
A Unified Flow Scheduling Method for Time Sensitive Networks
Mingwu Yao, Jiamu Liu, Jing Du, Dongqi Yan, Yanxi Zhang, Wei Liu and Anthony Man-Cho So£

School of Telecommunications Engineering, Xidian University, Xi’an, 710071, Shaanxi, China
†Department of Systems Engineering and Engineering Management, Chinese University of Hongkong, Hongkong SAR, China

ART ICLE INFO

Keywords:
TSN
Scheduling
Network Utilization
Remaining Time
Unified Framework
Mixed Initial Population
Genetic Algorithm

ABSTRACT

Given the network and the time-triggered flow requests of a Time Sensitive Network (TSN), config-
uring the gate control lists (GCL) of IEEE 802.1Qbv for the ports of each node can be formed as a
Job Shop Scheduling Problem, which is NP-hard. At present, most of the existing heuristic solutions
for such problems consider scenarios where all given traffic flows can be scheduled. In order to solve
the undetermined flow scheduling problem in scenarios no matter whether the flows can be sched-
uled or not, we propose to maximize the remaining time in conjunction with optimizing the network
utilization instead of only minimizing the flowspan. Though the new problem is still NP-hard, it is
a unified framework capable of covering general scenarios. On the basis of the new framework, we
propose a novel Mixed initial population Genetic Algorithm (MGA) to solve the problem. Extensive
simulation evaluation shows that MGA performs better and faster in different network scenarios while
other methods prevails only in specific scenarios. This feature makes the method attractive in realistic
TSN scheduling applications for in most cases it is hard for users to properly classifying the problem.

1. Introduction
As guaranteed real-time communication[1] is important

to many applications, such as Industry 4.0, Smart Grids, and
Internet of Things, the demands for ultra-low latency com-
munication (ULLC) are significantly growing[2, 3]. One
such effort to meet the requirement is IEEE standard of Time
Sensitive Network (TSN). By TSN, critical traffic flows with
bounded low latency and jitter will share the channel with
other flows, thus improving efficiency and reducing cost[4].

The TSN supports different classes of traffic, such as pri-
oritized scheduled traffic and best-effort (BE) traffic[1]. The
IEEE 802.1Qbv proposed by TSN Task Group defines en-
hancements for the scheduled traffic[5]. In TSN, prioritized
traffic should be carried by end-to-end, periodic scheduled
flows (SFs), of which the frames are periodically forwarded
along a non-cyclic path. In each node through the path, the
sending of SF frames in each outgoing port is controlled
by the opening and closing of gates according to the open
and close time schedules configured in the gate control lists
(GCLs)[5]. The GCLs will be periodically executed on a
network-wide time basis established by time synchroniza-
tion protocols. If properly set, each packets of an SF will
pass through each node along its path in a TSN right when
the corresponding gate is open[5].

Given the TSN network topology and all the SF requests
for the network, the calculation of all the time configura-
tions of GCLs is a scheduling problem consisting of two
sub-problems, i.e., a start-time-calculating problem and a
sequencing problem[6]. Finding an acceptable sequential
order of the SFs, by start-time-calculating, the GCLs can
be determined. Therefore, solving the scheduling problem
equals to finding the optimum ordering of the given SF sets.
The problem is equivalent to a bin-packing problem and is
therefore NP-hard[7].

<Corresponding author: MW Yao
ORCID(s):

The scheduling of SFs can be categorized into static
[2][6] and dynamic ones[8][9]. For TSN, currently, most
of the scheduling methods of SFs are static, such as those
deployed in manufacturing applications[10].

The scheduling problem can be formulated into integer
linear programming and solved by tools, e.g., CPLEX[2]
and SMT solvers[8]. Due to computation burdens, how-
ever, heuristic algorithms are preferred[11, 12, 13, 14], such
as Tabu search[6], Greedy Randomized Adaptive Search
Procedure[12], and genetic algorithms[13][15].

Once the SFs are scheduled, the remaining bandwidth
can be used by lower priority traffics, such as BE traffic. Typ-
ically, a guard band is inserted between the closing time of
lower traffic gates and the opening time of scheduled traf-
fic gates to isolate them. However, too many guard bands
will reduce the remaining bandwidth for lower traffics and
scheduling with fewer guards bands is preferred[6].

For a given topology and SFs, if it is known that all the
SFs can be scheduled for any order, it is named as deter-
mined scenario. Otherwise it is undetermined. As the prob-
lem is NP-hard, it is often impossible to assume a priori to
which scenario a specific problem belongs. However, most
of the algorithms mentioned above are applicable to the de-
termined one andmay not be valid, or at least be efficient, for
the undetermined, implicitly or explicitly, due to the difficul-
ties to include different optimization goals. The method pro-
posed for the undetermined scenario is only to schedulemore
flows[14], which ignores the individual differences between
flows. Therefore, it is more desirable to cover the undeter-
mined scenarios with a unified framework, which naturally
includes the determined.

In this paper, we investigate the undetermined schedul-
ing problem of TSN, aiming at maximizing network utiliza-
tion while keeping available bandwidth for the lower traffic
as much as possible. And without loss of generality, we as-
sume that there is only scheduled traffic and BE traffic in the
network and the path of each SF is given as the shortest.

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 1 of 9

Alternate GA for TSN Stream Scheduling

The main contributions of this work are twofold:
1) A unified framework to schedule the SFs in more

general scenarios: Using hop delay, the new model includes
both Store-and-Forward switches (SFX) and Cut-Through
switches (CTX). With the remaining time, the framework
can avoid the drastic variation of the evaluation criteria dur-
ing scheduling in undetermined scenarios.

2) MGA (the Mixed initial population Genetic Algo-
rithm): Designed on the basis of the unified framework,
MGA can produce better GCLs to increase the available
bandwidth for BE traffic while maximizing the network uti-
lization in many different TSN scenarios.

The rest of this paper is organized as follows: The prob-
lem and the unified framework are described in Section II.
Section III presents the MGA. The evaluation results pro-
duced by extensive simulations are discussed in section IV
and the last section presents conclusions.

Notations: We use calligraphic letters, e.g.,  , , to de-
note sets, uppercase bold letters, e.g., A and D for matrices
and lowercase bold letters, e.g., d and p, for vectors. < is
used as a wild card to denote any possible element of its do-
main.

2. System Model and Problem Statement
2.1. System Model

We consider a TSN network supporting the IEEE
802.1Qbv gate control protocol. The network is comprised
of switches (SW), end systems (ES), and Ethernet links[16],
as shown in Fig. 1, and there are many scheduled traf-
fic need to be carried by the network. We are expected to
find some feasible scheduling of these high priority traffics
according to their transmission periods and frame lengths,
while leaving as many bandwidth as possible to BE traffic
[6]. The frames of a specific SF are generated periodically
by its source and transmitted hop by hop along a given non-
cyclic path. Both SW and ES have ingress and egress ports
connected via Ethernet links[3]. As shown in Fig. 2, of each
egress port the frames waiting to be forwarded on the as-
sociated link waiting in queues[17], each equipped with a
gate[18]. The frames in a queue are allowed to be transmit-
ted only if the corresponding gate is open, one at a time[15].
A GCL associated with each port contains an ordered list of
gate operations. In this paper, one queue is used for sched-
uled traffic, while others are for BE traffic. With GCLs,
the scheduled traffic can be transmitted in the reserved time
slices to meet its stringent latency and jitter requirements,
and ensure it is not interfered by BE traffic. For instance, in
Fig. 2, at time instance T02 only the scheduled traffic gate is
open, while at time instance T30 all the gates are closed. The
GCL repeats itself with a time cycle Tcycle upon a basis of
network-wide time synchronization.

For a network with N vertices of SWs and ESes,
and M simplex Ethernet links, the network topology can
be modeled as a directed graph G. ; /[2], where  =
^0; 1; 2; :::; N * 1‘ ˇ ℕ ,  = ^0; 1; 2; :::; M * 1‘ ˇ ℕ. v ¸
 is corresponding to SW and ES, and the directed edges

L1

L2

L3

gate control list on the port

flow

flow information entry in gate
control list

ES1

ES2

ES3

SW1 SW2

ES4

1f

2f

1f
1
f

2
f 2f

Figure 1: A TSN network of two switches (SW1 and SW2),
four end systems (ES1, ES2, ES3 and ES4), and two SFs (f1,
f2). As paths f1 and f2 have a common link the configuration
of all GCLs(L1, L2, L3) should avoid conflicts.

Figure 2: A Qbv-capable port architecture with GCL[5]

Table 1
Scheduled Flow Parameters

parameters meaning

fF ¸  | | vector of the first edge of flows: fF [f] = e, iff the first
hop of the flow path f ¸  is edge e ¸ 

lF ¸  | | vector of the last edge of flows: lF [f] = e, iff the last
hop of flow path f ¸  is edge e ¸ 

pF ¸ ℕ| | vector of flow period: pF [f] = pf , iff flow f ¸  has a
period of pf ¸ ℕ

e ¸  the simplex Ethernet link. An edge ei which departs
at vertex vd and enters vertex ve is denoted as ei = .vd ; ve/.
And the adjacency matrix AEE ¸ ^0; 1‘||�|| is defined as

AEE
[

ep
] [

en
]

=

{

1; if ep = .<; v/ and en = .v; </
0; otherwise

: (1)

For the two edges ep; en ¸  , only when ep ends at a vertex
v ¸  and en starts at the same vertex v, AEE

[

ep
] [

en
]

= 1.
The definition of the relationship matrix between edges

and vertices, BV E ¸ ^*1; 0; 1‘||�||, is defined as

BV E [v] [e] =

⎧

⎪

⎨

⎪

⎩

1; if e = .v; </
*1; if e = .<; v/
0; otherwise

. (2)

When the starting vertex of the edge e is v, BV E [v] [e] = 1,
and when the ending vertex of e is v, BV E [v] [e] = *1.

We denote the set of all given K SFs in the network as
 = ^0; 1; 2; ::; K * 1‘ ˇ ℕ. And some flow parameters in
the network are defined in Table 1.

The flow-edge relationship matrix UF E ¸ ^0; 1‘| |�||
is

UF E [f] [e] =

{

1; if flow f passes edge e
0; otherwise

. (3)

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 2 of 9

Alternate GA for TSN Stream Scheduling

Of the delays we discussed, the transmission delay is the
time a frame takes to leave the output queue, i.e., the bit-wise
frame-length divided by the link rate. The propagation delay
is the time each bit passing the link. The latency from the
input port to the output queue is the processing delay. And
the queuing delay is the time a frame waiting in the output
queue [19]. In TSN it is preferred to schedule SFs tightly
properly to completely eliminate the queuing delay.

The matrix of transmission delay is defined as RF E ¸
ℕ| |�||, of which RF E

[

fj
] [

ep
]

is that of flow fj on
edge ep. And we denote the propagation delay matrix as
Dprop

F E ¸ ℕ| |�||, of which Dprop
F E

[

fj
] [

ep
]

is that of fj
on ep. Then we denote the matrix of processing delay as
Dproc

F E ¸ ℕ| |�||, of which Dproc
F E

[

fj
] [

ep
]

is that of fj on
the end vertex of ep.

transd
propd

procd

1−iv iv 1+iv
pe

1+pe 1−iv iv 1+iv
pe

1+pe

transd

propd
procd

1−iv iv 1+iv
pe

1+pe 1−iv iv 1+iv
pe

1+pe

transd

propd
procd

transd

propd
procd

DD

propdj

j

j

j

j

j

j

j

j

jf jf

jf jf

vi-1 vi vi+1
ep ep+1

DFE[f j][ep]

DFE [f j][ep]
proc

DFE [f j][ep]
proc

DFE [f j][ep]
prop

DFE [f j][ep]
prop

RFE [f j][ep]

vi-1 vi vi+1
ep ep+1

RFE [f j][ep]

DFE [f j][ep]
prop

DFE [f j][ep]
prop DFE [f j][ep]

proc
DFE [f j][ep]

proc

DFE [f j][ep]
prop

DFE [f j][ep]
prop

DFE[f j][ep]

(a) Store-and-Forward

transd
propd

procd

1−iv iv 1+iv
pe

1+pe 1−iv iv 1+iv
pe

1+pe

transd

propd
procd

1−iv iv 1+iv
pe

1+pe 1−iv iv 1+iv
pe

1+pe

transd

propd
procd

transd

propd
procd

DD

propdj

j

j

j

j

j

j

j

j

jf jf

jf jf

vi-1 vi vi+1
ep ep+1

DFE[f j][ep]

DFE [f j][ep]
proc

DFE [f j][ep]
proc

DFE [f j][ep]
prop

DFE [f j][ep]
prop

RFE [f j][ep]

vi-1 vi vi+1
ep ep+1

RFE [f j][ep]

DFE [f j][ep]
prop

DFE [f j][ep]
prop DFE [f j][ep]

proc
DFE [f j][ep]

proc

DFE [f j][ep]
prop

DFE [f j][ep]
prop

DFE[f j][ep]

(b) Cut-Through

Figure 3: Delays in different types of switches

The hop delay is defined as the latency between two de-
parting events of a frame from two consecutive egress
ports along its path. As one hop corresponds to one
edge, we denote the matrix of hop delays of flows over
edges as DF E ¸ ℕ| |�||. We denote the jitter of
the network as j. When UF E

[

fj
] [

ep
]

= 1, the
DF E

[

fj
] [

ep
]

is the hop delay of the transmission of
fj on ep. As shown in Fig. 3, DF E

[

fj
] [

ep
]

=
Dproc

F E
[

fj
] [

ep
]

+ Dprop
F E

[

fj
] [

ep
]

+ RF E
[

fj
] [

ep
]

+ j, for the
SFX. DF E

[

fj
] [

ep
]

= Dproc
F E

[

fj
] [

ep
]

+ Dprop
F E

[

fj
] [

ep
]

+ j, for the CTX [20]. When
UF E

[

fj
] [

ep
]

= 0, let DF E
[

fj
] [

ep
]

= *1 for computation
convenience.

2.2. The Flow Scheduling Problem
For a given flow set and a network, we need to find a

configuration of the GCLs of all the ports, so that all the
SF data frames immediately start transmission at the very
moment of arriving without queuing delay, known as no-
queuing configuration[6]. In this case, when an SF is sched-
uled, we assume that its end-to-end delay bound is satisfied.

the frames of each SF are generated periodically, and
different flows may have different period. The least com-
mon multiple of all flow periods, h, is defined as the hyper-
cycle[2]. And Tcycle of all the GCLs is usually set as the
hyper-cycle.

When the topology and flow information, i.e., path, pe-
riod and delays, are given, the configuration for one SF in
all the GCLs along its path is determined as long as the start
time of the flow on its source is determined. If all the start

times of all SFs are obtained, the overall GCL configura-
tions are achieved. We denote the start time vector of the
SFs on their corresponding sources as sF ¸ ℕ| |. When
sF [fi] = *1, it means fi will not be scheduled. When
0 ≤ sF [fi] < pF

[

fi
]

, sF [fi] is the start time of fi on its
source from the beginning of the hyper-cycle, which is in-
trinsically less than the period of the flow, pF

[

fi
]

.
Given the start time vector sF , the start time matrix is

defined as TsF
¸ ℕ| |�||, of which the element TsF

[f] [e]
is the start time of flow f on e along its path, ifUF E [f] [e] =
1 and sF [f] ≠ *1. TsF

[f] [e] = *1 otherwise.
When e is the first edge of f , TsF

[f] [e] = sF [f]. Re-
cursively, given TsF

[f]
[

ep
]

of a previous edge ep, the start-
ing time of the next edge en along the path can be calcu-
lated as TsF

[f]
[

en
]

=
(

TsF
[f]

[

ep
]

+ DF E [f]
[

ep
]

)

mod
pF [f]. The modular operation is for both the cases shown
in Fig. 4, where in Fig. 4(b) the transmissions of one frame
in ep and en are not in the same flow period in the two neigh-
boring GCLs.

Ts [f][ep]F
Ts [f][ep]F

ep [va ,vb]

en [vb ,vc]

DFE [f][ep]

p [f]F
p [f]F

p [f]F
p [f]F

ep [va ,vb]

en [vb ,vc]

Ts [f][ep]F
Ts [f][ep]F

Ts [f][en]F
Ts [f][en]F

p [f]F
p [f]F

DFE [f][ep]

p [f]F
p [f]F

p [f]F
p [f]F

Ts [f][en]F
Ts [f][en]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

Ts [f][en]+p [f]F
Ts [f][en]+p [f]F F
Ts [f][en]+p [f]F F

(a) Non period crossing case

Ts [f][ep]F
Ts [f][ep]F

ep [va ,vb]

en [vb ,vc]

DFE [f][ep]

p [f]F
p [f]F

p [f]F
p [f]F

ep [va ,vb]

en [vb ,vc]

Ts [f][ep]F
Ts [f][ep]F

Ts [f][en]F
Ts [f][en]F

p [f]F
p [f]F

DFE [f][ep]

p [f]F
p [f]F

p [f]F
p [f]F

Ts [f][en]F
Ts [f][en]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

p [f]F
p [f]F

2p [f]2p [f]FF
2p [f]F

Ts [f][en]+p [f]F
Ts [f][en]+p [f]F F
Ts [f][en]+p [f]F F

(b) Period crossing case

Figure 4: The Gantt chart of two different frame transmissions

When fi can be scheduled, the transmission duration of
each frame of fi is called as reserved time slice. With TsF

,
we can calculate all the reserved time slices in the network.

For two transmissions on the same edge, if the first trans-
mission is finished earlier than the start of another, then
the two will not conflict. As TsF

[

fi
]

[e] + a � pF
[

fi
]

is
the start time of the .a + 1/th transmission of fi on e, and
TsF

[

fi
]

[e] + b � pF
[

fi
]

+ RF E
[

fi
]

[e] is the finish time of
the .b + 1/th transmission of fi on e, when the two transmis-
sions meet either (4) or (5), they will not conflict.

It is required that the reversed time slice of any period
of any SFs do not overlap, so all periods in a hyper-cycle
should be considered, as shown in (6) and (7). Since the
frames are sent periodically and some reserved time slices
may shift to the next period of f , there will be h

pF [f]
or

(

h
pF [f]

+ 1
)

frames of the same flow to be considered in

a hyper-cycle.
The scheduling constraint is that all the reserved time

slices of the configuration for any link do not conflict in
the hyper-cycle. That is, ¯f1,f2 ¸  , f1 ≠ f2, ¯e ¸
 , ¯a ¸ A, and ¯b ¸ B, if UF E

[

f1
]

[e] + UF E
[

f2
]

[e] =
2, sF [f1] ≠ *1 and sF [f2] ≠ *1/ then:

TsF

[

f1
]

[e]+a�pF
[

f1
]

≥TsF

[

f2
]

[e]+b�pF
[

f2
]

+RF E
[

f2
]

[e]
(4)

or TsF

[

f2
]

[e]+b�pF
[

f2
]

≥TsF

[

f1
]

[e]+a�pF
[

f1
]

+RF E
[

f1
]

[e]

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 3 of 9

Alternate GA for TSN Stream Scheduling

(5)

with  =

{

a ¸ ℕ: 0 ≤ a ≤ h
pF

[

f1
]

}

(6)

and  =

{

b ¸ ℕ: 0 ≤ b ≤ h
pF

[

f2
]

}

. (7)

We define the set of sF of all the no-queuing configurations
satisfying the scheduling constraint as F V ˇ ℕ| |, which
is the solution space of the scheduling problem.

As in [21], the link utilization of edge e is defined as the
ratio of the sum of all the reserved time slices on e to the time
length of the hyper-cycle. For all the links in the network,
we denote the vector of link utilization as lusF

¸ ℚ||, for
any given sF ¸ F V , where lusF

[

ep
]

is the link utilization
of ep and h is hyper-cycle length, as shown in (8).

lusF

[

ep
]

=
∑

f¸: sF [f]≠*1;
UF E [f]

[

ep
]

=1

⎡

⎢

⎢

⎣

RF E [f]
[

ep
]

� h
pF [f]

h

⎤

⎥

⎥

⎦

=
∑

f¸: sF [f]≠*1;
UF E [f]

[

ep
]

=1

[

RF E [f]
[

ep
]

pF [f]

]

(8)

Furthermore, the network utilization, lusF
, is defined as

lusF
=

∑

ep¸ lusF

[

ep
]

||
. (9)

With network utilization defined, it is also desirable to
reduce the number of guard bands by scheduling SFs con-
secutively compact[6].

2.3. Remaining Time
In this section we introduce a new metric, remaining

time, to evaluate the compactness of the scheduling of SFs.
Firstly we review an existing metric, flowspan[6]. For

the flow fi, its flowspan equals to the start time of the last
reserved time slice in its first hop plus the end-to-end delay of
fi. We denote the end-to-end delay vector for SFs as dE2E

F ¸
ℕ| | where dE2E

F [fi] is the end-to-end delay of flow fi. And
we denote the vector of flowspan as fssF

¸ ℕ| |, for the
given sF ¸ F V . If sF [fi] = *1, we define fssF

[fi] = *1,
else if sF [fi] ≠ *1, fssF

[fi] is the flowspan of flow fi:

fssF

[

fi
]

=

(

h
pF

[

fi
] * 1

)

� pF
[

fi
]

+ sF [fi] + dE2E
F [fi]

= h * pF
[

fi
]

+ sF [fi] + RF
[

fi
] [

lF
[

fi
]]

+
∑

ep¸:UF E[fi][e]=1�e≠lF [fi]
DF

[

fi
]

[e] . (10)

For the given sF ¸ F V , the maximum of all fssF
[f],

i.e., fsmax
sF

= maxf¸ÆsF [f]≠*1 fssF
[f], is defined as the

flowspan of the network. Byminimizing fsmax
sF

, the compact
schedules could be achieved[6].

1
ES

2
ES

Figure 5: The example point-to-point network with || = 2.

Table 2
Example Scheduled Flows Information

flow origin destination period

f1 ES1 ES2 1
f2 ES1 ES2 2
f3 ES1 ES2 4

However, fsmax
sF

may change drastically when the hyper-
cycle changes during the scheduling where the SF set under
consideration varies, especially in undetermined scenarios.

In order to overcome the shortcomings of flowspan, we
define the remaining time, which is the hyper-cycle minus
the flowspan. Similar to flowspan, remaining time is capable
of reflecting the quality of the scheduling results, and at the
same time, it avoids drastic variation when the hyper-cycle
changes during the scheduling process.

For each sF ¸ F V , the remaining time vector is denoted
as rtsF

¸ ℕ| |, of which rtsF
[fi] is the remaining time of

flow fi if sF [f] ≠ *1. If sF [fi] = *1, let rtsF
[fi] = *1.

rtsF

[

fi
]

= h * fssF

[

fi
]

= pF
[

fi
]

* sF [fi]

* RF
[

fi
] [

lF
[

fi
]]

*
∑

ep¸:UF E[fi][e]=1
�e≠lF [fi]

DF
[

fi
]

[e] .

Note that the remaining time could be negative.
The network remaining time (NRT) is defined as the

minimal remaining time of all successfully scheduled SFs,
i.e., rtmin

sF
= minf¸ÆsF [f]≠*1 rtsF

[f]. Maximizing rtmin
sF

will result in the most compact schedule.
In contrast to flowspan, rtsF

[f] will not change with
hyper-cycle changing for the same sF [f], as (11) shows. The
merit can be further illustrated by an example of scheduling
for a toy network of two end systems shown in Fig. 5.

In case 1, three SFs, as given in Table 2, with the same
transmission delay of 0.25 is to be scheduled in the order of
f1, f2 and f3 as shown in Fig. 6. When f1 is scheduled, the
current hyper-cycle h is 1. When consider f2, h becomes 2.
And h turns into 4 when scheduling f3. As is clearly shown
in Fig. 7, during the process theNRT keeps unchangedwhile
the flowspan varies greatly.

In case 2, for the same example network, consider two
SF sets: 1 contains f1 and f2, while 2 contains f1 and
f3. All the SFs have the same transmission delay of 0.75.
We assume that both in 1 and 2, only f1 can be sched-
uled. As shown in Fig. 8, the results of two sets are exactly
the same, although the hyper-cycles are different. The flows-
pans of them vary, while the remaining times of them keep
unchanged.

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 4 of 9

Alternate GA for TSN Stream Scheduling

][f

[T

][fp][f

][fp][f

][fp][f

e

e

e

]][[e

]][[e

]][e

]][e

]][e

]

1rt

1fs

rt

fs

rt

fs

[]21,ESES

],ES

]

1f

f f

f f f f

f

f ff

(a) 1st, only f1 is scheduled;

][f

[T

][fp][f

][fp][f

][fp][f

e

e

e

]][[e

]][[e

]][e

]][e

]][e

2rt

2fs

rt

fs

[]21,ESES

]

1f 1f

f f f f

2f

f ff

(b) 2nd, after f1, f2 is scheduled;

][f

[T

][fp][f

][fp][f

][fp][f

e

e

e

]][[e

]][[e

]][e

]][e

]][e

3rt

3fs

[]21,ESES 1f 1f 1f 1f2f 2f3f

(c) 3rd, after f1 and f2, f3 is scheduled.

Figure 6: The Gantt charts of scheduling steps of the example,
with flowspan(fs) and remaining time(rt) also shown

Step1 Step2 Step3
0

1

2

3

4

flo
w

sp
an

(a) Flowspan
Step1 Step2 Step3

0

0.2

0.4

0.6

0.8

1

N
R

T

(b) Remaining time

Figure 7: Comparison between the trends of flowspan and
remaining time

]2,ES

4rt

4fs

rt

fs

[]21,ESES

]

f

1f 1f

f f f f(a) The scheduling result of 1

]
5rt

5fs

[]21,ESES

f

1f 1f 1f 1f

(b) The scheduling result of 2

Figure 8: The scheduling results of case 2.

The two cases mentioned above clearly show that re-
maining time is a better evaluation factor than flowspan.

2.4. The Unified Framework
With hop delay, SFX and CTX are readily incorporated

in one model. Here a unified framework is proposed using
both rtmin

sF
and lusF

, to cover both determined and undeter-
mined scenarios.

Firstly we should note there may be more than one sF to
achieve the maximum NU. We denote the set of them as:

F V ˇ F V �F V = ^s<
F |s

<
F = arg max

sF ¸F V

lusF
‘. (11)

Secondly, these NU optimal start time vectors may result in
different NRTs. Then we need to find one optimal start time
vector sop

F with maximum NRT in F V , i.e.,

sop
F = arg max

s<
F ¸F V

rtmin
s<
F
. (12)

To formulate our problem as Integer Linear Program(ILP),
we denote flow state vector y ¸ ^0; 1‘| |. If flow fi is sched-
uled, y[fi] = 1. If flow fi is not scheduled, y[fi] = 1. And
the ILP is as follows:

max
⎛

⎜

⎜

⎝

M
∑

f¸

⎛

⎜

⎜

⎝

y[f]�
∑

UF E [f]
[

ep
]

=1

RF E [f]
[

ep
]

pF [f] � ||

⎞

⎟

⎟

⎠

*fsmax
sF

⎞

⎟

⎟

⎠

(13)

subject to :

¯ f ¸  ; sF [f] ≠ *1:

fsmax
sF

≥ fssF
[f] * M � .1 * y[f]/ (14)

¯f1 ¸  ,f2 ¸  ,f1 ≠ f2,¯e ¸  ,¯a ¸ A,b ¸ B:
if
(

UF E
[

f1
]

[e] + UF E
[

f2
]

[e] = 2�y[f1] + y[f2] = 2
)

then:
(15)

.TsF

[

f1
]

[e]+a�pF
[

f1
]

*TsF

[

f2
]

[e] * b�pF
[

f2
]

*RF E
[

f2
]

[e]≥

*M � xf1 ;f2 ;e;a;b * M � .1 * y[f1]/ * M � .1 * y[f2]/
(16)

TsF

[

f2
]

[e]+b�pF
[

f2
]

*TsF

[

f1
]

[e]*a�pF
[

f1
]

*RF E
[

f1
]

[e] ≥

*M �
(

1*xf1 ;f2 ;e;a;b
)

*M �.1*y[f1]/*M �.1 * y[f2]//
(17)

with =

{

a ¸ ℕ: 0 ≤ a ≤ h
pF

[

f1
]

}

(18)

and  =

{

b ¸ ℕ: 0 ≤ b ≤ h
pF

[

f2
]

}

(19)

The constraints of (16) and (17) correspond to (4) and
(5.) To this end, we denote xf1;f2;e;a;b ¸ ^0; 1‘ for each
conflict. c is a large constant. According to the value of
xf1;f2;e;a;b, one of (16) and (17) is always true.

If all the given SFs can be scheduled, the scheduling
problem has been mapped into No-wait Job Shop Schedul-
ing Problem (NW-JSP), a sub-problem of JSP[6]. As JSP is
NP-hard, NW-JSP is also NP-hard [7]. The unified frame-
work consider the undetermined scenarios where some SFs
may not be scheduled, therefore, it is NP-hard as well. As
our evaluations showing later, it may take too much time to
solve the problem using available ILP solvers. We need to
look for a heuristic algorithm to solve the problem.Based on
the unified framework, a Mixed initial population Genetic
Algorithm (MGA) is designed.

3. MGA Flow Scheduling
Given a network and a set of SFs with predefined paths,

the SFs can be scheduled sequentially as a permutation of
them[6]. We denote the flow sequence vector of a permuta-
tion of all SFs as aF ¸  | |, of which aF [i] = fj means fj is
the ith flow to be scheduled. Given an aF with the topology

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 5 of 9

Alternate GA for TSN Stream Scheduling

information tI ( ,  , AEE and BV E), and the flow informa-
tion fI ( , fF , lF , pF , UF E , RF E and DF E), the sF can be
directly calculated by Sequence-Based Greedy Scheduling
Algorithm (SGSA), which is shown in Algorithm 1. And the
worst-case complexity of the algorithm is .N3M3/[6][7],
where M is the number of SFs and N is the maximum of the
number of SF transmissions in one hyper-cycle.

Algorithm 1 Sequence-Based Greedy Scheduling Algo-
rithm:
1: function SGSA(tI; fI; aF)
2: F StartT ime } ^‘
3: for each f ¸ aF do
4: if f scheduled successfully then
5: F StartT ime [f] } Earliest start time of f
6: else
7: F StartT ime [f] } *1
8: end if
9: end for
10: return FStartTime
11: end function

Genetic algorithms (GA) are used in previous works as
quick searching algorithms to find an aF yielding good re-
sults [13][15]. However, the search space is so huge that
the previous works of GA [15] are not satisfactory. The ini-
tial population of GA has significant influences on both the
quality of the results and the convergence speed[23]. The
proposed MGA is featured by its initial population genera-
tion and is capable of achieving higher NU and larger NRT.

To solve the scheduling problem with GA, each SF is
mapped to one gene, and aF is regarded as a genome[13].
Each genome will produce an individual, i.e., a GCL con-
figuration. When two individuals are compared, the one
with higher NU is thought better (and survives). If their NU
equals, the individual with a larger NRT is thought better.

3.1. The Generation of Initial Population
In some scenarios, scheduling with flow period and hop

preference sequence (PHS) yields better results[17]. In PHS,
flows are scheduled in the ascending order of their periods.
As a flow with smaller periods repeating more often, it is be-
lieved more difficult to schedule. When their periods are the
same, the one with longer paths will be scheduled first[17].

However, if the flow periods are a little randomized, a
random sequence (RS) sometimes prevails PHS, as a toy net-
work given in Fig. 9 shows. It consists of three end systems
(ES1, ES2, ES3), two switches (SW1, SW2), and three SFs
to be scheduled, as shown in Table 3. And the scheduling re-
sults of PHS and RS is shown in Fig. 10.

It is natural to conjecture mixing different sequences to
generate a better initial population for GA. Considering the
impact of hops, we mix PHS, RS and HPS(hop and pe-
riod preference sequence) to generate initial population. The
population generation is shown in Fig. 11. In HPS, flows are
scheduled in the descending order of hops. When their hops
are the same, the one with smaller period will be scheduled

1

22 1

Figure 9: A toy example network with || = 5

Table 3
Example Scheduled Flow Information

flow origin destination period RF E[f][<]

f1:1 ES1 ES3 3 0.5
f1:2 ES1 ES3 3 0.5
f2:1 ES2 ES3 4 0.5

first.

1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2
1.1 1.2

0 1 2 3 4 5 6 7 8 9 10 11 12

1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2
1.1 1.2

2.1 2.1 2.1

[]
11

SW,ES

[]
31

ES,SW

[]
12

SW,SW

[]
22

SW,ES

(a) For PHS, NU is 1_6 and f2:1 cannot be scheduled

1.1 1.1 1.1 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12

1.1 2.1 1.1 1.1 1.12.1 2.1

2.1 2.1 2.1

2.1 2.1 2.1

1.1

1.1 2.1

2.1

2.1

[]
11

SW,ES

[]
31

ES,SW

[]
12

SW,SW

[]
22

SW,ES

(b) For RS, f1:2 cannot be scheduled and NU is 17_96

Figure 10: The Gantt chart of PHS and RS scheduling, ne-
glecting the hop delays. A rectangle (i.j) denotes the trans-
mitted frame of fi;j . Each row shows the repetitive occurrence
of the frames onto each link. In the example the NU of RS is
greater than that of PHS.

Free Sequence

Random Sequence

Special Sequence

Free Sequence

Special Sequence

Random Sequence

Free Sequence

(Special Sequence)

Random Sequence

Special Sequence

Special Sequence

Random Sequence

Free Sequence

(Random Sequence)

Free Sequence

RS

PHS

Free Sequence

PHS

RS

Free Sequence

(PHS)

RS

PHS

PHS

RS

Free Sequence

(RS)

HPS

RS

PHSHPS

PHS

RS

Figure 11: The generation of the initial population of MGA

3.2. The Selection, Crossover and Mutation
Given the initial, the descendant populations will be

produced iteratively. In each iteration, the genomes of
the selected individuals are crossed and mutated to pro-
duce descendants. Our algorithm uses the selection of
tournament[24] and elitist[25], combined with Subtour
Exchange Crossover (SEC)[26] and Insertion Mutation
(IM)[27].

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 6 of 9

Alternate GA for TSN Stream Scheduling

3.2.1. Crossover
As shown in Fig. 12(a), using SEC, a segment of genes

is randomly chosen from the genome of parent 1, and each
of the genes is found in parent 2. And then the genes are
exchanged between the two parents, generating two new
individuals[26]. Compared with others, SEC is more suit-
able to our scheduling problem, as it can readily control
the length of crossover genome segments, and does not fre-
quently change the front part of the genome.

(a) SEC

(b) IM

Figure 12: Subtour Exchange Crossover (SEC) and Insertion
Mutation (IM)

3.2.2. Mutation
With the IM, a gene is randomly taken out from a genome

and then inserted back randomly[27], as shown in Fig. 12(b),
and only the mutation yielding better results will be retained.

Algorithm 2MGA:
1: functionMGA(tI; fI; s; n)
2: curGeneration } 0
3: curP opu } initPopulation(tI; fI; s)
4: while curGeneration < n do
5: curP opu } genePopulation(curP opu, s)
6: curGeneration } curGeneration + 1
7: end while
8: return opSolution in curP opu
9: end function

Finally, as shown in Algorithm 3, input the topology in-
formation tI , flow information fI , population size s, and
the limit of generations n, the proposed MGA will output
opSolution with the desired start time vector.

4. Performance Evaluation
In this section, MGA is compared with other GAs and

ILP solvers in different scenarios. As shown in Fig. 13,
a fully connected backbone network is produced by the
Erdös–Rényi (ER) random graph model [28], and the access
SWswith ESes are added to each node. With a produced net-
work, for each ES as a source, several SFs with random des-
tinations from other ESes are generated, of which the paths
are set as the shortest. Their periods are randomly chosen
from a predefined integer set. In the evaluation, several dif-
ferent scenarios are generated from the same topology by
controlling the number of flows and the integer period set.

Figure 13: The example of a network topology with || = 42

Table 4
ILP Test Scenarios with period = {2ms, 4ms}

scenarios SW ES the number the number
of flows of conflicts

s0 3 6 9 314
s1 9 18 38 2078
s2 8 16 41 2802
s3 9 18 52 3927

Table 5
Results of ILP solution and MGA

scenarios
ILP-Solution MGA

LU flowspan time LU flowspan time

s0 0.39 3170000 0.06 0.39 3170000 39.90
s1 0.21 3530000 2.91 0.21 3530000 68.80
s2 0.30 3710000 118.46 0.30 3710000 74.44
s3 0.31 3950000 300.19 0.31 3950000 128.58

4.1. Compared with ILP solver
In scenarios of Table 4, ILP solution and MGA is com-

pared. The number of conflicts is directly related to the di-
mension of ILP solving matrix.

ILP matrix is generated by preprocessing, and then
CPLEX is used to solve the ILP matrix. In this section,
we configure the upper time-bound of CPLEX as 300s. The
execution time and results of the ILP solution and MGA is
shown in Table 5.

0 500 1000 1500 2000 2500 3000 3500 4000

the number of conflicts

0

50

100

150

200

250

300

350

E
xe

cu
ti

o
n

 t
im

e(
s)

ILP-Solution
MGA

Figure 14: The execution time of ILP and MGA

When there are fewer conflicts in the network, ILP so-
lutions can solve the problem quickly. However, with the
complexity of the network growing, there are more possible
conflicts in the network, and the execution time of the ILP

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 7 of 9

Alternate GA for TSN Stream Scheduling

Table 6
Test Scenarios

scenarios
period of flows(ms)

the number of flows
2 3 4 5 6 8

s4 � � � 1936
s5 � � � � 1125
s6 � � � � 1733
s7 � � � 912
s8 � � � 912
s9 � � � � 469
s10 � � � 339

solution increases so fast to be much longer than MGA.

4.2. Compared with other GAs
Then we compare MGA with other GAs using several

different population initialization methods in various scenar-
ios of Table 6, of which RGA (Random purebred popula-
tion GA) adopts RSes as initial populations, while the initial
population of PHGA (Period and Hop preference purebred
population GA) is all PHSes. And the initial population of
HPGA (Hop and Period preference purebred populationGA)
is all HPSes.

The regular population size is set as 50, and the required
number of GA generations is 20. The mutation probability is
0.15. As a contrast, 1000 RSes, 1000 PHSes and 1000HPSes
are generated for each scenario.

In scenario s4, s5, s6 and s7, not all of the SFs can be
scheduled, where NU is the main comparison object. While
s8, s9 and s10 are of comparatively light load, i.e., all the
SFs can usually be scheduled, of which NRT is the decisive
comparison object, under the premise of maximizing NU. In
s4 and s8, the periods of the SFs constitute a geometric se-
quence. In comparison, the SF periods in s7 and s10 are co-
prime, consequently, the scheduling is more difficult. While
in s5, s6 and s9, the relationship is a kind of hybrid.

The resulted NU and NRT of different algorithms for the
scenarios are presented in Table 7. where Best_PHS is the
best result of 1000 PHS generated, and the same to Best_RS
and Best_HPS. In each scenario, GA is executed five times
with different random seeds. And the average NU and NRT
are shown in Table 7. For clarity, we highlight the best re-
sults in green, and the second best in yellow. The perfor-
mance comparison is also illustrated in Fig. 15.

It can be seen from the results that the proposed MGA
can always provide the better results in all scenarios. In
s4,s8, s9 and s10, MGA can only calculating the second best
results. But the results of MGA and the results of PHGA
almost the same. In other scenarios, compared other com-
parison algorithm MGA can calculate best results.

In s4, s8, s9 and s10, the results calculated by PHS are
always better than those by RS or HPS due to the geometric
period relationship. RS performs better than PHS in s5, s6
and s7, while in other scenarios it is just the opposite. This
is why we choose the mixed initial population in MGA.

5. Conclusions
As the GCLs defined in the IEEE 802.1Qbv of TSNmust

be properly configured before usage, forming an NP-hard
flow scheduling problem. To cover both determined and
undetermined scenarios, a unified framework is proposed to
remodel the problem to utilize the network efficiently while
leavingmore bandwidth for BE traffic, by optimizing the net-
work utilization and remaining time together. A heuristic al-
gorithm called MGA is proposed to show the effectiveness
of the framework. Extensive simulations show that MGA
has superiority in various scenarios. In the future, the uni-
fied model may be extended to cover more difficult scenarios
with multicast flows and not-predefined flow paths.

References
[1] R. Hummen, S. Kehrer, and O. Kleineberg, “Tsn–time sensitive net-

working,” Hirschmann, USA, WP00027, 2016.
[2] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of

joint routing and scheduling for tsn with ilp,” in 2018 IEEE 24th Int.
Conf. on Embedded and Real-Time Comp. System and Applications
(RTCSA). IEEE, 2018, pp. 136–146.

[3] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks:
The ieee tsn and ietf detnet standards and related 5g ull research,”
IEEE Comm. S&T, vol. 21, no. 1, pp. 88–145, 2019.

[4] L. Lo Bello and W. Steiner, “A perspective on ieee time-sensitive net-
working for industrial communication and automation systems,” Pro-
ceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[5] I. S. Association et al., “Ieee standard for local and metropolitan area
networks—bridges and bridged networks—amendment 25: Enhance-
ments for scheduled traffic,” Amendment to IEEE Std, vol. 802, pp.
1–57.

[6] F. Dürr and N. G. Nayak, “No-wait packet scheduling for ieee time-
sensitive networks (tsn),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, 2016, pp. 203–212.

[7] R. Macchiaroli, S. Mole, and S. Riemma, “Modelling and opti-
mization of industrial manufacturing processes subject to no-wait
constraints,” International Journal of Production Research, vol. 37,
no. 11, pp. 2585–2607, 1999.

[8] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive network-
ing (tsn),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[9] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow schedul-
ing and routing in time-sensitive software-defined networks,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075,
2017.

[10] A. M. Kentis, M. S. Berger, and J. Soler, “Effects of port congestion
in the gate control list scheduling of time sensitive networks,” in 2017
8th International Conference on the Network of the Future (NOF),
2017, pp. 138–140.

[11] W. Steiner, “An evaluation of smt-based schedule synthesis for time-
triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium. IEEE, 2010, pp. 375–384.

[12] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (tsn)
for mixed-criticality industrial applications,” in 2018 14th IEEE In-
ternational Workshop on Factory Communication Systems (WFCS).
IEEE, 2018, pp. 1–4.

[13] M. Pahlevan and R. Obermaisser, “Genetic algorithm for schedul-
ing time-triggered traffic in time-sensitive networks,” in 2018 IEEE
23rd Int. Conf. on Emerging Technologies and Factory Automation
(ETFA), vol. 1. IEEE, 2018, pp. 337–344.

[14] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, “Dynamic
scheduling and routing for tsn based in-vehicle networks,” in 2021

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 8 of 9

Alternate GA for TSN Stream Scheduling

Table 7
Experiment Results

Best_PHS Best_RS Best_HPS PHGA RGA HPGA MGA

NU NRT(ns) NU NRT(ns) NU NRT(ns) NU NRT(ns) NU NRT(ns) NU NRT(ns) NU NRT(ns)

s4 0.376378798 15000 0.311565953 9000 0.341874655 14000 0.376414779 -18400 0.321753936 -13600 0.341247997 -31400 0.376354903 -17800
s5 0.229325497 65000 0.232110927 3000 0.249952649 -49000 0.229951325 -5000 0.239072517 -9000 0.250175 2000 0.264749338 11000
s6 0.239508594 -10000 0.252776693 -13000 0.277933594 -28000 0.241069531 -9000 0.258639453 -7000 0.279612891 -29000 0.285685547 -13000
s7 0.15617526 128000 0.173888073 -1000 0.18226151 24000 0.157103385 -12000 0.179291406 14000 0.18397474 12000 0.187988646 85000
s8 0.220098828 1194000 0.220098828 1000 0.220098828 41000 0.220098828 1218000 0.220098828 17000 0.220098828 53000 0.220098828 1198000
s9 0.103112813 1573000 0.103112813 868000 0.103112813 913000 0.103112813 1573000 0.103112813 884000 0.103112813 927000 0.103112813 1570000
s10 0.073113125 2567000 0.073113125 2136000 0.073113125 2115000 0.073113125 2576000 0.073113125 2171000 0.073113125 2108000 0.073113125 2572000

0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38

LU

-6

-5

-4

-3

-2

-1

0

1

N
R

T
(u

s)

10

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(a)

0.21 0.22 0.23 0.24 0.25 0.26 0.27

LU

-2

0

2

4

6

8

10

12

N
R

T
(u

s)

102

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(b)

0.22 0.24 0.25 0.26 0.27 0.28 0.29

LU

-8

-6

-4

-2

0

2

4

N
R

T
(u

s)

10

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

0.23

(c)

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19

LU

-2

0

2

4

6

8

10

12

N
R

T
(u

s)

102

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(d)

0.212 0.213 0.214 0.215 0.216 0.217 0.218 0.219 0.22 0.221

LU

14

12

10

8

6

4

2

0

-2

N
R

T
(u

s)

102

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(e)

0.1014 0.1016 0.1018 0.102 0.1022 0.1024 0.1026 0.1028 0.103 0.1032

LU

0

2

4

6

8

10

12

14

16

18

N
R

T
(u

s)

102

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(f)

0.0724 0.0725 0.0726 0.0727 0.0728 0.0729 0.073 0.0731 0.0732

LU

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

N
R

T
(u

s)

103

PHSGSA

RSGSA

HPSGSA

PHGA
RGA
HPGA
MGA

(g)

0.0731122 0.0731126 0.073113 0.0731134

LU

2.545

2.55

2.555

2.56

2.565

2.57

2.575

2.58

2.585

N
R

T
(u

s)

103

PHSGSA
RSGSA
HPSGSA

PHGA
RGA
HPGA
MGA

(h)
Figure 15: The results of remaining time and network utilization of the algorithms in
different scenarios. The results of s4, s5, s6, s7, s8, s9 and s10 are shown in (a)(b) (c) (d)
(e) (f) (g) respectively. (h) shows an enlarged view of the some area in (g).

IEEE International Conference on Communications Workshops (ICC
Workshops), 2021, pp. 1–6.

[15] A. Arestova, K.-S. J. Hielscher, and R. German, “Design of a hybrid
genetic algorithm for time-sensitive networking,” in Measurement,
Modelling and Evaluation of Computing Systems, H. Hermanns, Ed.
Cham: Springer International Publishing, 2020, pp. 99–117.

[16] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, “Window-based
schedule synthesis for industrial ieee 802.1qbv tsn networks,” in 2020
16th IEEE International Conference on Factory Communication Sys-
tems (WFCS), 2020, pp. 1–4.

[17] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
reconfiguration of time-sensitive networking (tsn) schedules for fog
computing,” in 2017 IEEE Fog World Congress (FWC). IEEE, 2017,
pp. 1–6.

[18] S. S. Craciunas, R. S. Oliver, and T. Ag, “An overview of scheduling
mechanisms for time-sensitive networks,” Proceedings of the Real-
time summer school LÉcole dÉté Temps Réel (ETR), pp. 1551–3203,
2017.

[19] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in IEEE Global Telecommunications Conference,
2004. GLOBECOM’04., vol. 3. IEEE, 2004, pp. 1629–1634.

[20] M. D. Johas Teener, A. N. Fredette, C. Boiger, P. Klein, C. Gunther,
D. Olsen, and K. Stanton, “Heterogeneous networks for audio and
video: Using ieee 802.1 audio video bridging,” Proceedings of the
IEEE, vol. 101, no. 11, pp. 2339–2354, 2013.

[21] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, “Avb-aware routing
and scheduling of time-triggered traffic for tsn,” IEEE Access, vol. 6,
pp. 75 229–75 243, 2018.

[22] I. Vlašić, M. Ðurasević, and D. Jakobović, “Improving genetic al-

gorithm performance by population initialisation with dispatching
rules,” Computers & Industrial Engineering, vol. 137, p. 106030,
2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0360835219304899

[23] I. Vlašić, M. Ðurasević, and D. Jakobović, “Improving genetic al-
gorithm performance by population initialisation with dispatching
rules,” Computers & Industrial Engineering, vol. 137, p. 106030,
2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0360835219304899

[24] D. Thierens and D. Goldberg, “Convergence models of genetic al-
gorithm selection schemes,” in International conference on parallel
problem solving from nature. Springer, 1994, pp. 119–129.

[25] G. Soremekun, Z. Gürdal, R. Haftka, and L.Watson, “Composite lam-
inate design optimization by genetic algorithmwith generalized elitist
selection,” Computers & structures, vol. 79, no. 2, pp. 131–143, 2001.

[26] M. Yamamura, T. Ono, and S. Kobayashi, “Character-preserving
genetic algorithms for traveling salesman problem,” JOURNAL-
JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, vol. 7,
pp. 1049–1049, 1992.

[27] M. Boopathi, R. Sujatha, C. S. Kumar, and S. Narasimman, “The
mathematics of software testing using genetic algorithm,” in Proceed-
ings of 3rd International Conf. on Reliability, Infocom Technologies
and Optimization. IEEE, 2014, pp. 1–6.

[28] E. N. Gilbert, “Random graphs,” The Annals of Mathematical Statis-
tics, vol. 30, no. 4, pp. 1141–1144, 1959.

M. Yao, J. Liu, J. Du, D. Yan, Y. Zhang and W. Liu: Preprint submitted to Elsevier Page 9 of 9

https://www.sciencedirect.com/science/article/pii/S0360835219304899
https://www.sciencedirect.com/science/article/pii/S0360835219304899
https://www.sciencedirect.com/science/article/pii/S0360835219304899
https://www.sciencedirect.com/science/article/pii/S0360835219304899

