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transceiver pair. We aim to devise a beamforming strategy for the relays that maximizes the data

rate of the distant transceiver while satisfying interference constraints at the cellular receivers.

Towards that end, we first formulate a beamforming problem whose solution is robust against

the channel uncertainties in the relay-destination hop. Motivated by practical observations, we

assume that the random channels in this hop follow unimodal distributions and propose a novel

unimodal distributionally robust model to capture the channel uncertainties. Then, we extend

the formulation so that it can also guard against the channel uncertainty in the source-relay

hop under the worst-case robust model. The resulting robust beamforming problem is generally

non-convex and intractable. Therefore, we design an iterative algorithm, which is based on

solving semidefinite programs, to find an approximate solution to it. Simulation results show

that under mild conditions, our robust model significantly improves the throughput of D2D

relay transmissions when compared to conventional robust models that merely rely on the

channels’ moment information. It also outperforms the Bernstein-type inequality-based convex

approximation, which assumes that the channel follows a Gaussian distribution.
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I. INTRODUCTION

Recently, device-to-device (D2D) communication has been viewed as a promising technology

to increase data rate, extend network coverage, and reduce power consumption in cellular

networks [1]–[3]. It is mainly proposed to offload the data traffic between the cellular base

station (CBS) and the cellular user equipment (CUE) within or beyond the cellular coverage.

In this paper, instead of emphasizing the performance improvement in the cellular system, we

focus on D2D communications and aim to improve the quality-of-service (QoS) of a D2D

network within the coverage of a CBS. This study is especially advantageous for social-related

applications such as interactive gaming, file sharing, video streaming, etc., in which the access

to local content is more frequent than that to the core network via the CBS.

The dense deployment of D2D user equipment (DUE) allows us to achieve spatial diversity

by employing multiple DUE as collaborative relays. It has been shown in [4], [5] that the use

of relays significantly improves the network performance while causing insignificant increase

in the end-to-end delay. However, it may not be optimal for all the relays to transmit at their

peak power [6]. Thus, a distributed beamforming strategy that can adapt to the varying channel

conditions at different relays is needed in order to achieve optimal relay performance. Moreover,

the dense DUE make the spectrum access more crowded. An economical and spectrally efficient

solution is to let the DUE share the same spectrum with the cellular system [7]. To avoid mutual

interference among the DUE and the CUE while enhancing the throughput of the DUE relays,

an efficient power control strategy is of crucial importance. In [8], each DUE’s transmit power

is separately controlled while the aggregate interference to the CUE is restricted by limiting

the number of collaborative relays. In [9], the authors considered an ad hoc D2D network, in

which the DUE’s opportunistic channel access ensures the interference to the cellular system

is kept below a certain threshold. However, most of the existing works rely on the unrealistic

assumption that the channel information is precisely known. In practice, due to quantization

errors, processing delay, or the lack of communications between the CUE and DUE, the channel

estimation is usually unreliable and subject to random errors.

Knowing that channel uncertainty is inevitable, it is imperative to develop a quantitative model

to characterize the varying channels, so that proactive strategies can be devised to avoid sharp

performance deterioration. To this end, a growing effort has been devoted to model the channel

uncertainty and formulate the corresponding robust beamforming problems; see, e.g., [10] for a
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survey on robust power control and beamforming in cognitive radio networks. Broadly speaking,

there are three different types of channel uncertainty models. The stochastic (STO) model assumes

that the channel estimate is a random variable following a specific distribution. For example,

assuming Rician or Rayleigh distributed channels, the robust beamforming problem in [11]

imposes average QoS requirements on both the DUE and CUE. In [12], the authors considered

energy efficiency maximization in 5G systems wherein the channel estimates are assumed to

be Gaussian distributed. In [13], the channel distribution is assumed to be t-distributed instead

of Gaussian. To enable a more flexible control, some works formulate the QoS requirements

in a probabilistic manner, thus giving rise to chance-constrained robust beamforming problems;

see, e.g., [14]–[17]. The worst-case robust (WCR) model stipulates that the channel error lies

in a compact convex set and requires the robust beamformer to achieve the best performance

even for the worst error; see, e.g., [18], [19]. Hence, robust beamforming with the WCR model

is usually formulated as a max-min problem, which is then tackled by convex reformulation

or approximation. For example, in [18], the authors proposed a joint resource allocation and

power control problem for the DUE relays, in which a guard function is used to approximate

each perturbed resource constraint. In [19], the authors showed that the max-min beamforming

problem can be efficiently solved for a general class of convex uncertainty sets. By leveraging

the well-known S-lemma [20], a tighter and efficiently solvable approximation can be derived by

transforming the max-min problem into a semidefinite program (SDP). Lastly, the distributionally

robust (DRO) model assumes that partial information about the random channel estimate, such

as moment statistics, is available. The DRO model was proposed in [21] and recently employed

to study robust beamforming by leveraging the first- and second-order moments of the random

channel [22]. However, such an approach is still over-conservative, as the worst-case channel

distribution in the DRO model is shown to be discrete and is hardly observed in practice [23].

The above discussion motivates us to impose additional requirements on the shape or struc-

ture of the channel distribution. Empirically, we find that channel distributions are generally

smooth, symmetric, unimodal, or even similar to some known patterns; see, e.g., [13], [24].

Such structural information can be extracted and exploited to mitigate the conservatism of the

DRO model. In this work, we focus on unimodality and propose, for the first time in the context

of wireless communications, the unimodal distributionally robust (UDR) model to improve the

relays’ beamforming design. We consider the scenario where there are uncertainties in both the

source-relay and relay-destination channels in a two-hop half-duplex relay transmission scheme,
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and we aim to maximize the DUE’s SNR subject to the relays’ power budget constraint and

the CUE’s interference constraints. Under this setting, the uncertain channels are coupled with

each other, thereby presenting a great challenge in the analysis of the stochastic properties of

the DUE’s SNR and CUE’s interference. It is worth noting that the aforementioned scenario has

been studied under the WCR model (i.e., no structural information about the channel estimate

is used) in a very recent work [25]. In particular, the authors showed that the corresponding

robust beamforming problem admits a biquadratic formulation and can be tackled by semidefinite

relaxation techniques [26]. In this work, we depart from the approach in [25] and tackle the robust

beamforming problem under a mixed UDR-WCR model by processing the channel uncertainties

in both hops separately. The main contributions of this paper are as follows:

1) Unimodal distributionally robust (UDR) model: Motivated by the observations that many

channel distributions are unimodal, we introduce the UDR model, in which the random

channel is assumed to follow a unimodal distribution with known first- and second-order

moments. To the best of our knowledge, our work is the first to adopt unimodality in the

modeling of channel uncertainty. By leveraging a generalized notion of unimodality [27],

we parameterize a class of unimodal distributions by a scalar α > 0. As we shall see,

a larger value of α implies more conservative channel modeling. In particular, the UDR

model degenerates to the conventional DRO model when α→∞.

2) Beamforming algorithm for the UDR model: As a first step towards accounting for the

channel uncertainties in both source-relay and relay-destination hops and to avoid a highly

complex biquadratic formulation similar to that in [25], we consider the setting where

the source-relay channel is known and the relay-destination channels are characterized

by the UDR model, and we formulate a robust beamforming problem whose objective is

to maximize the DUE’s data rate while satisfying the relays’ power budget and CUE’s

UDR (with respect to the uncertainties in the relay-destination channels) interference

constraints. Since the UDR interference constraints are non-convex in general, we derive

safe approximations of them and propose a tractable iterative procedure that tackles the

safe approximation problem by solving a sequence of DRO beamforming problems.

3) Robustness against uncertain channels in both hops: To ensure robustness against the

uncertain channels in both source-relay and relay-destination hops, we assume that the

uncertainty in the source-relay channel is characterized by the WCR model and formulate
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a mixed UDR-WCR beamforming problem by extending the formulation developed in

item 2 above. We then design a tractable algorithm that uses the iterative procedure

developed in item 2 above as building block to tackle the resulting formulation. Simulation

results show that our algorithm significantly improves the DUE’s data rate over the DRO

model. It also outperforms the approach in [17], which is based on the strong assumption

that the channel follows a Gaussian distribution and uses a Bernstein-type inequality

and semidefinite relaxation techniques to tackle the resulting chance-constrained robust

beamforming problem.

A preliminary version of this work has appeared as a conference paper [28]. The rest of

this paper is organized as follows. In Section II, we introduce the system model and the UDR

model to describe channel uncertainties. In Section III, we first present our two-step approach to

formulating the problem of finding a beamforming design that maximizes the DUE’s SNR while

satisfying the relays’ power budget and the CUE’s mixed UDR-WCR interference constraints.

Then, we develop iterative procedures to find an approximate solution to the aforementioned

robust relay beamforming problem. Lastly, we present performance evaluations and conclusions

in Sections IV and V, respectively.

II. PROBLEM SETUP AND PRELIMINARIES

Consider a D2D network with densely deployed user devices underlying a downlink cellular

system, in which each DUE transmitter (DTx), DUE relay, and DUE receiver (DRx) are equipped

with a single antenna. As shown in Fig. 1, the direct link from DTx to DRx is not available

due to the long distance between them or limited power at the DTx. The data transmission is

assisted by a set of DUE relays, denoted by N = {1, 2, . . . , N}. The DUE relays employ the

amplify-and-forward (AF) scheme, which is known for its short processing delay and simplicity

in system deployment [4]. As the D2D network and the DUE relays share the same spectrum

with the cellular system, the relays’ transmissions may introduce interference to the CUE, which

we denote by K = {1, 2, . . . , K}. The data reception at the CUE will not be interrupted if the

interference from the DUE relays is less than a pre-defined threshold. The downlink cellular

transmissions from the CBS may also introduce interference to the D2D network. We assume

that the power level of the noise and the CBS’ interference at each DUE is known and fixed

during the D2D transmissions. In particular, each individual DUE can estimate the power level

in a silence period before initiating data transmissions. This assumption is also valid when D2D
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Fig. 1: System model.

communications occur in the cell-edge region, where the interference from the CBS is small and

can be viewed as background noise with a fixed power level.

A. Signal Model

The data transmission follows a two-hop relay scheme. In the first hop, the complex channel

from the DTx to the relays is denoted by h , [h1, h2, . . . , hN ]T ∈ CN ; in the second hop, the

complex channels from the relays to the DRx and from the relays to CUE k ∈ K are denoted by

g , [g1, g2, . . . , gN ]T ∈ CN and zk , [z1k, z2k, . . . , zNk]
T ∈ CN , respectively. In the first hop, the

DTx broadcasts a symbol s ∈ C to its nearby relays. Assuming that all channels are frequency

flat and block fading [29], the received signal at the relays is given by m = hs + σ, where

σ , [σ1, σ2, . . . , σN ]T denotes the complex Gaussian noise with zero mean and unit variance

(i.e., σ ∼ CN (0, I) with I being the identity matrix). For notational simplicity, we ignore the

time index in the signal model.

In the second hop, the relays forward the signal m weighted by a complex amplifying

coefficient w = [w1, w2, . . . , wN ]T ∈ CN . Thus, the received signal at the DRx is

y = gH(w ◦ h)s+ gH(w ◦ σ) + vd, (1)

where ◦ denotes the Hadamard product and vd ∼ CN (0, 1) is the noise at the DRx. Here, w

is viewed as the relays’ beamforming vector. The first term in (1) contains the desired signal,

while the second term is the noise forwarded by the relays. Obviously, it is not optimal for all

the relays to transmit at their peak power, as doing so will also amplify and forward the noise.

Assuming E[|s|2] = 1, the SNR at the DRx is given by

γ(w) =

∣∣gH(w ◦ h)
∣∣2

1 + |g ◦w|2 =
wHAw

1 + wHBw
,

where A = (g ◦ h)(g ◦ h)H and B = D(g∗ ◦ g) denotes a diagonal matrix with the diagonal

elements given by the vector g∗ ◦ g. Here, g∗ represents the complex conjugate of g.
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To avoid excessive interference to the CUE, the relays’ beamforming has to restrict the aggre-

gate interference to the CUE. Since the transmit power at relay-n is given by |wn|2(1 + |hn|2),

the aggregate interference at the CUE k ∈ K can be expressed as

φk(w) = zHk D(c)D(w∗ ◦w)zk = wHD(c)D(z∗k ◦ zk)w,

where c = 1 + h∗ ◦ h. Our goal is to maximize the DUE’s SNR γ(w) subject to the CUE’s

interference constraints and the relays’ power budget constraint; i.e.,

max
w∈P
{γ(w) : φk(w) ≤ φ̄k, ∀k ∈ K}, (2)

where φ̄k is the interference threshold of the CUE k ∈ K and represents the CUE’s sensitivity or

tolerance to interference, and P , {w ∈ CN | cT (w∗◦w) ≤ p̄} is the set of feasible beamforming

vectors with p̄ being the relays’ maximum transmit power. We can also add a power budget

constraint for each individual relay, but this will not give rise to new design challenges in our

problem formulation. For ease of presentation, we only consider one sum power constraint in

the feasible set P .

B. Distributional Uncertainty

The optimal solution to (2) relies on exact channel information; i.e., the channel-dependent

matrix coefficients A and B must be acquired in advance. In the two-hop relay scheme, the

source-relay channel h can be estimated by the relays in real time. The error due to quantization

can be confined in a small set and thus the conventional WCR model performs well. However,

to estimate the channels in the second hop, the feedback information from the receivers is not

always available due to the lack of communications with the CUE. Without regular information

exchange with the receivers, the channel estimate could be far different from its actual value.

In this case, the WCR model will lead to severe performance degradation. This motivates us to

look for a less conservative uncertainty model for the channels in the second hop.

The uncertainty model for the channels g and z in the second hop is built upon the well-known

DRO model [22]. Specifically, we assume that the random channel x ∈ {g, z} follows a certain

distribution Px whose probability density function (pdf) is not precisely known. As the first- and

second-order moments of the random channel can be estimated rather easily, we stipulate that

Px ∈P(ux,Sx) ⊂ P∞, (3)
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where P∞ denotes the set of all probability distributions and P(ux,Sx) is the set of distributions

with first- and second-order moments given by ux and Sx, respectively. Unfortunately, analytical

results in [23] show that the DRO model (3) is still too pessimistic, as the set P(ux,Sx) includes

discrete or multi-modal distributions, which rarely arise in practice.

In this work, we mitigate the conservatism of the DRO model by imposing additional re-

quirement on the structure or shape of the channel distributions in P(ux,Sx). Such structural

information can be easily extracted from channel measurements. In particular, we require that

the distribution Px to be unimodal, which is commonly observed in wireless communications

and signal processing. For example, the recent work [13] shows that the interference power can

be viewed as a unimodal random variable. The measurements in [30] reveal that the shadow

fading signal converges to a unimodal distribution that resembles a Gaussian. In [31], the authors

studied the convexity properties of symbol error rate under a general class of unimodal noise

power densities. Intuitively, if a distribution is unimodal, then its pdf has a single local maximum

(referred to as the mode). In particular, the pdf is non-increasing along the rays emanating from

the mode. Some well-known distributions, such as Gaussian, Rayleigh, and Rician distributions,

are unimodal. It should be noted that these distributions differ significantly in terms of the

structure or shape of their pdfs.

C. Characterizing Unimodality

By incorporating unimodality into the DRO model, we can remove those distributions that

are not commonly encountered in wireless communications and signal processing from the set

(3), thereby leading to a more practical distributional uncertainty model for the channels in the

second hop. To exploit this model in algorithm design, however, we first need an analytical

characterization of unimodality for multivariate distributions. This can be achieved using the

notion of α-unimodality [27].

Definition 1 (α-Unimodality [27]): Suppose that P ∈ P∞ has a continuous pdf f on RN . We

say that P is α-unimodal with mode 0 for some α > 0 if tN−αf(tx) is non-increasing in t > 0

for x 6= 0. The set of all α-unimodal distributions with mode 0 is denoted as Pα.

When α = N , the dimension of the random variable x, α-unimodality implies that f is

non-increasing along the rays emanating from its mode, which coincides with our intuition for

univariate unimodal distributions. When α > N , the pdf f may increase along the rays emanating
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from its mode, but the weighted pdf tN−αf(tx) can be kept non-increasing in t > 0. Through

different choices of α, we can control the rate of increase of f and hence α-unimodality can be

viewed as a generalized characterization of unimodal distributions. By choosing α = N , the set

Pα will contain most of the practically observed distributions [27], such as the Gaussian and

Rayleigh distributions. Another practical way of choosing α is to use an online learning process.

Specifically, each relay samples its channels for some time period and fits an empirical pdf fe

using the sampled data. Then, we can choose α as the minimum value such that tN−αfe(tx) is

non-increasing in t > 0 for x 6= 0. For a different set of sampled data, the empirical pdf fe

could be different and so is the parameter α. The relay can thus repeat the sampling procedure

for several times and choose α to be the largest one.

For the complex channel x = Re(x) + iIm(x), we assume that its real and imaginary parts

(denoted by Re(x) and Im(x), respectively) are independent. Thus, the distribution of x can be

characterized by the joint distribution f(x) = fR(Re(x))fI(Im(x)), where f , fR, and fI denote

the pdfs of x, Re(x), and Im(x), respectively. This relationship can be leveraged to establish

the unimodality of a complex channel’s distribution.

Proposition 1: Suppose that the distributions of Re(x) and Im(x) are (α/2)-unimodal for some

α > 0. Then, the distribution of x = Re(x) + iIm(x) ∈ CN is α-unimodal; i.e., Px ∈ Pα.

The proof of Proposition 1 easily follows by verifying that t2N−αfx(tx) is non-increasing

in t > 0. Note that we have t2N−αfx(tx) = tN−α/2fR(tRe(x))tN−α/2fI(tIm(x)). Since PRe(x),

PIm(x) ∈ Pα/2, both tN−α/2fR(tRe(x)) and tN−α/2fI(tIm(x)) are non-increasing in t > 0, which

implies that t2N−αfx(tx) is also non-increasing in t > 0. Hence, we have Px ∈ Pα, as desired.

We now define the unimodal distributionally robust (UDR) model for the complex channel x as

Px ∈ Pαx (ux,Sx) , Px(ux,Sx) ∩ Pα. (4)

By tuning the parameter α, the parameterized set Pαx (ux,Sx) (or Pαx for short) provides the

flexibility to model the uncertainty of x under different channel conditions.

III. ROBUST RELAY BEAMFORMING WITH INTERFERENCE CONSTRAINTS: FORMULATIONS

AND ALGORITHMS

A. Robustness against Uncertainties in the Relay-Destination Channels under the UDR Model

With the preparations in the previous section, we are now ready to study the robust counterparts

of the beamforming problem (2). We begin by considering the case where the source-relay



10

channel h is known but the relay-destination channels g, z are stochastic and drawn from the

distributions Pg and Pz, respectively. Since both the SNR γ(w) and the interference φk(w)

become stochastic, we formulate the following UDR counterpart of (2):

max
w∈P

min
Pg∈Pαg

EPg [wHAw]

1 + EPg [wHBw]
(5a)

s.t. max
Pzk
∈Pαzk

Pzk

(
zHk Λwzk ≥ φ̄k

)
≤ η, ∀k ∈ K. (5b)

Here, we define Λw , D(c)D(w∗◦w). By designing the relays’ beamformer w, we maximize the

DUE’s worst-case SNR while limiting the CUE’s worst-case interference violation probability

(with respect to all distributions with the given structural and moment information) below the

probability target η. The UDR beamforming problem (5) is difficult to solve optimally and its

tractability depends on our ability to come up with a convex reformulation/approximation of

the non-convex chance constraint (5b). This involves finding a tractable upper bound on the

probability that a unimodally distributed random vector lies outside a given ellipsoid. It is worth

noting that the work [27] gives an upper bound on the probability that a unimodally distributed

random vector lies outside a polyhedron and shows that such an upper bound admits an exact

SDP formulation. However, it is clear that such a result is insufficient for our purposes.

To simplify the formulation (5), we first introduce the SNR target ρ ≥ 0 as an auxiliary variable

and observe that (5a) is equivalent to maximizing ρ subject to the following QoS constraint at

the DUE transceiver pair:

ρ+ max
Pg∈Pαg

EPg

[
gH
(
ρD(w∗ ◦w)− qqH

)
g
]
≤ 0, (6)

where we denote q = D(h)w for simplicity. Note that (6) involves only the second-order moment

Sg and not the particular structure of Pg. Hence, we can simplify (6) as

ρ+ ρTr(D(w∗ ◦w)Sg)− qHSgq ≤ 0. (7)

Note that for a fixed ρ, the constraint (7) defines a linear inequality with respect to the matrix

variable wwH , which can be easily handled by the semidefinite relaxation technique. This will

be detailed shortly.

Next, let us consider the probabilistic interference constraint (5b). Define

ek(z) = 1(zHΛwz ≥ φ̄k), (8)
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where 1(·) is the indicator function. In other words, ek(z) indicates whether the interference

threshold of the CUE k ∈ K is violated. Given the relays’ beamformer w, we further define

Bα
k (w,h) = max

Pzk
∈Pαzk

EPzk
[ek(zk)] (9)

to be the worst-case interference violation probability on the LHS of (5b). Since the constraint

Bα
k (w,h) ≤ η has no known closed-form convex equivalence, we shall focus on deriving a

tractable upper bound on Bα
k (w,h) in the sequel. To proceed, we first study a reformulation of

Bα
k (w,h) in the special case where α =∞. After getting some insights from this special case,

we then derive a safe approximation of Bα
k (w,h) for the general case where α is finite.

1) A Special Case of the UDR Model: As α approaches infinity, the UDR model (4) degen-

erates into the DRO model (3). In this case, we can reformulate B∞k (w,h) as follows:

Proposition 2: The constraint B∞k (w,h) ≤ η is equivalent to

0 ≥ min
Mk, νk

(
−νk +

1

η
Tr(ΣzkMk)

)
(10a)

s.t. Mk �

 Λw 0

0 νk − φ̄k

 , (10b)

Mk � 0, νk ≥ 0, (10c)

where Σzk =

 Szk uzk

uTzk 1

 denotes the second-order moment matrix of channel zk.

The proof of Proposition 2 follows a rather standard Lagrangian approach and the details can

be found in [22]. For a fixed w, problem (10) is an SDP and thus provides a convex equivalence

for the worst-case interference violation probability (9). Upon replacing (5b) by (10), we see

that the optimal beamformer w? can be obtained from the following optimization problem:

max
w∈P, ρ,Mk, νk

ρ (11a)

s.t. ρ+ ρTr(D(w∗ ◦w)Sg)− qHSgq ≤ 0, (11b)

Tr(ΣzkMk) ≤ νkη, (11c)

Mk �

 D(c)D(w∗ ◦w) 0

0 νk − φ̄k

 , (11d)

Mk � 0, νk ≥ 0, ∀k ∈ K. (11e)
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Unfortunately, problem (11) is still non-convex because the constraints (11b) and (11d) are

quadratic in w. To circumvent this difficulty, we first introduce the rank-one matrix W = wwH

and note that qHSgq = hH(W ◦ Sg)h and D(w∗ ◦w) = ∆(W), where ∆(W) is the diagonal

matrix obtained by setting all off-diagonal elements of W to zero. Then, by dropping the non-

convex rank-one constraint on W, we obtain the following semidefinite relaxation of the UDR

beamforming problem (11):

(SUB) : max
W, ρ,Mk, νk

ρ (12a)

s.t. S̄g(ρ,W)− hH(W ◦ Sg)h ≤ 0, (12b)

Tr(ΣzkMk) ≤ νkη, (12c)

Mk �

 D(c)∆(W) 0

0 νk − φ̄k

 , (12d)

Tr(D(c)W) ≤ p̄, (12e)

W � 0, Mk � 0, νk ≥ 0, ∀k ∈ K, (12f)

where S̄g(ρ,W) , ρ+ ρTr(∆(W)Sg).

Problem (SUB) can be solved optimally using a bisection approach. Specifically, for a given

target SNR ρ, checking the feasibility of (12b)–(12f) is an SDP, which can be solved efficiently

by interior-point algorithms [32]. Hence, we can increase or decrease ρ depending on whether

the constraints (12b)–(12f) are satisfied or not, until convergence is achieved. The computational

complexity of (SUB) depends on the complexity of checking the feasibility of (12b)–(12f) for a

fixed ρ and the number of bisection steps. A detailed analysis will be provided in Section III-B.

Here, we note that if the optimal solution W? to (SUB) happens to be of rank one, then the

optimal rank-one beamformer w? to (11) can be extracted from W? by eigen-decomposition.

Otherwise, we can extract an approximate rank-one solution to (11) from W? by the Gaussian

randomization method [26]. Extensive experiments show that W? is of rank one most of the

time. A similar observation has also been made in [22].

2) The General UDR Model: Now, let us consider the general UDR model. By definition

of α-unimodality, a smaller α implies more stringent structural requirement; i.e., Pα1 ⊃ Pα2

for any α1 ≥ α2 > 0. Thus, by tuning the value of α, we can construct a family of robust

formulations that capture the uncertainty under different channel conditions. To obtain a concrete

representation of Pα for finite values of α, we need the following notion:
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Definition 2 (Radial α-Unimodality [27]): For any α > 0 and x ∈ RN , the radial α-unimodal

distribution supported on the line segment [0,x] ⊂ RN , denoted by δα[0,x](·), is an α-unimodal

distribution with the property that δα[0,x]([0, tx]) = tα for t ∈ [0, 1].

Proposition 3: Given P ∈ Pα, there exists a uniquem ∈ P∞ such that P(·) =
∫
RN δ

α
[0,x](·)m(dx).

The proof of Proposition 3 for real distributions can be found in [27]. It can be extended to

complex distributions by applying Proposition 1 if we assume that the real and imaginary parts

of the random vector follow independent (α/2)-unimodal distributions.

Proposition 3 asserts that any α-unimodal distribution can be uniquely represented by a

mixture of radial α-unimodal distributions. Thus, it provides a mapping between an α-unimodal

distribution P ∈ Pα and its mixture distributionm ∈ P∞. Since there is no unimodality constraint

on m, we can reformulate (9) as the following conventional moment problem:

Proposition 4: For 0 ≤ α < +∞, we have

Bα
k (w,h) = max

m∈P∞( 1+α
α

uzk
, 2+α
α

Szk)
Em [pαk (x)] , (13)

where pαk (x) ,
∫
Rn ek(z)δα[0,x](dz) and ek(z) is defined in (8).

The proof of Proposition 4 follows by applying Proposition 3 to problem (9). The details

are omitted here for conciseness. Proposition 4 implies that once we find some m that is

feasible for (13), we can construct an α-unimodal distribution Pzk that is feasible for (9).

Unfortunately, the conventional Lagrangian approach does not yield a tractable dual of (13).

Thus, we resort to deriving a tractable upper bound on (13), which can then be used to construct

a safe approximation of (5b).
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Proposition 5: The following problem1 yields an upper bound on Bα
k (w,h):

max
Y,y, λ, τ≥0

λ− τ (14a)

s.t.

 S̄zk ūzk

ūTzk 1

−
 Y y

yT λ

 � 0, (14b)

 Y y

yT λ

 � 0, (14c)

τ 2
(
Tr(ΛwY)

)α ≥ λα+2φ̄αk . (14d)

The proof of Proposition 5 is relegated to Appendix A. The main difficulty in solving problem

(14) lies in the non-convex constraint (14d). To tackle this constraint, let us assume that α > 0

is an integer and introduce an auxiliary variable s ≥ 0 such that(
Tr(ΛwY)

)α
sα ≥ λ2αφ̄αk , (15a)

τ 2λα−2s2l−α ≥ s2l , (15b)

where l = dlog2(α)e is the smallest integer satisfying 2l − α ≥ 0. By imposing mild conditions

on α, we can derive an equivalent convex formulation of (15a)–(15b) as follows:

Proposition 6: Let α ≥ 2 be an integer. By introducing the auxiliary variables t2i+m ≥ 0, where

i = 0, 1, . . . , l − 1, the constraints (15a)–(15b) are equivalent to Tr(ΛwY) λφ̄
1
2
k

λφ̄
1
2
k s

 � 0, (16a)

 t2i+1+2m t2i+m

t2i+m t2i+1+2m+1

 � 0, (16b)

t1 ≥ s (16c)

for m = 0, 1, . . . , 2i − 1 and i = 0, 1, . . . , l − 1, where

t2l+m =


τ for m = 0, 1,

λ for m = 2, . . . , α− 1,

s for m = α, . . . , 2l − 1.

(17)

1With a slight abuse of notation, we drop the subscript k on (Y,y, λ, τ) in (14) for notational simplicity.
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The proof of Proposition 6 is relegated to Appendix B. Now, note that given a fixed w,

the constraints (16a)–(16b) are linear matrix inequalities. Thus, problem (14) can be solved

efficiently by leveraging the SDP reformulation (16). In particular, we obtain the following

bi-level optimization formulation of the general UDR beamforming problem:

(GUB) : max
ρ,w∈P

ρ (18a)

s.t. ρ+ ρTr(D(w∗ ◦w)Sg)− qHSgq ≤ 0, (18b)

η ≥ max{λk − τk : (14b), (14c), and (16)}, ∀k ∈ K. (18c)

On the upper-level of problem (GUB), we optimize the rank-one beamformer w to maximize

the target SNR ρ. On the lower-level of problem (GUB), we compute the worst-case interference

violation probability η of all the CUE. The constraint (18b) ensures the SNR performance at the

destination DUE receiver. However, due to the coupling between w and Y in the non-convex

matrix inequality (16a), the upper- and lower-level problems are not separable, thus rendering

problem (GUB) intractable. To circumvent this difficulty, we make the following observation,

which reveals a connection between (GUB) and (SUB):

Proposition 7: The upper bound on Bα
k (w,h) derived by (14) is increasing in α > 0.

We relegate the proof in Appendix C. Proposition 7 implies that (SUB) produces the largest

evaluation of Bα
k (w,h) and thus can be viewed as a restriction of (GUB); i.e., any w that is

feasible for (SUB) is also feasible for (GUB). Moreover, since the added structural information

in (GUB) mitigates the conservatism in channel estimation, (GUB) will achieve a better SNR

performance than that of (SUB) for the same beamformer w. This observation leads to the novel

idea of approximating (GUB) by iteratively checking the feasibility of (SUB). Specifically, the

algorithm starts from a beamformer w that is feasible for (SUB). Then, we fix w and solve the

lower-level problem (14). Once we obtain an upper bound on Bα
k (w,h), we check the feasibility

of (18c) and then update w accordingly. The whole procedure is presented in Algorithm 1. Given

the CUE’s probability threshold η (e.g., η = 0.1), we initialize (ρ,W) in line 3 of Algorithm 1 by

solving (SUB) with the initial threshold η̃ = η. The rank-one solution w can be extracted from

W by eigen-decomposition or the Gaussian randomization method. Then, fixing the beamformer

w, we check the feasibility of (18c) in problem (GUB). If Bα
k (w,h) is smaller (resp. larger) than

the target probability limit η, we increase (resp. decrease) the value of η̃ by bisection and then
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Algorithm 1 UDR Relay Beamforming against Uncertainties in the Relay-Destination Hop
1: initialize η̃min = η, η̃max = 1, and η̃ = η

2: while |η̃max − η̃min| ≥ ε

3: find (ρ,W) by solving (SUB) with the target η̃

4: extract the rank-one beamformer w from W

5: evaluate Bα
k (w,h) by solving the SDP (14)

6: if Bα
k (w,h) ≤ η for all k ∈ K

7: update η̃min ← η̃ else η̃max ← η̃

8: end if

9: update η̃ ← (η̃max + η̃min)/2

10: end while

11: return (ρ,w)

solve (SUB) again to update (ρ,W). At convergence, Algorithm 1 always returns a rank-one

solution to (GUB), which provides a lower bound on the optimal value of problem (5) for any

integer α ≥ 2.

B. Robustness against Uncertainty in the Source-Relay Channel under the WCR Model

We now extend the UDR formulation (5) to incorporate uncertainty in the source-relay channel

h. Observe that we can write h = h̄ + ∆h, where h̄ is the nominal channel estimate and ∆h is

the estimation error. Since the DUE relays can perform frequent channel estimation, we typically

have ‖∆h‖ � ‖h̄‖. This motivates us to adopt the following conventional WCR model for h:

U , {h ∈ CN | h = h̄ + ∆h and ‖∆h‖ ≤ δ}, (19)

where δ > 0 is a given parameter. Using the uncertainty set U, we can formulate the following

analog of (GUB), which ensures robustness against the uncertainties in both the source-relay

channel h and the relay-destination channels g, z:

(GUB)′ : max
ρ,w∈P

ρ (20a)

s.t. S̄g(ρ,w)− qHSgq ≤ 0, ∀h ∈ U, (20b)

η ≥ max
h∈U

Bα
k (w,h), ∀k ∈ K. (20c)
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Here, we define S̄g(ρ,w) , ρ+ρTr(D(w∗◦w)Sg). It is straightforward to show that Proposition

7 still holds for maxh∈UB
α
k (w,h), which implies that we can solve (GUB)′ in the same way

as (GUB). We summarize the procedure in Algorithm 2. Our proposed procedure relies on the

tractability of the safe approximation in Step 1 and the feasibility check in Step 2. Note that

Algorithm 2 performs bisection over η̃ to search for the feasible beamformer and thus converges

linearly. In the sequel, we show that both Steps 1 and 2 of Algorithm 2 admit an efficient

implementation.

Algorithm 2 Robust Relay Beamforming against Uncertainties in Both Hops
Step 1: Solve a safe approximation of (GUB)′ by replacing (20c) with

η̃ ≥ max
h∈U

B∞k (w,h), k ∈ K.

Step 2: Let w̃ be the beamformer obtained in Step 1. Check if the following constraints are

satisfied:

η ≥ max
h∈U

Bα
k (w̃,h), k ∈ K.

Step 3: If not, update η̃ using the bisection method and go to Step 1 until convergence is

achieved.

1) Solving the Safe Approximation in Step 1: By applying the techniques developed in Section

III, we obtain the following representation of the safe approximation in Step 1:

max
w, ρ, Mk, νk

ρ (21a)

s.t. cT (w∗ ◦w) ≤ p̄, ∀h ∈ U, (21b)

S̄g(ρ,w)− qHSgq ≤ 0, ∀h ∈ U, (21c)

Mk �

 D(c)Dw 0

0 νk − φ̄k

 , ∀h ∈ U, (21d)

Tr(ΣzkMk) ≤ νkη, (21e)

Mk � 0, νk ≥ 0, ∀ k ∈ K. (21f)

Here, we define Dw = D(w∗ ◦ w) for simplicity. The power budget constraint (21b) and the

SNR requirement (21c) are quadratic in estimation error ∆h. As such, they can be transformed
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into linear matrix inequalities using the S-lemma. Indeed, after some manipulations, the power

budget constraint (21b) can be written as

(h̄ + ∆h)HDw(h̄ + ∆h) + wHw ≤ p̄, ∀‖∆h‖2 ≤ δ2.

By the S-lemma, there exists a t1 ≥ 0 such that t1I− Dw −Dwh̄

−h̄HDw p̄−wHw − h̄HDwh̄− t1δ2

 � 0. (22)

Upon setting c̄ , 1 + h̄∗ ◦ h̄ and W = wwH , we obtain the following linear matrix inequality

representation:  t1I−∆(W) −∆(W)h̄

−h̄H∆(W) p̄− Tr(D(c̄)W)− t1δ2

 � 0. (23)

In a similar fashion, we have the following linear matrix inequality representation of (21c): t2I + Tw Twh̄

h̄HTw h̄HTwh̄− S̄g(ρ,W)− t2δ2

 � 0, (24)

where t2 ≥ 0 and Tw , W ◦ Sg.

Next, we analyze the more challenging semi-infinite constraint (21d). Let

M̄k , Mk − D

 w∗ ◦w

νk − φ̄k

 .

Then, we can express (21d) as M̄k �
[

D(h∗ ◦ h) 0
]H[

Dw 0
]
. Let P =

[
Dw 0

]
and

Kk = M̄k −
[

D(h̄∗ ◦ h̄) 0
]H

P. We require that

Kk �

 D(∆∗h ◦∆h + 2h̄∗ ◦∆h)

0

P (25)

holds for any ∆h satisfying ‖∆h‖ ≤ δ. Define X =
[

D(∆h) 0
]H . Clearly, we have ‖X‖ ,√

λmax(XXH) ≤ δ. Hence, a sufficient condition to ensure (25) is given by

Kk � 2

 D(h̄ + δ
2
1) 0

0 0

XP, ∀‖X‖ ≤ δ. (26)

To process (26), we need the following result:

Lemma 1 (Petersen’s Lemma [33]): Given matrices P, Q, and K with K = KH , we have

K � QHXHP + PHXQ, ∀‖X‖ ≤ δ (27)
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if and only if there exists a t ≥ 0 such that K− tQHQ −δPH

−δP tI

 � 0,

or equivalently K− tQHQ− (δ2/t)PHP � 0.

By Petersen’s Lemma, the constraint (26) is equivalent to Kk −

 t3,kDδ 0

0 0

 −δ

 Dw

0


−δ
[

Dw 0
]

t3,kI

 � 0, (28)

where t3,k ≥ 0 and Dδ , D(h̄∗ + δ
2
1)D(h̄ + δ

2
1). Upon setting W = wwH , we obtain the

following representation of (28):

M′
k ,

 Mk 0(n+1)×n

0n×(n+1) t3,kIn

 �


D(c̄)∆(W) + t3,kDδ 0n×1 δ∆(W)

01×n νk − φ̄k 01×n

δ∆(W) 0n×1 0n×n

 . (29)

Since (28) is a safe approximation of (21d), we conclude that the optimal value of problem (21)

is lower bounded by the objective value associated with an optimal rank-one solution to the

following problem:

(SUB)′ : max
W, ρ, Mk, νk
t1, t2, t3,k

ρ

s.t. (21e), (23), (24), and (29),

t1 ≥ 0, t2 ≥ 0, W � 0,

t3,k ≥ 0, Mk � 0, νk ≥ 0, ∀k ∈ K.

Similar to problem (SUB), we can solve problem (SUB)′ using the bisection method. Indeed,

for a fixed ρ, checking the feasibility of (SUB)′ is an SDP. At the convergence of the bisec-

tion method, we can extract from an optimal W? a feasible beamformer using either eigen-

decomposition or the Gaussian randomization.
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2) Feasibility Check in Step 2: Step 2 of Algorithm 2 requires the evaluation of maxh∈UB
α
k (w,h)

for some integer α ≥ 2 and comparing the result to the probability target η. By Propositions 5

and 6, an upper bound on maxh∈UB
α
k (w,h) is given by

max
Y,y, λ, τ≥0

λ− τ (30)

s.t. (14b)–(14c), (16b)–(16c), and (17),

max
h∈U

Tr(ΛwY) ≥ λ2

s
φ̄k.

Observe that for a given Y, the maximization of Tr(ΛwY) with respect to h ∈ U takes the form

max
‖∆h‖2≤δ2

(h̄ + ∆h)HYw(h̄ + ∆h), (31)

where Yw , (Dw ◦Y) � 0. By [34, Theorem 3.2], an optimal solution to (31) can be obtained

by solving an SDP.

To solve (30), we employ the alternating optimization (AO) technique. Specifically, we first

solve (30) with fixed h(t) ∈ U to obtain (Y(t),y(t), λ(t), τ (t)). This is equivalent to solving an

instance of problem (14). Then, we fix (Y(t),y(t), λ(t), τ (t)) and solve (31) to get h(t+1) = h̄ +

∆
(t+1)
h . The entire procedure is summarized in Algorithm 3. It is easy to verify that the sequence

of objective values {λ(t) − τ (t)} is increasing, which allows us to establish the convergence of

the AO method using the results in [35].

Algorithm 3 AO Method for Evaluating maxh∈UB
α
k (w,h)

1: initialize ∆
(t−1)
h = 0 and ∆

(t)
h = δe for t = 1, where e is a unit vector

2: while ‖∆(t)
h −∆

(t−1)
h ‖ ≥ ε

3: solve the SDP (14) with fixed h(t)

4: update ∆
(t+1)
h by solving problem (31)

5: h(t+1) ← h̄ + ∆
(t+1)
h

6: t← t+ 1

7: end while

So far we showed that Algorithm 2, which involves solving a sequence of SDPs, provides

a tractable way of solving a safe approximation of (GUB)′. Let us now give a rough anal-

ysis of its computational complexity. The complexity of Step 1 depends on the number of

iterations required to solve (SUB)′ times the complexity of solving an SDP. Given the error



21

tolerance ε in the bisection method, the total number of iterations is on the order of log
(

1
ε

)
.

The complexity of solving an SDP with ñ decision variables and K̃ linear matrix inequalities

is O
((∑K̃

i=1 m̃i

)1/2 (
ñ2
∑K̃

i=1 m̃
2
i + ñ

∑K̃
i=1 m̃

3
i

))
[17], where m̃i denotes the dimension of

the i-th linear matrix inequality. By simple manipulations, we see that the overall complexity

of Step 1 is on the order of log
(

1
ε

)
K3.5N6.5, where K and N denote the number of CUE

and the DUE relays, respectively. In Step 2, we need to check the feasibility of the constraint

η ≥ maxh∈UB
α
k (w,h), which is carried out by Algorithm 3. In each iteration of Algorithm 3,

we need to solve the SDP (14) for a fixed h(t) and problem (31) for a fixed (Y(t),y(t), λ(t), τ (t)).

Simulation results reveal that Algorithm 3 requires few iterations to converge, and the complexity

of Step 2 is mainly dominated by that of solving the SDP (14), which is O
(
KN6.5

)
. Since the

number of bisection steps over η̃ used to find a feasible beamformer is on the order of log
(

1
ε

)
,

we conclude that the overall complexity of Algorithm 2 is on the order of log
(

1
ε

)
K3.5N6.5.

IV. SIMULATION RESULTS

In this section, we demonstrate the efficacy of our proposed UDR-based beamforming design

and compare it with those obtained from some existing robust models. For simplicity, we consider

3 DUE relays collaboratively amplifying and forwarding the received signals to the DUE receiver.

Since the presence of multiple CUE (i.e., K > 1) will only result in multiple constraints of the

form (18c) in problem (GUB) or (20c) in problem (GUB)′, we simply consider the case where

K = 1 in our simulations. We assume that the noise at each relay and at the DUE has zero

mean and unit variance. Moreover, the channel h in the first hop is characterized by the WCR

model; i.e., h is assumed to lie in the spherical set (19). On the other hand, the channels g and

z have α-unimodal pdfs and known first- and second-order moments, but their exact pdfs are

unknown.

A. Worst-Case Interference Violation Probability

To better understand the impact of the UDR model on the interference violation probability, we

consider a fixed channel h and examine how the worst-case interference violation probability

Bα
k (w,h) changes with the parameter α. For the general UDR model, an upper bound on

Bα
k (w,h) can be obtained by solving problem (14) with a fixed beamformer w, assuming α ≥ 2

is an integer (see Proposition 6). Without loss of generality, we set w to be the solution to

(SUB). In Fig. 2, we show the upper bound on Bα
k (w,h) with different values of α and the
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CUE’s interference requirements (φ̄, η). In Fig. 2(a), we observe that the upper bound decreases

as the CUE interference threshold φ̄ increases. Despite the randomness in the channel estimates,

the aggregate interference φ = zTΛwz received by the CUE tends to concentrate around its

mean. Hence, when φ̄ becomes larger, the probability that the deviation from the mean exceeds

φ̄ becomes smaller. In Fig. 2(b), we observe that the upper bound on Bα
k (w,h) is increasing in

α, which is consistent with the conclusion of Proposition 7. In particular, a larger α implies less

stringent structural requirement, thus resulting in a more conservative (i.e., larger) evaluation of

Bα
k (w,h).

B. Price of Robustness for Channel Uncertainties

Of course, the UDR model can also be used to characterize the uncertainty of h. However, we

are currently unable to derive a tractable approximation of Bα
k (w,h) when all the channels h,

g, and z are unimodal random variables. We circumvent this difficulty by ignoring the structural

information on the distribution of h and simply characterizing its uncertainty by the conventional

WCR model (19). Then, we can derive an upper bound on maxh∈UB
α
k (w,h) and ensure the

solution returned by Algorithm 2 is robust against the uncertain channels in both hops. It is

worth noting that such an approach can still perform well when the DUE relays estimate the

channel frequently. In Fig. 3(a), we show the upper bound on maxh∈UB
α
k (w,h) by varying

the normalized error bound δn = δ/‖h‖, where the relays’ beamformer wi is obtained by

solving problem (SUB)′. The results confirm our intuition that the uncertainty in the channel
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Fig. 2: Upper bounds on the interference violation probability Bαk (w,h).
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Fig. 3: The UDR model is less conservative than the DRO model.

h inevitably leads to a more conservative (i.e., larger) estimation of the interference violation

probability. Consequently, the degradation in the data rate in Fig. 3(b) can be viewed as the price

of robustness paid to guard against the uncertainty in h, which is an increasing function of the

error bound δn; i.e., the performance gap becomes larger when δn increases. We also observe

in Fig. 3(b) that the data rate decreases as α increases, which verifies that the upper bound on

maxh∈UB
α
k (w,h) derived in (30) is an increasing function of α (see Proposition 7).
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Fig. 4: The UDR model is less conservative than the DRO model.
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TABLE I: Simulation results with different φ̄

φ̄ 5 6 7 8 9 10

DRO 0.71% 0.65% 0.67% 0.65% 0.60% 0.66%

BER 2.01% 1.98% 2.09% 2.05% 2.00% 2.08%

UDR 6.43% 6.32% 6.46% 6.34% 6.31% 6.29%

C. Relationship between the UDR and DRO Models

The UDR model provides a more practical channel uncertainty model by leveraging the notion

of α-unimodality. To verify the performance of the UDR model, we compare it with some existing

models. In the sequel, we fix the source-relay channel h and focus on the uncertain channels

g and z in the relay-destination hop, which are characterized by the proposed UDR model.

As α → ∞, the UDR model degenerates into the DRO model [22], and we can evaluate the

exact value of B∞k (w,h) by the SDP (10). For the general UDR model, we only have a safe

approximation of (5b). A comparison between the UDR and DRO models is presented in Fig.

4, where the DRO model is denoted by α→∞. We observe that a larger α in the UDR model

implies more conservative evaluation of Bα
k (w,h). This leads to over-protection for the CUE

and thus performance loss at the DUE. Due to the lack of structural information, the DRO

model significantly overestimates the interference violation probability as shown in Fig. 4(a).

The evaluation of Bα
k (w,h) is used to check whether a given beamformer w is feasible for the

interference constraint; i.e., Bα
k (w,h) ≤ η. The result of the feasibility check then motivates the

update of w in Algorithm 1. In our simulations, we set the probability limit to be η = 0.2 and

the resulting data rate is shown in Fig. 4(b). Though Algorithm 1 is based on heuristics and a

safe approximation of the constraint Bα
k (w,h) ≤ η, it provides the DUE a much higher data

rate than that can be achieved by the DRO model.

D. Performance Comparison with the BER Model [17]

The Bernstein-type inequality (BER) model assumes that the channels are Gaussian distributed

and relies on a Bernstein-type inequality to develop a safe approximation of Bα
k (w,h) ≤ η. Note

that the Gaussian distribution is α-unimodal for any α greater than the dimension of the channel

vector [27]. To compare the UDR and BER models, we first optimize the beamformer w in

both models for the CUE probability limit η = 0.2 and then check their throughput performance

using random realizations of the channels g and z. Assuming that the uncertain channels g
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Fig. 5: Throughput performance of three robust models.

and z are Gaussian distributed, we generate 106 channel realizations according to their moment

information in each simulation run. For each interference threshold φ̄, we record the CUE’s

interference violation probabilities in Table I and show the DUE’s data rate in Fig. 5. We

observe in Table I that the interference violation probabilities do not vary too much with the

increase of φ̄, and they do not exceed the prescribed probability limit η. We also notice that

the observed interference violation probability in the DRO model is much smaller than that of

the BER and UDR models. Again, this is due to the lack of structural information in the DRO

model, which leads to the most conservative DUE performance; see also Fig. 5.

A perhaps counter-intuitive observation from Table I is that the UDR model has the highest

interference violation probability and consequently a better throughput performance than that of

the BER model as shown in Fig. 5. This can be explained in part by the fact that although the

BER model demands exact distributional information, the approximation in the Bernstein-type

inequality results in an over-estimation of the interference violation probability. As a result, the

robust beamformer design in the BER model is more conservative than that of the UDR model.

In Fig. 5(b), the performance gain of the UDR (resp. BER) model is defined as the expected

ratio E[ρU/ρD] (resp. E[ρB/ρD]), where ρD, ρU , and ρB denote the optimal SNR targets of

the DRO, UDR, and BER models, respectively. We observe that the UDR model improves the

DUE’s performance significantly by imposing additional structural information on the channel

distribution.
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TABLE II: Simulation results with different α values

α 3 4 5 6 8 10

DRO 0.96% 0.94% 0.97% 1.06% 0.97% 1.13%

BER 1.90% 1.92% 1.91% 1.99% 1.86% 2.02%

UDR 7.56% 6.49% 5.98% 5.37% 4.30% 3.96%

E[ρB/ρD] 1.151 1.151 1.152 1.153 1.152 1.152

E[ρU/ρD] 1.556 1.487 1.452 1.415 1.342 1.305

E. Flexibility Achieved by Tuning the Parameter α

By tuning the value of α, the UDR model has the flexibility to model the channel uncertainty

under different channel conditions. To show this, we vary the value of α and record some

performance metrics of various robust models in Table II. In the simulations, we set φ̄ = 6 and

η = 0.2. Note that the DRO and BER models are oblivious to the unimodal structure in the

distribution. Thus, we record nearly constant interference violation probabilities in the first two

rows of Table II. By the same reason, the performance gain E[ρB/ρD] is also a constant for

different α. However, when we reduce α and thus impose more stringent structural requirement

on the distribution, the UDR model achieves higher SNR by pushing the interference violation

probability closer to its target η. Hence, we observe an increasing value of E[ρU/ρD] as α

decreases. When α =∞, the UDR model degenerates into the DRO model and the performance

gain E[ρU/ρD] tends to unity. When α = N , we achieve a significant performance improvement

(around 50%) over the DRO model, as shown in Table II.

V. CONCLUSION

In this paper, we proposed a two-step approach to the problem of distributionally robust

beamforming in a D2D relay network with cellular users. In the first step, we sought for a

beamforming design for the relays that is robust against the channel uncertainties in the relay-

destination hop and maximizes the DUE’s SNR while satisfying the relays’ power budget and

CUE’s interference constraints. Then, in the second step, we extend our formulation in the first

step to further guard against the channel uncertainty in the source-relay hop. For the channel

uncertainties in the relay-destination hop, we introduced, for the first time in the context of

wireless communications, the UDR model to characterize them. Such a model is motivated by

the observation that channel distributions are typically unimodal, and this structural information

can be obtained without extra effort in the DUE relays’ channel estimation. Furthermore, the UDR
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model can mitigate the conservatism of other conventional channel uncertainty models such as the

WCR and DRO models. As for the channel uncertainty in the source-relay hop, we characterize

it using the conventional WCR model, which is reasonable if the DUE relays can perform

frequent channel estimation. The aforementioned two-step approach circumvents the complicated

coupling of the uncertain channels and facilitates the design of an iterative procedure that can

efficiently approximate the optimal beamformer for the DUE relays by solving a sequence of

SDPs. Compared with the well-known DRO and BER models, our UDR-based beamforming

design is shown to achieve a much higher throughput (typically around 50% performance gain

in our simulations). We expect that the UDR model and the solution techniques developed in

this paper will find many other applications in robust designs for wireless communications.

APPENDIX

A. Proof of Proposition 5

We need to show that for any feasible solution m to (13), we can construct a feasible solution

(Y,y, λ, τ) to (14) that achieves at least the same probability bound as m. Let Pz be a feasible

α-unimodal distribution for (9) and m denote the corresponding mixture distribution in (13).

Define Ξ , {x |xTΛwx < φ̄k} and Ξ̄ , Rn \ Ξ. Then, we can construct a feasible solution to

(14) as follows:  Y y

yT λ

 =

∫
Ξ̄

 xxT x

xT 1

m(dx) � 0, (32a)

τ =

∫
Ξ̄

(
1− pαk (x)

)
m(dx) ≥ 0. (32b)

Obviously, we have λ ≤ 1 and S̄zk ūzk

ūTzk 1

 =

∫
x∈Ξ∪Ξ̄

 xxT x

xT 1

m(dx) �

 Y y

yT λ

 .
Noting that pαk (x) =

∫
Rn ek(z)δα[0,x](dz), we have

1− pαk (x) =


(

φ̄k
xTΛwx

)α
2

x ∈ Ξ̄

1, x ∈ Ξ
,

which implies τ ≥
(

φ̄k∫
Ξ̄ xTΛwxm(dx)

)α
2 ≥ λ

(
λφ̄k

Tr(YΛw)

)α
2
. The first inequality comes from Jensen’s

inequality and the second inequality is due to the fact that
∫

Ξ̄
xxTm(dx) = Y and λ ≤ 1.

Lastly, we verify that the same objective value can be achieved by the construction in (32):

Em[pαk (x)] =
∫

Ξ̄
m(dx)−

∫
Ξ̄

(
1− pαk (x)

)
m(dx) = λ− τ . This completes the proof.
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B. Proof of Proposition 6

It is easy to see that (16a) is equivalent to (15a) . Thus, we only need to show the equivalence

between (15b) and (16b)-(16c). By the construction (17) and the inequalities in (16b)-(16c), all

power exponents in (15b) are non-negative. Thus, we have

τ 2λα−2s2l−α =
∏

0≤m≤2l−1

t2l+m ≥

 ∏
0≤m≤2l−1−1

t2l−1+m

2

≥ · · · ≥ t2
l

1 ≥ s2l .

The converse is also true. Indeed, for any (τ, λ, s) that is feasible for (15b), we can construct a set

of values {t2l−1+m} such that t2l+2mt2l+2m+1 = t2
2l−1+m

and τ 2λα−2s2l−α =
∏

0≤m≤2l−1−1 t
2
2l−1+m

≥
s2l . The claim then follows by unrolling the above inequality.

C. Proof of Proposition 7

For any α ≥ 2 and Γ = (Y,y, λ, τ) that is feasible for (14), let ub(α,Γ) = λ− τ denote the

objective value of Γ. Now, consider a fixed α ≥ 2 and let Γ? = (Y?,y?, λ?, τ ?) be an optimal

solution to (14). Note that the inequality constraint (14d) is satisfied as an equality at Γ?; i.e.,

τ ? = λ?
(

λ?φ̄
Tr(ΛwY?)

)α
2
. Hence, we have Tr(ΛwY?)

λ?φ̄
=
(
λ?

τ?

) 2
α ≥ 1, which implies that

∂ub(α,Γ
?)

∂α
=
λ?

2

(
λ?φ̄

Tr(ΛwY?)

)α
2

log

(
Tr(ΛwY?)

λ?φ̄

)
≥ 0.

In particular, for any 0 < α1 ≤ α2, we have ub(α1,Γ
?
1) ≤ ub(α2,Γ

?
1) ≤ ub(α2,Γ

?
2), where

the first inequality is due to the monotonicity of ub(α,Γ?
1) with respect to α and the second

inequality is due to the fact that Γ?
2 is an optimal solution corresponding to α2. This completes

the proof.
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