, i.e., SPDC, DSPDC, and SPD1-VR. We have provided detailed
theoretical analysis to justify the effectiveness of our methods. We have conducted experiments on real
datasets verify that our adaptive coordinate sampling achieves significantly faster convergence than the
common stationary sampling methods.



Table 6: Execution Time of SPD1-VR-based Algorithms

colon-cancer gisette a2a w8a

US 0.0080 5.936 0.0235 2.621

LIS 0.0120 6.033 0.0270 3.0425

AIS 0.0135 6.399 0.0295 3.1155
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Csiba, D., Richtárik, P., 2018. Importance sampling for minibatches. The Journal of Machine Learning Research 19, 1, 962–

982.
Defazio, A., Bach, F., Lacoste-Julien, S., 2014. Saga: A fast incremental gradient method with support for non-strongly convex

composite objectives. In Advances in neural information processing systems, pp. 1646–1654.
Devroye, L., 1986. Non-Uniform Random Variate Generation. Springer.
Esser, E., Zhang, X., Chan, T.F., 2010. A general framework for a class of first order primal-dual algorithms for convex

optimization in imaging science. SIAM Journal on Imaging Sciences 3, 4, 1015–1046.
Fang, C., Li, C.J., Lin, Z., Zhang, T., 2018. Spider: Near-optimal non-convex optimization via stochastic path-integrated

differential estimator. In Advances in Neural Information Processing Systems, pp. 689–699.
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