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ABSTRACT
We consider a wireless network with densely deployed user
devices (e.g., a device-to-device or wireless sensor network)
underlaying a cellular system, in which some user devices
act as relays to facilitate data transmissions between a dis-
tant transceiver pair under imperfect channel information.
Motivated by the observation that most of the channel distri-
butions are unimodal, we formulate a novel distributionally
robust beamforming problem, in which the random chan-
nel coefficient follows a class of unimodal distribution with
known first- and second-order moments. Our design ob-
jective is to maximize the worst-case signal-to-noise ratio
(SNR) at the dedicated user device while satisfying a prob-
abilistic interference constraint at the cellular user equip-
ment (CUE). Though such a unimodal distributionally ro-
bust (UDR) beamforming problem is non-convex, we show
that an approximate solution can be computed efficiently us-
ing semidefinite programming. Our simulation results show
that under mild conditions, the UDR model yields signif-
icant beamforming performance improvement over conven-
tional robust models that merely rely on first- and second-
order moments of the channel distribution.

CCS Concepts
•Networks → Network performance analysis; Mobile ad
hoc networks;

Keywords
Relay beamforming; distributional uncertainty; robust opti-
mization
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1. INTRODUCTION
As wireless devices (e.g., smart phones, wearable devices,

sensors, etc.) become ubiquitous, device-to-device (D2D)
communication is a promising way to increase data rates,
extend network coverage, and reduce energy consumptions
in cellular networks. It is proposed primarily to offload data
traffic between the cellular base station (CBS) and the cel-
lular user equipment (CUE) within or beyond the cellular
coverage [12, 17]. With the upsurge of social applications
(e.g., interactive gaming, file sharing, video streaming, etc.),
D2D communication has become especially advantageous for
a local social network, as the access to local contents is more
frequent than that to the core network via the CBS. In this
paper, instead of emphasizing on the performance improve-
ment of cellular systems, we focus on the D2D communica-
tions and aim to improve the quality-of-service (QoS) of a
local D2D network within the cellular coverage.

The dense deployment of D2D user equipment (DUE) al-
lows us to achieve spatial diversity by employing multiple
DUE as collaborative relays. It has been shown in [4] that
the use of relays can significantly improve network perfor-
mance while causing insignificant increase in end-to-end de-
lay. However, the dense DUE makes the spectrum usage
more crowded. An economical and spectrally efficient solu-
tion is to let the DUE share the same spectrum with the
cellular system [7, 9]. This requires an efficient power con-
trol strategy at the DUE relays to manage the interference
among the DUE and CUE. By analyzing the interference
to the CUE, a strategy for selecting different D2D operat-
ing modes is proposed in [23]. In [18], the power of each
DUE relay is controlled separately while the interference
to the CUE is controlled by selecting the number of re-
lays. The authors in [8] considered an ad hoc D2D net-
work, in which the interference to the cellular system is
kept below a certain interference temperature. In general,
to achieve optimal relay performance, one needs to design a
distributed beamformer according to different relays’ chan-
nel conditions [15,24]. However, most of the aforementioned
works rely on the unrealistic assumption that the channel
information is precisely known. In practice, the channel in-



formation is usually unreliable due to quantization errors,
processing delay, or lack of coordination between the CUE
and numerous DUE. Thus, there has been a growing ef-
fort in modeling the channel uncertainty, so that proactive
strategies can be developed to avoid sharp performance de-
terioration. Broadly speaking, there are three different types
of channel uncertainty models. A stochastic (STO) model
assumes that the channel estimate follows an explicit distri-
bution, such as Rician or Rayleigh [11]. Under this model,
we can formulate the QoS metric in a probabilistic manner
and obtain a chance-constrained robust beamforming prob-
lem [16, 22]. The worst-case robust (WCR) model assumes
that the channel error lies in a bounded convex set and gives
rise to a max-min beamforming problem [5, 6]. A less con-
servative approach is to build the channel models based on
partial distributional information that is easy to estimate
with high accuracy, such as low-order moments of the chan-
nel error. The distributionally robust (DRO) model was re-
cently employed to study robust beamforming by leveraging
the first- and second-order moments of the channel distribu-
tion [10]. However, such an approach can still be too con-
servative, as the worst-case channel distribution is shown to
be discrete and hardly observed in practice [21].

The above discussion motivates us to impose additional
requirements on the shape or structure of the channel dis-
tribution. Empirically, we find that the channel distribution
is typically smooth, symmetric, unimodal, or even similar to
some known patterns [2]. Such structural information can
be extracted and exploited to further mitigate the conser-
vatism of the DRO model. In this work, we focus on the
unimodal structure and propose the unimodal distribution-
ally robust (UDR) model to improve the relays’ beamformer
design. Our goal is to maximize the DUE receiver’s SNR
subject to the CUE’s probabilistic interference constraints.
The main contributions of this paper are summarized as fol-
lows:

• Unimodal distributionally robust model : Motivated by
the observation that most channel distributions are
unimodal, we introduce a novel UDR model, which
assumes that the random channel follows a class of
unimodal distributions with known first- and second-
order moments. By leveraging the generalized notion
of unimodality [20], we parameterize a class of uni-
modal distributions by a positive scalar α, which al-
lows us to derive an upper bound on the worst-case
interference violation probability. To the best of our
knowledge, our work is the first to adopt the UDR
model in the relays’ robust beamforming problem.

• Heuristic beamforming algorithm: As we shall see, dif-
ferent values of α correspond to different levels of con-
servatism in channel modeling, and the UDR model
degenerates into the DRO model as α approaches in-
finity. This observation motivates us to design an itera-
tive algorithm to tackle the relays’ beamforming prob-
lem by alternately solving the well-known DRO-based
beamforming problem and updating the beamformer
based on a feasibility check on the UDR-based beam-
forming problem. Our simulation results show that the
UDR model significantly improves the DUE’s through-
put performance.

The rest of this paper is organized as follows. We describe
the system model and the channel uncertainty in Section 2.

In Section 3, we propose the relays’ robust beamforming
problem and design the beamforming algorithm based on
the proposed UDR model. Simulations and conclusions are
given in Sections 4 and 5, respectively.

2. SYSTEM MODEL
We consider a D2D network with densely deployed user

devices underlaying a downlink cellular system, in which
each DUE transmitter (DTx), DUE relay, and DUE receiver
(DRx) are equipped with a single antenna. We assume that
a direct link between the DTx and DRx is not available
due to the long transmission distance and limited power at
the DTx, and the DUE’s data transmission is assisted by a
group of DUE relays, denoted by the set N = {1, 2, . . . , N}.
The relays’ transmissions also introduce interference to the
CUE. Without loss of generality, we consider one CUE in
the system for simplicity. The system model is illustrated in
Figure 1. The CUE will not be interrupted if the interference
from the DUE relays is less than a prescribed threshold. The
downlink transmissions from the CBS to the CUE may also
introduce interference to the D2D communications. Herein,
we assume that such interference is constant and treat it as
background noise.

DUE relays

h

g

z

DUE Transmitter (DTx)

CUE

DUE Receiver (DRx)

Figure 1: System model

Let h , [h1, h2, . . . , hN ]T and g , [g1, g2, . . . , gN ]T denote
the channel coefficients from the DTx to the relays and from
the relays to the DRx, respectively, and z , [z1, z2, . . . , zN ]T

denote the channel coefficients from the relays to the CUE.
We assume that all channels are frequency-flat and block
fading [1]; i.e., the channel coefficients remain constant dur-
ing one data frame and may change independently during
different data frames. We assume that there is a coordina-
tor in the system that schedules one DTx to transmit at a
time to avoid conflicts between different DUE [19]. Thus,
we can focus on one DUE transceiver pair each time.

2.1 Nominal Beamforming Problem
In the system, the relays’ information delivery follows a

two-hop amplify-and-forward (AF) protocol. In the first
hop, the DTx broadcasts a symbol s to the nearby relays.
The received signal at relay n is mn = hns + σn, where
σn ∼ N(0, 1) is the Gaussian noise with zero mean and unit
variance. In the second hop, relay n forwards the signal mn

amplified by a weight wn and thus w = [w1, w2, . . . , wN ]T

constitutes the relays’ beamformer. The received signal at
the DRx is

y =

N∑
n=1

gnwnhns+

N∑
n=1

gnwnσn + vd,

where vd ∼ N(0, 1) is the noise at the DRx. Note that the
first term of the received signal y contains the useful infor-
mation while the second term is the noise signal forwarded



by the relays. Assuming unit transmit power at the DTx
(i.e., E

[
|s|2
]

= 1), the SNR at the DRx is given by

γ(w) =

∣∣∣∣∣
N∑
n=1

wngnhn

∣∣∣∣∣
2/(

1 +

N∑
n=1

|wn|2|gn|2
)
. (1)

We observe that it may not be optimal for all the relays to
transmit at their peak power, as the relays also amplify and
forward the noise signals. Let a = g ◦ h be the component-
wise product of the channels g and h. Then, we can rewrite

the DUE’s SNR γ(w) more compactly as γ(w) = wTAw
1+wTBw

,

where A = aaT and B = D(g ◦ g) are positive semidefinite
matrices. Here, D(g) is a diagonal matrix with the diagonal
elements specified by g.

To ensure harmonic coexistence with the cellular system,
the DUE relays’ transmit beamforming has to restrict the
aggregate interference to the CUE. As the transmit power at
relay n is |wn|2(1+|hn|2), the aggregate interference received

by the CUE can be expressed as φ(w) =
∑N
n=1 |zn|

2|wn|2(1+
|hn|2). Let Λw = D(k ◦ k)D(w ◦ w), where k = [(1 +

h2
n)1/2]n∈N is the known information at the relays. Then,

we have φ(w) = zTΛwz. Our target is to maximize the
DUE’s SNR by optimizing the relays’ beamformer w, sub-
ject to the CUE’s interference constraint; i.e.,

max
w

{
wTAw

1 + wTBw
: zTΛwz ≤ φ̄

}
, (2)

where φ̄ is a prescribed threshold that represents the CUE’s
sensitivity to interference. We can also add individual or
sum power budget constraints at the relays, but this would
not affect our subsequent analysis. Thus, we only consider
the CUE’s interference constraint for simplicity. Our for-
mulation can be easily extended to the setting where there
are multiple CUE. Each CUE would then have its own in-
terference constraint, thus ensuring protection for the most
vulnerable CUE.

2.2 Channel Uncertainty Model
The solution to problem (2) requires exact knowledge of

the channel coefficients. In this paper, we assume that h
in the first hop is perfectly known by the relays’ channel
estimation; e.g., the DTx can broadcast a known pilot signal
to facilitate the relays’ channel estimation. However, due
to limited or untimely responses from the DRx and CUE,
the relays are unable to estimate g and z accurately. To
model the uncertainties in g and z, we assume that g and
z are random variables following distributions Pg and Pz,
respectively. Since it is relatively easy to estimate the mean
ug and covariance Sg of the channel coefficient g, we can
define the distributional uncertainty set of g as

Pg ∈ P(ug,Sg) ⊂ P∞, (3)

where P(ug,Sg) is a set of distributions having the same
moment statistics (ug,Sg) and P∞ is the set of all prob-
ability distributions. In the same vein, we can define the
distributional uncertainty set of z as Pz ∈ P(uz,Sz), where
(uz,Sz) is the first- and second-order moments of the chan-
nel coefficient z, which are known to the DUE relays. The
distributional uncertainty set defined in (3) gives rise to a
typical DRO model [10].

In this work, we aim to mitigate the conservatism of the
DRO model by incorporating additional structural infor-
mation that can be extracted from channel measurements.

Specifically, we require Pg or Pz to be unimodal, which is a
commonly observed property in the area of wireless commu-
nications and signal processing [13]. Intuitively, unimodality
implies a single local maxima (referred to as the mode) in
the density function. For univariate unimodal distributions,
the density function is non-decreasing to the left of the mode
and non-increasing to the right of the mode. In particular,
Gaussian, Rayleigh, and Rician distributions are examples
of univariate unimodal distribution. By incorporating uni-
modality in the DRO model, we can remove those hardly
observed multi-modal distributions from the uncertainty set
(3), thereby leading to more practical distributional uncer-
tainty sets for g and z. To fulfill this purpose, we first need
an analytical characterization of unimodality for multivari-
ate distributions. This can be achieved using the notion of
α-unimodality [20]:

Definition 1. Suppose that P ∈ P∞ has a continuous
probability density function f on RN . We say that P is α-
unimodal with mode 0 for some α > 0 if tN−αf(tx) is non-
increasing in t > 0 for all x 6= 0. The set of all α-unimodal
distributions with mode 0 is denoted as Pα.

When α = N , α-unimodality implies that the density
function is non-increasing along the rays emanating from
its mode, which coincides with our intuition for univariate
unimodal distributions. When α > N , the density function
f may increase along the rays emanating from its mode,
but tN−αf(tx) is still non-increasing in t > 0. The rate of
increase of f is controlled by the parameter α. Hence, α-
unimodality is a more general characterization of unimodal
distributions. Now, we can define the unimodal distribu-
tionally robust (UDR) model for g and z as follows:

Pg ∈ Pαg , Pg(ug,Sg)
⋂
Pα, (4a)

Pz ∈ Pαz , Pz(uz,Sz)
⋂
Pα. (4b)

The parameterized sets Pαg and Pαz allow flexibility in mod-
eling the uncertainties in g and z under different channel
conditions. When α is equal to the number of DUE relays,
most of the practically observed distributions will fall in the
set Pα [20]. When α approaches infinity, every distribution
belongs to the set P∞. In this case, the UDR model (4)
degenerates into the DRO model (3).

3. ROBUST BEAMFORMING PROBLEM
Both the SNR performance γ(w) and the aggregate inter-

ference φ(w) are functions of the channel conditions. Thus,
they become stochastic when the channels g and z are drawn
from Pg and Pz, respectively. Considering the UDR model
(4), we formulate the robust counterpart of (2) as follows:

max
w

min
Pg∈Pαg

EPg [wTAw]

1 + EPg [wTBw]
(5a)

s.t. max
Pz∈Pαz

Pz

(
zTΛwz ≥ φ̄

)
≤ η. (5b)

Here, we optimize the relays’ beamformer w to maximize the
DUE’s worst-case SNR while limiting the CUE’s worst-case
(with respect to all distributions with the given structural
and moment information) interference violation probability
below a prescribed probability threshold η.

Due to the non-convex probabilistic constraint (5b), the
UDR beamforming problem (5) is generally difficult to solve



optimally. To simplify it, we introduce the SNR target ρ ≥ 0
and observe that (5a) is equivalent to maximizing ρ subject
to the following QoS constraint:

ρ+ max
Pg∈Pαg

EPg

[
gT
(
ρD(w ◦w)− qqT

)
g
]
≤ 0, (6)

where we denote q = D(h)w for simplicity. Note that the
SNR constraint (6) only involves the second-order moment
Sg and not the particular structure of the distribution Pg.
Hence, we can simplify (6) as

ρ+ ρTr(D(w ◦w)Sg)− qTSgq ≤ 0. (7)

To simplify the probabilistic constraint (5b), let e(z) =
1(zTΛwz ≥ φ̄), where 1(·) is the indicator function. De-
fine

Bα(uz,Sz) = max
Pz∈Pαz

EPz
[
e(z)

]
(8)

to be the worst-case interference violation probability on
the LHS of (5b). Since the maximization in (8) is semi-
infinite and the constraint Bα(uz,Sz) ≤ η has no known
closed-form convex equivalence, we shall focus on deriving
an upper bound on Bα(uz,Sz) in the sequel. To proceed,
we first study the approximation of Bα(uz,Sz) in a special
case of the UDR model; namely, the DRO model (which
corresponds to α approaching infinity). After getting some
insights from this special case, we then consider the UDR
model in its full generality.

3.1 A Special Case of the UDR Model
When α approaches infinity, the UDR model degenerates

into the DRO model. In this case, we have the following
equivalence [25]:

B∞(uz,Sz) = min
M,ν

Tr(ΣzM) (9a)

s.t. M �
[
νΛw 0
0 1− νφ̄

]
, (9b)

M � 0, ν ≥ 0, (9c)

where M, ν are dual variables and Σz =
[ Sz uz

uTz 1

]
de-

notes the second-order moment matrix of the channel z.
For any fixed w, (9b) is a linear matrix inequality. Hence,
problem (9) is a semidefinite program (SDP) and provides
a tractable reformulation of B∞(uz,Sz). Upon replacing
(5b) by (9), the optimal beamformer w? can be obtained as
follows:

max
ρ≥0,w

ρ (10a)

s.t. ρ+ ρTr(D(w ◦w)Sg)− qTSgq ≤ 0, (10b)

Tr(ΣzM) ≤ νη, (10c)

M �
[

D(k ◦ k)D(w ◦w) 0
0 ν − φ̄

]
, (10d)

M � 0, ν ≥ 0. (10e)

Unfortunately, problem (10) is still non-convex, as the con-
straints (10b) and (10d) are quadratic in w. To circumvent
this difficulty, we apply the semidefinite relaxation (SDR)
technique [14]. Specifically, by first introducing the rank-
one matrix W = wwT and then dropping the non-convex
rank-one constraint on W, we obtain the following SDR of

problem (10):

(SUB) : max
ρ≥0,W�0

ρ (11a)

s.t. ρ+ ρTr(∆(W)Sg)− qTSgq ≤ 0, (11b)

Tr(ΣzM) ≤ νη, (11c)

M �
[

D(k ◦ k)∆(W) 0
0 ν − φ̄

]
, (11d)

M � 0, ν ≥ 0, (11e)

where ∆(W) = D(w ◦w) is the diagonal matrix by setting
all off-diagonal elements of W to zero.

Problem (SUB) can be solved optimally by a bisection
method. Indeed, for a given target SNR ρ, it is clear that
(11b) and (11c) are linear inequalities and (11d) is a linear
matrix inequality. This implies that checking the feasibil-
ity of the constraints (11b)–(11e) is an SDP, which can be
solved efficiently by the interior-point algorithms embedded
in some well-known optimization toolbox, such as SeDuMi
and CVX [3]. In particular, we can increase or decrease ρ de-
pending on whether the constraints (11b)–(11e) are satisfied
or not, until convergence is achieved. Now, suppose that the
bisection method converges to the optimal beamforming ma-
trix W?. If W? happens to be a rank-one matrix, then the
optimal beamformer w? to problem (10) can be extracted
by eigen-decomposition. Otherwise, an approximate rank-
one solution can be extracted from W? by, e.g., a Gaussian
randomization method [14].

3.2 The General Case of the UDR Model
Now, let us focus on the general UDR model and derive

an upper bound on Bα(uz,Sz) for finite values of α. By
definition of α-unimodality, a finite α imposes non-trivial
structure on the distribution Pz, and a smaller α implies
more stringent structural requirement; i.e., Pα1 ⊃ Pα2 for
α1 ≥ α2 > 0. Therefore, by tuning the value of α, we can
construct a flexible robust model that captures the informa-
tion uncertainty in different channel conditions. However,
the lack of a concrete representation of Pαz makes it very
difficult to solve problem (8) in closed-form. A simplifica-
tion of Pαz relies on the construction of a special class of the
α-unimodal distributions.

Definition 2. For any α > 0 and x ∈ Rn, the radial α-
unimodal distribution supported on the line segment [0,x] ⊂
Rn, denoted by δα[0,x](·), is a distribution with the property
that δα[0,x]([0, tx]) = tα for t ∈ [0, 1].

Lemma 1 ( [20]). For any P ∈ Pα, there exists a unique
distribution m ∈ P∞ such that P(·) =

∫
Rn δ

α
[0,x](·)m(dx).

Lemma 1 maps any α-unimodal distribution Pz ∈ Pαz to
a general distribution m ∈ P∞ without the unimodality
constraint. This mapping allows us to reformulate (8) as a
conventional moment constrained problem:

Bα(uz,Sz) = max
m∈P∞

Em [pα(x)] (12a)

s.t. Em

[
xxT x
xT 1

]
=

[
S̄z ūz

ūTz 1

]
,

(12b)

where pα(x) =
∫
Rn e(z)δα[0,x](dz) and the moment statistics

S̄z and ūz are given by 2+α
α

Sz and 1+α
α

uz, respectively. The



equivalence between problems (8) and (12) is straightfor-
ward by applying Lemma 1 to (8). Such equivalence implies
that once we find an m that is feasible for (12), we can con-
struct an α-unimodal distribution Pz that is feasible for (8).
Thus, in the sequel, we shall focus on problem (12).

Although problem (12) has a similar structure to that in
the DRO model, the Lagrangian method does not give a
tractable dual form of (12). Instead, we resort to the follow-
ing approximation:

Proposition 1. An upper bound on Bα(uz,Sz) is given
by

max
Y�0,y≥0,λ,τ≥0

λ− τ (13a)

s.t.

[
S̄z ūz

ūTz 1

]
−
[

Y y
yT λ

]
� 0, (13b)[

Y y
yT λ

]
� 0, (13c)

τ2(Tr(ΛwY)
)α ≥ λα+2φ̄α. (13d)

Proof. We need to show that for any feasible solution
m to problem (12), we can construct a feasible solution
(Y,y, λ, τ) to problem (13) such that it achieves at least
the same probability bound as m. Towards that end, let
Pz be a feasible α-unimodal distribution for (8) and m de-
note the corresponding mixture distribution in (12). Let

Ξ , {x |xTΛwx < φ̄} and Ξ̄ = Rn \ Ξ. Then, we can con-
struct a feasible solution to problem (13) by the following
rules: [

Y y
yT λ

]
=

∫
Ξ̄

[
xxT x
xT 1

]
m(dx) � 0, (14a)

τ =

∫
Ξ̄

(
1− pα(x)

)
m(dx) ≥ 0. (14b)

Obviously, we have λ ≤ 1 and[
S̄z ūz

ūTz 1

]
=

∫
x∈Ξ∪Ξ̄

[
xxT x
xT 1

]
m(dx) �

[
Y y
yT λ

]
.

Note that pα(x) =
∫
Rn 1(zTΛwz ≥ φ̄)δα[0,x](dz). Moreover,

by the construction of Ξ, we have

1− pα(x) =

{ (
φ̄

xTΛwx

)α
2

for x ∈ Ξ̄,

1 for x ∈ Ξ,
(15)

which implies τ ≥
(

φ̄∫
Ξ̄ xTΛwx m(dx)

)α
2 ≥ λ

(
λφ̄

Tr(YΛw)

)α
2

.

The first inequality comes from the Jensen inequality and
the second inequality is due to the fact that

∫
Ξ̄

xxTm(dx) =
Y and λ ≤ 1. The final step is to verify that the same objec-
tive can be achieved by the construction in (14): Em[pα(x)] =∫

Ξ̄
m(dx)−

∫
Ξ̄

(
1− pα(x)

)
m(dx) = λ− τ . This completes

the proof.

Proposition 1 implies that we can find a safe approxima-
tion of (5b) by solving the upper bound problem (13). How-
ever, the nonlinear constraint in (13d) is non-convex and
depends on the value of α. To further simplify it, we can
introduce an auxiliary variable s ≥ 0 such that(

Tr(ΛwY)
)α
sα ≥ λ2αφ̄α, (16a)

τ2λα−2s2l−α ≥ s2l , (16b)

where l = dlog2(α)e is the smallest integer such that 2l−α ≥
0. By imposing mild conditions on α, we can derive an
equivalent convex formulation of (16a)–(16b) as follows:

Proposition 2. Let α ≥ 2 be an integer. By introducing
auxiliary variables t2k+m ≥ 0, where k = 0, 1, . . . , l − 1, the
constraints (16a)–(16b) are equivalent to[

Tr(ΛwY) λφ̄
1
2

λφ̄
1
2 s

]
� 0, (17a)[

t2k+1+2m t2k+m

t2k+m t2k+1+2m+1

]
� 0, (17b)

t1 ≥ s (17c)

for m = 0, 1, . . . , 2k − 1 and k = 0, 1, . . . , l − 1, where

t2l+m =


τ for m = 0, 1,
λ for m = 2, . . . , α− 1,
s for m = α, . . . , 2l − 1.

(18)

Proof. It is easy to see that (17a) is equivalent to (16a).
Thus, we only need to show the equivalence between (16b)
and (17b)–(17c). By the construction (18) and the inequal-
ities in (17b)–(17c), all power exponents in (16b) are non-
negative. Thus, we have

τ2λα−2s2l−α =

2l−1∏
m=0

t2l+m ≥

2l−1−1∏
m=0

t2l−1+m

2

≥ · · · ≥ t2
l

1 ≥ s2l .

The converse is also true. For any (τ, λ, s) that is fea-
sible for (16b), we can simply construct a set of values
{t2l−1+m}0≤m≤2l−1−1 such that t2l+2mt2l+2m+1 = t22l−1+m

and

τ2λα−2s2l−α =

2l−1−1∏
m=0

t22l−1+m ≥ s
2l .

The same construction applies to the second inequality and

yields τ2λα−2s2l−α = · · · = t1 ≥ s.

Given a fixed beamformer w, both constraints (17a) and
(17b) are linear matrix inequalities. Hence, we can solve
problem (13) efficiently by leveraging on the SDP reformu-
lation (17).

3.3 UDR-based Beamforming Algorithm
In view of the approximation of Bα(uz,Sz), we can refor-

mulate the general UDR-based beamforming problem as the
following bi-level optimization problem:

(GUB) : max
ρ≥0,w

ρ (19a)

s.t. ρ+ ρTr(D(w ◦w)Sg)− qTSgq ≤ 0, (19b)

η ≥ max{λ− τ : (13b), (13c), (17a)–(17c)}.
(19c)

On the upper-level of problem (GUB), we optimize the rank-
one beamformer w to maximize the target SNR ρ. The
constraint (19b) ensures the target SNR at the designated
DUE and the constraint (19c) bounds the CUE’s worst-case
interference violation probability, which is the optimum of
the lower-level optimization problem as in (13). In par-
ticular, similar to problem (SUB), we can again pinpoint



the maximum target SNR ρ? by checking the feasibility of
(19b)–(19c) for a given ρ and applying a bisection method.
However, the feasibility check now requires solving the lower-
level optimization problem, which is non-convex due to the
coupling between w and Y in the matrix inequality (17a).
Nevertheless, note that problems (GUB) and (SUB) differ
only in the interference constraint. By exploiting the connec-
tion between problems (GUB) and (SUB), we aim to design
a simpler algorithm that can bypass checking the feasibility
of (19b)–(19c) directly.

Proposition 3. The upper bound on Bα(uz,Sz) derived
in problem (13) is an increasing function of α.

Proof. For any α ≥ 2 and Γ = (Y,y, λ, τ) that is fea-
sible for problem (13), let ub(α,Γ) = λ − τ denote the
objective value of Γ. Now, consider a fixed α ≥ 2 and
let Γ? = (Y?,y?, λ?, τ?) be an optimal solution to prob-
lem (13). Note that the inequality constraint (13d) is satis-

fied as an equality at Γ?; i.e., τ? = λ?
(

λ?φ̄
Tr(ΛwY?)

)α
2

. Hence,

we have Tr(ΛwY?)

λ?φ̄
=
(
λ?

τ?

) 2
α ≥ 1, which implies that

∂ub(α,Γ
?)

∂α
=
λ?

2

(
λ?φ̄

Tr(ΛwY?)

)α
2

log

(
Tr(ΛwY?)

λ?φ̄

)
≥ 0.

In particular, for any 0 < α1 ≤ α2, we have ub(α1,Γ
?
1) ≤

ub(α2,Γ
?
1) ≤ ub(α2,Γ

?
2), where the first inequality is due

to the monotonicity of ub(α,Γ
?
1) with respect to α and the

second inequality is due to the fact that Γ?2 is an optimal
solution corresponding to α2. This completes the proof.

Proposition 3 implies that (SUB) produces the largest
evaluation of Bα(uz,Sz) and thus it is a restricted version
of (GUB); i.e., any beamformer w that is feasible for (SUB)
is also feasible for (GUB). Moreover, since the added struc-
tural information in (GUB) mitigates the conservatism in
channel estimation, (GUB) will achieve a better SNR target
than that of (SUB) for the same beamformer w. This ob-
servation motivates us to approximate (GUB) by iteratively
checking the feasibility of (SUB). The basic idea is to start
from a beamformer w that is feasible for (SUB). Then, we
fix w and solve the lower-level problem (13). Once we ob-
tain an upper bound on Bα(uz,Sz), we check the feasibility
of (19c), which then facilitates the update of w. The entire
procedure is summarized in Algorithm 1.

Algorithm 1 UDR-Based Beamforming Algorithm

1: initialize η̃min = η, η̃max = 1, and η̃ = η
2: while |η̃max − η̃min| ≥ ε
3: find (ρ,W) by solving (SUB) with η̃
4: extract rank-one beamformer w from W
5: evaluate Bα(uz,Sz) by solving SDP (13)
6: if Bα(uz,Sz) ≤ η
7: η̃min ← η̃
8: else
9: η̃max ← η̃

10: end if
11: η̃ ← (η̃max + η̃min)/2
12: end while
13: return convergent (ρ,w)

Given the CUE’s probability threshold η (e.g., η = 0.1),
we initialize (ρ,W) in line 3 by solving (SUB) with the ini-

tial threshold η̃ = η. The rank-one solution w can be ex-
tracted from W by the Gaussian randomization method [14].
Simulation results reveal that problem (SUB) always gives
rank-one solutions and a similar observation has been re-
ported in [10]. Next, fixing the beamformer w, we check
the feasibility of (19c) in problem (GUB) and update the
probability threshold η̃ by the bisection method shown in
lines 6–11. Then, we solve (SUB) again to update (ρ,W).
Note that Algorithm 1 always returns a feasible rank-one
solution to (GRB), which provides a lower bound on the
optimal value of problem (5) for any integer α ≥ 2.

4. NUMERICAL RESULTS
In this section, we demonstrate the efficacy of the pro-

posed UDR beamforming design and compare it with some
existing robust models. For simplicity, we consider 3 DUE
relays collaboratively amplifying and forwarding the received
signal to the DUE receiver. The noise at each relay and at
the DUE has zero mean and unit variance. The channel
coefficients g and z are random variables with known mean
and covariance, but their exact distribution functions are
unknown. We require the channel distributions to be α-
unimodal. Since our safe approximation of (5b) is valid only
when α ≥ 2 is an integer, we shall consider integer values
of α in the simulations. By setting α to be the number of
relays, the UDR model contains those commonly observed
unimodal distributions in practice.

4.1 Comparing with the DRO Model [10]
In the general UDR model, an upper bound on Bα(uz,Sz)

is obtained by solving problem (13) with a fixed beamformer
w. This leads to a safe approximation of the probabilis-
tic constraint (5b). When α approaches infinity, the UDR
model degenerates into the DRO model [10], which admits
the equivalent SDP formulation (9) and gives an exact eval-
uation of Bα(uz,Sz). To compare the UDR and DRO mod-
els, we fix the same beamformer w in both problems (9)
and (13) and then numerically evaluate the interference vi-
olation probability and the DUE’s data rate. The com-
parison results are presented in Figure 2, where the DRO
model is denoted by “α → ∞”. We observe that a larger
α implies less stringent structural requirement and a larger
(thus more conservative) evaluation of Bα(uz,Sz), thus re-
sulting in over-protection for the CUE and performance loss
at the DUE. As a result, the DRO model significantly over-
estimates the interference violation probability; see Figure
2(a). Next, we set the probability threshold at η = 0.2 and
show the data rate of the D2D communications in Figure
2(b). We see that although the general UDR model can
only be solved by a heuristic method (i.e., Algorithm 1), it
still provides the DUE a significantly higher data rate than
the exactly solvable DRO model.

4.2 Comparing with the BER model [22]
The BER model assumes that the channel coefficients fol-

low a Gaussian distribution. Under this model, a safe ap-
proximation of the constraint Bα(uz,Sz) ≤ η can be de-
veloped using the Bernstein-type inequality [22]. Since the
Gaussian distribution is α-unimodal for any α greater than
the dimension of the channel vector [20], the BER model
demands more stringent structural information than that of
the UDR model. To compare these two models, we first
optimize the beamformer w in different models and then
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Figure 2: The UDR model outperforms the DRO model

check their throughput performance with randomized chan-
nel realizations of g and z. We set the CUE’s probability
threshold at η = 0.2 and generate 106 realizations of the
uncertain channel coefficients g and z according to their
moment information in each simulation run. For each in-
terference threshold φ̄, we record the CUE’s interference vi-
olation probabilities in Table 1 and show the DUE’s data
rate in Figure 3. We observe that the interference viola-
tion probabilities corresponding to different models do not
vary too much with the increase of φ̄. We also notice that
the interference violation probability in the DRO model is
much smaller than that of the BER and UDR models due to
the lack of structural information. This explains the DRO
model’s conservative DUE throughput performance in Fig-
ure 3.

Table 1: Simulation results with different φ̄

φ̄ 5 6 7 8 9 10
DRO 0.71% 0.65% 0.67% 0.65% 0.60% 0.66%
BER 2.01% 1.98% 2.09% 2.05% 2.00% 2.08%
UDR 6.43% 6.32% 6.46% 6.34% 6.31% 6.29%
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Figure 3: Throughput performance in three robust models

A counter-intuitive observation in Table 1 is that the UDR

model has the highest interference violation probability and
consequently a better throughput performance than that of
the BER model; see Figure 3. Though the BER model de-
mands more structural information than that of the UDR
model, the looser approximation in the Bernstein-type in-
equality results in an over-estimation of the interference vi-
olation probability. Therefore, the robust beamformer de-
sign in the BER model is more conservative than that of
the UDR model. In Figure 3(b), the performance gain of
the UDR (or BER) model is defined as the expected ra-
tio E[ρU/ρD] (or E[ρB/ρD]), where ρD and ρU (or ρB) de-
note the optimal SNR targets of the DRO and UDR (or
BER) models, respectively. We find that the UDR model
improves the DUE’s performance significantly by exploiting
the additional structural information in channel estimation,
especially when the CUE has a small interference threshold.

By tuning the value of α, the UDR model has the flexibil-
ity to model the channel uncertainty. To show this, we vary
the value of α and record the actual performance of these ro-
bust models in Table 2. In the simulation, we set φ̄ = 6 and
η = 0.2. Note that the DRO and BER models do not take
the unimodal structure into account. Thus, we record nearly
constant interference violation probabilities in the first two
rows of Table 2. By the same reason, the performance gain
E[ρB/ρD] is also a constant for different α. However, when
we reduce α and thus impose more stringent structural re-
quirement on the distribution Pz, the UDR model achieves
higher SNR for the DUE by pushing the actual interfer-
ence violation probability closer to its target level η. Hence,
we observe an increasing value of E[ρU/ρD] as α decreases.
When α approaches infinity, the UDR model degenerates
into the DRO model and the performance gain E[ρU/ρD]
tends to unity. A practical choice of the parameter α is to
relate it to the dimension of the channel coefficients. Specif-
ically, by setting α = N , the set Pαz contains most of the
commonly observed distributions in wireless systems, and
the UDR model achieves a significant performance improve-
ment (around 50%) over the DRO model; see Table 2.

Table 2: Simulation results with different α values

α 3 4 5 6 10
DRO 0.96% 0.94% 0.97% 1.06% 1.13%
BER 1.90% 1.92% 1.91% 1.99% 2.02%
UDR 7.56% 6.49% 5.98% 5.37% 3.96%

E[ρB/ρD] 1.151 1.151 1.152 1.153 1.152
E[ρU/ρD] 1.556 1.487 1.452 1.415 1.305

5. CONCLUSIONS
In this work, we studied DUE relays’ beamforming in a

cellular network under imperfect channel information, where
our goal is to maximize the DUE’s worst-case SNR subject
to the CUE’s probabilistic interference constraint. Based on
the notion of α-unimodality, we proposed the UDR model
that can significantly mitigate the conservatism of the con-
ventional DRO and BER models in robust beamforming de-
sign. As a future work, we may incorporate more structural
information into the channel uncertainty model and study
the more involved setting where the channel information in
both hops of a D2D relay network is uncertain.
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