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Variance-Reduced Stochastic Quasi-Newton
Methods for Decentralized Learning

Jiaojiao Zhang, Huikang Liu, Anthony Man-Cho So, and Qing Ling

Abstract—In this work, we investigate stochastic quasi-Newton
methods for minimizing a finite sum of cost functions over a
decentralized network. We first develop a general algorithmic
framework, in which each node constructs a local, inexact
quasi-Newton direction that asymptotically approaches the glo-
bal, exact one at each time step. To do so, a local gradient
approximation is constructed using dynamic average consen-
sus to track the average of variance-reduced local stochastic
gradients over the entire network, followed by a proper local
Hessian inverse approximation. We show that under standard
convexity and smoothness assumptions on the cost functions,
the methods obtained from our framework converge linearly
to the optimal solution if the local Hessian inverse approxi-
mations used have uniformly bounded positive eigenvalues. To
construct the Hessian inverse approximations with the said boun-
dedness property, we design two fully decentralized stochastic
quasi-Newton methods—namely, the damped regularized limited-
memory DFP (Davidon-Fletcher-Powell) and the damped limited-
memory BFGS (Broyden-Fletcher-Goldfarb-Shanno)—which use
a fixed moving window of past local gradient approximations and
local decision variables to adaptively construct Hessian inverse
approximations. A noteworthy feature of these methods is that
they do not require extra sampling or communication. Numerical
results show that the proposed decentralized stochastic quasi-
Newton methods are much faster than the existing decentralized
stochastic first-order algorithms.

Index Terms—Decentralized optimization, stochastic quasi-
Newton methods, variance reduction, damped limited-memory
DFP, damped limited-memory BFGS.

I. INTRODUCTION

There has been steadily growing interest in machine learning
over networks in various areas, such as large-scale learning [1],
[2], privacy-preserving learning [3], [4], decentralized system
control [5], [6], etc. These applications often can be formulated
as decentralized learning problems. This paper focuses on
decentralized learning over an undirected, connected network,
where n nodes look for a minimizer of the average cost

x∗ = arg min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x). (1)

Here, x ∈ Rd is the decision variable and fi : Rd → R is the
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local cost function of node i that is expressible as the average
of mi sample costs, i.e.,

fi(x) :=
1

mi

mi∑
l=1

fi,l(x) (2)

with fi,l : Rd → R being the l-th sample cost on node i,
assumed to be differentiable. To obtain an optimal solution
x∗ to (1), the nodes are allowed to communicate with their
neighbors and perform local computation. However, at each
time step, node i may not have access to the local cost function
fi or the local full gradient ∇fi since they may involve a large
number of samples. Instead, at each time step, each node can
access one or a mini-batch of sample costs and compute the
local stochastic gradient.

In recent years, a large number of algorithms have been
proposed for solving the learning problem (1). Among them,
decentralized stochastic first-order methods are appealing due
to their low computational complexity. By contrast, decen-
tralized stochastic second-order methods are rarely studied.
The goal of this paper is to devise computationally affordable
decentralized stochastic second-order methods to accelerate
the learning process.

Our methods are motivated by those used in the design of
quasi-Newton methods in the centralized setting. Nevertheless,
we need some new tools to ensure that the resulting Hessian
inverse approximations can be computed in a decentralized
manner. To better appreciate the novelty of our constructions,
let us review existing techniques for approximating Hessian
inverses in the design of quasi-Newton methods.

A. Centralized Stochastic Quasi-Newton Methods
In the centralized setting, the updates of deterministic quasi-

Newton methods typically take the form

xk+1 = xk − αHk∇F (xk),

where Hk is an approximation of (∇2F (xk))−1 and α >
0 is the step size. Two well-known quasi-Newton methods,
DFP (Davidon-Fletcher-Powell) and BFGS (Broyden-Fletcher-
Goldfarb-Shanno), update Hk via

(DFP) Hk+1 = Hk +
sk(sk)T

(sk)T yk
− Hkyk(yk)THk

(Hkyk)T yk
(3)

and

(BFGS) Hk+1 =Hk − Hkyk(sk)T + sk(yk)THk

(sk)T yk
(4)

+
sk(sk)T

(sk)T yk

(
1 +

(yk)THkyk

(sk)T yk

)
,
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respectively. Here,

sk = xk+1 − xk, yk = ∇F (xk+1)−∇F (xk).

If the cost F is strongly convex, then the curvature condition
(sk)T yk > 0 holds and thus the Hessian inverse approximati-
ons in (3) and (4) are positive definite for all k ≥ 1, provided
that the initialization H0 is positive definite [7].

When the number of samples is large, computing the full
gradient ∇F can be prohibitive. This motivates the deve-
lopment of stochastic quasi-Newton methods. A common
approach is to combine stochastic gradient descent with ca-
refully constructed curvature information [8]–[11]. The work
[8] investigates how to construct a diagonal or low-rank matrix
according to the so-called secant condition. The work [9] in-
corporates sub-sampled Hessian information in a Newton con-
jugate gradient method and a limited-memory quasi-Newton
method for statistical learning. The work [10] employs the
classic BFGS update formula in its limited memory form and
proposes to collect curvature information at spaced intervals
to get a stable estimate of the curvature of the objective
function. The work [11] proposes an online limited-memory
BFGS that uses stochastic gradients instead of full gradients.
The convergence analysis of the method is given in [12]. The
work [13] proposes a regularized stochastic BFGS method
called RES, in which stochastic gradients are used both as
descent directions and constituents of Hessian estimates. The
regularization used in RES ensures that the eigenvalues of the
Hessian approximations are uniformly bounded. The works
[14] and [15] use variance reduction to eliminate the stochastic
gradient noise, so that the resulting stochastic quasi-Newton
methods are provably convergent at linear rates under standard
convexity and smoothness assumptions on the cost.

The above-mentioned centralized stochastic quasi-Newton
methods [8]–[15] cannot be directly applied to decentralized
optimization. The work [8] only solves support vector machine
problems. To stabilize the Hessian inverse approximation
when stochastic noise presents, the works [9], [11]–[14] use
yk = ∇FSk(xk+1) − ∇FSk(xk), which is the difference of
stochastic gradients evaluated at the iterates xk+1 and xk with
the same sample set Sk. This guarantees that (sk)T yk > 0
if each sample cost is strongly convex but doubles the eva-
luation of stochastic gradients. The works [10], [15] consider
yk = ∇2FSk(xk)sk, where ∇2FSk(xk) is the sub-sampled
Hessian computed from the sample set Sk. This guarantees
that (sk)T yk > 0 if the sub-sampled Hessian is positive defi-
nite but incurs evaluation and sampling of true Hessians. By
contrast, we only use local gradient approximations and local
decision variables to construct Hessian inverse approximations
without extra sampling or communication. The analyses in
[8]–[15] use the properties of stochastic gradients or sub-
sampled Hessians and do not apply to our methods.

B. Decentralized Deterministic and Stochastic Algorithms
When the numbers m1, . . . ,mn of local samples are suf-

ficiently small so that each node i can afford to compute
the local full gradient ∇fi or even the local full Hessian
∇2fi, there are many decentralized deterministic first-order
and second-order algorithms for solving (1).

Distributed gradient descent (DGD) is a popular first-order
method that combines local gradient descent with average
consensus. However, with a fixed step size, it is unable to
achieve exact convergence [16], [17]. The convergence error
can be eliminated with the help of local historical information,
as is done in, e.g., exact first-order algorithm (EXTRA) [18],
primal-dual methods [19], [20], exact diffusion [21], and
gradient tracking [22]–[24].

Although first-order algorithms are widely used in decen-
tralized learning due to their low computational complexity,
second-order methods are able to achieve faster convergence.
Several works penalize the consensus constraints (namely, all
the local decision variables must be eventually consensual) in
the cost function and obtain approximate Newton directions
that are computable in a decentralized manner [25]–[27]. A
decentralized quasi-Newton method for problems in which the
gradient components have a local structure is proposed in [28]
and can be used to solve a penalized approximation of problem
(1). However, these algorithms only converge to a neighbor-
hood of an optimal solution with fixed step sizes. To achieve
exact convergence, several second-order primal-dual methods
have been developed [29]–[32]. A decentralized approximate
Newton-type algorithm is proposed in [33], which adopts the
gradient tracking technique so that the local gradients can
track the global ones. A cubically-regularized Newton method
with gradient tracking is explored in [34], which runs inexact,
preconditioned Newton steps on each node. The work [35]
proposes a decentralized adaptive Newton method, where each
node runs a finite-time consensus inner loop at each time step.

When the numbers m1, . . . ,mn of local samples are large,
decentralized deterministic algorithms become prohibitive due
to the time-consuming computation of local full gradients and
Hessians. Hence, decentralized stochastic algorithms, where
each node accesses only one or a mini-batch of sample costs at
each time step and computes the local stochastic gradient, are
favorable [2], [36], [37]. To remedy the gradient noise brought
by the local stochastic gradients, variance reduction techniques
such as stochastic variance-reduced gradient (SVRG) can be
applied [38]–[45]. However, to the best of our knowledge,
computationally affordable decentralized stochastic second-
order methods have not been investigated.

C. Contributions

In this work, we first propose a general framework that
incorporates decentralized stochastic quasi-Newton approxi-
mations with variance reduction to achieve fast convergence
and then design two quasi-Newton methods to construct Hes-
sian inverse approximations that fit into the framework. To
be specific, at each time step, each node first uses a variance
reduction technique to obtain a local corrected stochastic gra-
dient and then uses dynamic average consensus [46] to approx-
imate the global gradient. Further, the gradient approximations
are used to construct suitable Hessian inverse approximations.
We prove that if the constructed Hessian inverse approxi-
mations have uniformly bounded positive eigenvalues, then
the methods obtained from our proposed general framework
converge linearly to an exact optimal solution of (1).
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TABLE I: Stochastic gradient computational complexity of decentralized methods to reach a ∆-optimal solution of (1).

Algorithm1 Step size Stochastic gradient computational complexity Batch size

DSA [38] α = O
(
λmin(W̃ )
LκF

)
2 O

(
max

{
mκF ,

κ4
F

1−σ ,
1

(1−σ)2

}
log 1

∆

)
b = 1

GT-SVRG [39] α = O
(
(1−σ2)2

LκF

)
O
((

m+
κ2
F log κF

(1−σ2)2

)
log 1

∆

)
b = 1

GT-SAGA [39] α = min

{
O
(

1
µm

)
,O
(
(1−σ2)2

LκF

)}
O
(
max

{
m,

κ2F

(1−σ2)2

}
log 1

∆

)
b = 1

VR-DIGing [40] α = O
(

1

max

{
L, µ

(1−σ)2

}) O
(
(m+ κF ) log

1
∆

)
b =

max{L,mµ}

max

{
L, µ

(1−σ)2

}
Acc-VR-DIGing [40] α = O( 1

L
) O

(
(m+

√
mκF ) log

1
∆

)
b =

√
m(1−σ)2 max{L,mµ}

L

DVR [42] α = O
(
2λ+

min

(
ATcommD

−1
M Acomm

))
3 O

(
(m+ κF ) log

1
∆

)
b = 1

DFP and BFGS4 α = O
(

(1−σ2)2

LM2κF κH

)
O
((

m+
b·κ2

F κ
2
H log

κF κH
1−σ2

(1−σ2)2

)
log 1

∆

)
m−b

(m−1)b
≤ 1

160
min

{
1,
ζ(1−σ2)2

γ2

}

Note that the use of gradient approximations to construct
Hessian inverse approximations is quite adventurous, since
the gradient approximations are not necessarily reliable due to
stochastic gradient noise and disagreement among the nodes.
In particular, if we naı̈vely adopt centralized quasi-Newton
methods, then we may end up with almost-singular Hessian
inverse approximations or even non-positive semidefinite ones.
To address this issue, we propose two methods—the damped
regularized limited-memory DFP (Davidon-Fletcher-Powell)
and the damped limited-memory BFGS (Broyden-Fletcher-
Goldfarb-Shanno)—which are able to adaptively construct
positive definite Hessian inverse approximations. In particu-
lar, the proposed methods do not require extra sampling or
communication. Further, we prove that the generated Hessian
inverse approximations have uniformly bounded positive ei-
genvalues. Thus, they can be used in the general framework.
For the ease of comparison, we summarize the convergence
rates of two proposed methods and the existing decentralized
stochastic methods in Table I.

Throughout this paper, the costs are assumed to be diffe-
rentiable but not necessarily twice differentiable. The propo-
sed quasi-Newton methods only use stochastic gradients to
estimate Hessians, while the analysis does not make use of
true Hessians. If the costs are not twice differentiable so that
the constructed Hessian inverse approximations do not contain
useful curvature information, our methods reduce to first-order
methods but the analysis still holds.

Analyzing the general framework is challenging due to the
general Hessian inverse approximations, for which the techni-
ques developed for analyzing existing decentralized variance-
reduced first-order algorithms [38]–[45] are insufficient. We

1For all algorithms, we set the number of local samples mi = m and
the mini-batch sizes bi = b for all nodes i. Here, σ is the second largest
singular value of the mixing matrix W defined in Assumption 3; L and µ are
the smoothness and strong convexity constants, respectively; κF = L

µ
is the

condition number of the cost function F ; γ and ζ are defined in Theorem 1.
2Here, W̃ = I+W

2
.

3Here, λ+
min(·) is the smallest positive eigenvalue of a matrix and Acomm

and DM are matrices defined by the augmented graph in [42].
4Here, κH = M2

M1
is the condition number of H defined in Theorem

1. DFP needs extra O(Md2) computation and O(d2 + Md) storage per
iteration, while BFGS needs extra O(Md) computation and O(Md) storage
per iteration. This will be shown in Section III.

design a novel convergence metric related to the function
value and establish a proper recursion for it. In addition, due
to the general Hessian inverse approximations we encounter
two additional terms in the bound of the consensus error,
one concerning the variance and the other concerning the
optimality gap. Their effects persist throughout the analysis,
and we successfully handle the complications caused by them.
Finally, via tuning the sample size, we derive a tighter bound
of the variance that enables our convergence analysis.

Notation. We use ‖ · ‖ to denote the Euclidean norm of a
vector; tr(·), ‖ · ‖F , and ‖ · ‖2 to denote the trace, Frobenius
norm, and spectral norm of a matrix, respectively. We use
Id to denote the d × d identity matrix, 1n to denote the
n-dimensional column vector of all ones, and ⊗ to denote
the Kronecker product. For two matrices A,B of the same
dimensions, we use A ≤ B to indicate that each entry of
B−A is non-negative; A � 0 and A � 0 to indicate that A is
positive semidefinite and positive definite, respectively, with
A being symmetric; A � B and A � B to mean A−B � 0
and A−B � 0, respectively, with A,B being symmetric. We
use λmax(·) and λmin(·) to denote the largest and smallest
eigenvalue of a matrix, respectively; λi(·) to denote the i-th
largest eigenvalue of a matrix; ρ(·) to denote the spectral radius
of a matrix. For a positive vector z = [z1, . . . , zd]

T ∈ Rd,
an arbitrary vector a = [a1, . . . , ad]

T ∈ Rd, and an arbitrary
matrix A ∈ Rm×n, we use ‖a‖z∞ = maxi |ai| /zi to denote the
weighted infinity norm of a and ‖A‖z∞ to denote the weighted
infinity norm of A induced by the vector norm ‖ · ‖z∞. We use
A

1
2 to denote the square root of a positive semidefinite matrix

A, i.e., A = A
1
2A

1
2 .

We define W = W⊗Id ∈ Rnd×nd and W∞ =
1n1

T
n

n ⊗Id ∈
Rnd×nd. For x1, . . . , xn ∈ Rd, we define the aggregated
variable x = [x1; . . . ;xn] ∈ Rnd. The aggregated variables
d,g,v, and τ are defined similarly. We define the average
variable over all the nodes at time k as xk = 1

n

∑n
i=1 x

k
i =

1
n (1Tn ⊗ Id)xk ∈ Rd. The average variables d

k
,gk,vk, and

τk are defined similarly. We define the aggregated gradient at
time k as ∇f(xk) = [∇f1(xk1); . . . ;∇fn(xkn)] ∈ Rnd, the
average of all the local gradients at the local variables as
∇f(xk) = 1

n

∑n
i=1∇fi(xki ) ∈ Rd, and the average of all

the local gradients at the common average xk as ∇F
(
xk
)

=
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1
n

∑n
i=1∇fi(x

k) ∈ Rd. Define the block diagonal matrix Hk

= diag{Hk
i } ∈ Rnd×nd whose i-th block is Hk

i ∈ Rd×d

and the average matrix H
k

= 1
n

∑n
i=1H

k
i ∈ Rd×d. Given a

random variable v, denote E[v] as expectation and E[v|F ] as
conditional expectation with respect to (w.r.t.) the event F .

II. FORMULATION AND GENERAL FRAMEWORK

We begin by introducing the problem formulation of decen-
tralized learning and stating the basic assumptions. Then, we
propose a general framework for designing variance-reduced
decentralized stochastic quasi-Newton methods.

A. Problem Formulation

We consider an undirected, connected graph G = (V, E)
with node set V = {1, . . . , n} and edge set E ⊆ V × V .
The nodes i ∈ V and j ∈ V are allowed to send information
to each other if they are connected by an edge (i, j) ∈ E .
Each node i has a local cost function fi in the form of (2)
and makes decisions based on stochastic gradients of fi and
information obtained from its neighbors. Let Ni be the set of
neighbors of node i including itself and xi ∈ Rd be the local
copy of the decision variable x at node i. Since the network
is bidirectionally connected, problem (1) is equivalent to

x∗ = arg min
x=[x1;...;xn]

f(x) :=
1

n

n∑
i=1

fi (xi) (5)

s.t. xi = xj , ∀j ∈ Ni, ∀i,

where x∗ := [x∗; . . . ;x∗] ∈ Rnd. We note that (1) and (5) are
equivalent in the sense that at optimality, the local variables
x∗1, . . . , x

∗
n of (5) are all equal to the optimal solution x∗ of

(1), i.e., x∗1 = · · · = x∗n = x∗.
We make the following assumptions on the cost functions.

Assumption 1 (Convexity and L-smoothness). Each local
sample cost fi,l is convex and has Lipschitz continuous gra-
dient, i.e.,

fi,l(y) ≥fi,l(x) +∇fi,l(x)T (y − x),

fi,l(y) ≤fi,l(x) +∇fi,l(x)T (y − x) +
L

2
‖y − x‖2

for all x, y ∈ Rd, where L > 0 is the Lipschitz constant.

Assumption 1 implies that the local cost functions fi defined
in (2) and the global cost function F defined in (1) are also
convex and L-smooth. Under Assumption 1, we have the
following fact, see [47, Theorem 2.1.5].

Fact 1. Under Assumption 1, for all x, y ∈ Rd, we have
1

2L
‖∇fi,l(x)−∇fi,l(y)‖2

≤fi,l(x)− fi,l(y)−∇fi,l(y)T (x− y).

Note that similar results hold for the local cost functions fi
and the global cost function F .

Assumption 2 (µ-strong convexity). The global cost function
F is strongly convex, i.e.,

F (y) ≥ F (x) +∇F (x)T (y − x) +
µ

2
‖y − x‖2

for all x, y ∈ Rd, where µ > 0 is the strong convexity constant.

To reach the consensual optimal solution, the nodes need to
mix their local decision variables with those of their neighbors
according to predefined weights. Let wij ≥ 0 represent the
weight that node i assigns to j and consider the mixing matrix
W = [wij ] ∈ Rn×n. We make the following assumption.

Assumption 3 (Mixing matrix). The mixing matrix W is non-
negative, symmetric, and doubly stochastic (i.e., wij ≥ 0 for
all i, j ∈ {1, . . . , n}, W = WT , and W1n = 1n) with wij = 0
if and only if j /∈ Ni.

One useful consequence of Assumption 3 is that the null
space of In −W is span(1n). Mixing matrices satisfying As-
sumption 3 are commonly used in decentralized learning over
an undirected, connected network, see, e.g., [48] for details.
According to the Perron-Frobenius theorem [49], Assumption
3 implies that the eigenvalues of W lie in (−1, 1] and the
multiplicity of the eigenvalue 1 is one. It also implies that the
second largest singular value σ of W is less than 1, i.e., σ =
‖W − 1

n1n1Tn‖2 < 1.

B. General Framework for Designing Variance-Reduced De-
centralized Stochastic Quasi-Newton Methods

We propose a general framework for designing variance-
reduced decentralized stochastic quasi-Newton methods to
solve (5). At the k-th time step, node i updates its local de-
cision variable xk+1

i according to the decentralized stochastic
quasi-Newton step

xk+1
i =

n∑
j=1

wijx
k
j − αdki , (6)

where α > 0 is a constant step size. Consider the most
ideal scenario, in which the network is fully connected and
each node has sufficient computational power. If each local
cost function fi is twice differentiable, then the direction
dk+1
i can be chosen as the global negative Newton direction(
∇2F (xk+1)

)−1∇F (xk+1) =
(
1
n

∑n
i=1∇2fi(x

k+1)
)−1(

1
n

∑n
i=1∇fi(x

k+1)
)
, which is expressible as the multipli-

cation of the global Hessian inverse and the global gradient
at the average variable xk+1 = 1

n

∑n
i=1 x

k+1
i . However,

computing the global negative Newton direction is expensive
in the general decentralized stochastic learning setting for two
reasons. First, computing the global Hessian inverse and the
global gradient is impossible, because each node i only has
access to the information from the neighborhood Ni instead of
the entire network. Second, even computing the local Hessian
inverse and the local gradient is unaffordable, because they
involve all the sample costs on each node.

In the general framework, we update the direction dk+1
i by

dk+1
i = Hk+1

i gk+1
i , (7)

where Hk+1
i and gk+1

i are carefully constructed Hessian in-
verse approximation and gradient approximation, respectively.
Compared with the global negative Newton direction, the Hes-
sian inverse approximation Hk+1

i is used to estimate the global
Hessian inverse

(
1
n

∑n
i=1∇2fi(x

k+1)
)−1

=
(
∇2F (xk+1)

)−1



5

and the gradient approximation gk+1
i is used to estimate the

global gradient 1
n

∑n
i=1∇fi(x

k+1) = ∇F (xk+1). For con-
creteness, the reader can simply let Hk+1

i be Id throughout the
general framework. Other constructions of Hk+1

i and the cor-
responding quasi-Newton methods are discussed in Section III.

For the gradient approximation gk+1
i , we consider the case

where the sample size mi is large so that it is unaffordable
to compute the local full gradient ∇fi(xk+1

i ). We proceed
by choosing a subset Sk+1

i ⊆ {1, . . . ,mi} with cardinality
|Sk+1
i | = bi uniformly at random for node i, computing the

stochastic gradients ∇fi,l(xk+1
i ), and obtaining a corrected

stochastic gradient vk+1
i with SVRG via

vk+1
i =

∑
l∈Sk+1

i

∇fi,l(xk+1
i )−∇fi,l(τk+1

i )

bi
+∇fi(τk+1

i ), (8)

where τk+1
i ∈ Rd is an auxiliary variable. Given a positive

integer T , we set τk+1
i = xk+1

i if mod (k + 1, T ) = 0
and τk+1

i = τki otherwise. In particular, node i calculates
its local full gradient once every T time steps and saves it
to correct the subsequent T local stochastic gradients. With
SVRG, vk+1

i is a reliable, unbiased estimate of the local full
gradient ∇fi(xk+1

i ). However, we expect gk+1
i to estimate the

global gradient 1
n

∑n
i=1∇fi(x

k+1). Inspired by the gradient
tracking strategy [46], we construct gk+1

i with a dynamic
average consensus step, i.e.,

gk+1
i =

n∑
j=1

wijg
k
j + vk+1

i − vki (9)

with initialization g0i = v0i = ∇fi(x0i ).
Intuitively, the local corrected stochastic gradient vk+1

i will
gradually approach the local full gradient ∇fi(xk+1

i ) with
the help of SVRG. If the local decision variables xk+1

i are
almost consensual, then the gradient approximations gk+1

i will
gradually approach the global gradient 1

n

∑n
i=1∇fi(x

k+1)
with the help of dynamic average consensus. With the gradient
approximations gk+1

i at hand, in Section III, we will show how
to obtain a Hessian inverse approximation Hk+1

i that estimates
the global Hessian inverse

(
1
n

∑n
i=1∇2fi(x

k+1)
)−1

. As we
will see in Section III, the Hessian inverse approximation Hk

i

is constructed locally using gki and xki without extra sampling
or communication. Just as the first-order gradient tracking
methods, our second-order methods require two rounds of
communication of d-dimension vectors at each time step.

The proposed framework for designing variance-reduced
decentralized stochastic quasi-Newton methods is described
in Algorithm 1. The updates can be written compactly as

xk+1 = Wxk − αdk,
gk+1 = Wgk + vk+1 − vk,

dk+1 = Hk+1gk+1.

(10)

III. DAMPED LIMITED-MEMORY STOCHASTIC
QUASI-NEWTON METHODS

In this section, we propose two fully decentralized stochastic
quasi-Newton methods for solving the decentralized learning

Algorithm 1 Variance-reduced decentralized stochastic quasi-
Newton method on node i
Require: α; K; T ; bi; x0i ; H0

i ; τ0i = x0i ; g0i = v0i = ∇fi(x0i );
d0i = H0

i g
0
i .

1: for k = 0, 1, 2, . . . ,K − 1 do
2: Update local decision variable xk+1

i as in (6).
3: Select Sk+1

i ⊆ {1, . . . ,mi} with batch size bi.
4: Update auxiliary variable τk+1

i via

τk+1
i =

{
xk+1
i , if mod (k + 1, T ) = 0,

τki , otherwise.

5: Update corrected stochastic gradient vk+1
i as in (8).

6: Update gradient approximation gk+1
i as in (9).

7: Construct Hessian inverse approximation Hk+1
i .

8: Update direction dk+1
i as in (7).

9: end for

problem (1). To motivate our approach, recall in the centralized
setting, the Hessian inverse approximations used in quasi-
Newton methods are typically given by the solutions of certain
optimization problems [7]. However, such approximations
are costly to compute in the decentralized setting, as they
require global information. To obtain an efficient decentralized
implementation, we modify the said optimization problems
so that each node i can solve the modified problems to get
the local Hessian inverse approximations using only its own
gradient approximations gk+1

i and decision variables xk+1
i .

A. Damped Regularized Limited-Memory DFP

It is known that the DFP update is obtained by minimizing
the Gaussian differential entropy subject to certain constraints.
Inspired by [13], [50], to avoid λmin(Hk+1) → 0, we add a
regularization term with parameter ρ > 0 to the minimization
problem and solve

Hk+1 = arg min
Z∈Rd×d

tr[(Hk)−1(Z − ρId)] (11)

− log det[(Hk)−1(Z − ρId)]
s.t. Zyk = sk, Z � 0,

where sk = xk+1 − xk is the variable variation and yk =
gk+1 − gk is the gradient approximation variation. If we let
ρ = 0, then (11) reduces to the traditional DFP update.

Define the modified variable variation ŝk as

ŝk = sk − ρyk.

As shown in [13], the closed-form solution to (11) is given by

Hk+1 = Hk +
ŝk(ŝk)T

(ŝk)T yk
− Hkyk(yk)THk

(yk)THkyk
+ ρId. (12)

In the centralized stochastic setting where gk is the stochastic
gradient instead of the stochastic gradient approximation, the
work [13] shows that if ρ is properly chosen and H0 � 0,
then (ŝk)T yk > 0 and thus λmin(Hk+1) > ρ for all k. It
also establishes an upper bound on the eigenvalues of Hk+1

for all k. Unfortunately, these results no longer hold in the
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decentralized stochastic setting, since the gradient approxima-
tion variation is affected by both the stochastic gradient noise
and disagreement among the nodes. To address this issue, we
introduce the damped regularized limited-memory DFP update
on each node, which we now describe. Since our subsequent
argument holds for any node, let us drop the node index i.

Given an initialization H0 � 0, we define ŷk as

ŷk = θkyk + (1− θk)(H0 + εId)
−1ŝk, (13)

where ε > 0 is a parameter and θk is adaptively computed by

θk = min

{
θ̃k,

L̃‖ŝk‖
‖yk‖

}
(14)

with θ̃k being defined as [50]

θ̃k =


0.75(ŝk)T (H0+εId)

−1
ŝk

(ŝk)T (H0+εId)
−1ŝk−(ŝk)T yk ,

if (ŝk)T yk ≤ 0.25(ŝk)T
(
H0 + εId

)−1
ŝk,

1, otherwise

and L̃ > 0 being a parameter. As we will show later, with
the added term L̃‖ŝk‖

‖yk‖ in (14), ‖ŷk‖ can be upper bounded in
terms of ‖ŝk‖. Then, we replace yk with ŷk in (12) to obtain
the damped regularized DFP update

Hk+1 = Hk +
ŝk(ŝk)T

(ŝk)T ŷk
− Hkŷk(ŷk)THk

(ŷk)THkŷk
+ ρId.

We will prove in Lemma 3 that (ŝk)T ŷk > 0, from which it
follows that λmin(Hk+1) > ρ for all k.

Next, we have to guarantee that λmax(Hk+1) < ∞. This
is non-trivial since ŷ is noisy and the regularization term
ρId may accumulate as the algorithm progresses. Inspired by
[50], [51], we use the limited-memory technique to tackle this
issue. It is worth noting that the limited-memory technique
is usually combined with BFGS to reduce the memory and
computational costs. Here, we combine it with DFP to make
the eigenvalues of Hk bounded, which, to the best of our
knowledge, is new.

In our development below, we reinstate the node index i to
emphasize that the computation is done on node i. At time
step k, we set

H
k,(0)
i = min

{
max

{
(ski )T ski
(ski )T yki

+ ρ, β

}
,B
}
Id (15)

to be the initial Hessian inverse approximation, where β > 0
and B > 0 are two parameters. By construction, we have
βId � H

k,(0)
i � BId. Then, given two sequences {ŝpi } and

{ŷpi }, where p = k + 1 − M̃, . . . , k, M̃ = min{k + 1,M},
and M is the memory size, we compute

H
k,(t+1)
i =H

k,(t)
i +

ŝpi (ŝ
p
i )
T

(ŝpi )
T ŷpi

(16)

− H
k,(t)
i ŷpi (ŷpi )TH

k,(t)
i

(ŷpi )TH
k,(t)
i ŷpi

+ ρId

for p = k + 1 − M̃ + t and t = 0, . . . , M̃ − 1. At the end
of this inner loop, we set Hk+1

i = H
k,(M̃)
i to be the Hessian

inverse approximation at time k + 1.

We summarize the Hessian inverse approximation step of
the damped regularized limited-memory DFP method on node
i at time k in Algorithm 2.

Algorithm 2 Hessian inverse approximation step of damped
regularized limited-memory DFP on node i at time k

Require: ρ; β; B; ε; L̃; M .
1: Update variable variation ski = xk+1

i − xki .
2: Update gradient variation yki = gk+1

i − gki .
3: Update modified variable variation ŝki = ski − ρyki .
4: Update modified gradient variation ŷki as in (13).
5: Set M̃ = min{k + 1,M} and load {ŝpi , ŷ

p
i }kp=k+1−M̃ .

6: Initialize Hk,(0)
i as in (15).

7: for t = 0, . . . , M̃ − 1 do
8: Update Hk,(t+1)

i as in (16).
9: end for

10: Output Hk+1
i = H

k,(M̃)
i .

B. Damped Limited-Memory BFGS

Now, we introduce another decentralized stochastic quasi-
Newton method for solving (1)—the damped limited-memory
BFGS method. Recall that in the traditional BFGS method,
the Hessian inverse approximation update is given by

Hk+1 = arg min
Z
‖Z −Hk‖O

s.t. Zyk = sk, Z = ZT ,
(17)

where ‖ · ‖O is the O-weighted norm defined as ‖H‖O =
‖O 1

2HO
1
2 ‖F with O being an arbitrary positive semidefinite

matrix satisfying Osk = yk [7], sk = xk+1−xk is the variable
variation, and yk = gk+1 − gk is the gradient approximation
variation. In particular, the solution Hk+1 is the point that is
closest, in terms of the O-weighted norm, to Hk among all
symmetric matrices that satisfy the secant condition Zyk = sk.
From [7], the closed-form solution of (17) is

Hk+1 =Hk − Hkyk(sk)T + sk(yk)THk

(sk)T yk
(18)

+
sk(sk)T

(sk)T yk

(
1 +

(yk)THkyk

(sk)T yk

)
.

In the decentralized setting, we need to compute a Hessian
inverse approximation on each node at each time step. Since
our subsequent argument holds for any node, let us omit the
node index i for simplicity. As we have mentioned in Section
III-A, the gradient approximations gk are noisy, which makes
it non-trivial to preserve the positivity and uniform bounded-
ness of the eigenvalues of Hk. To overcome this difficulty,
we combine the damping technique with the traditional BFGS
update in (18). To be specific, given an initialization H0 � 0,
we define ŷk as

ŷk = θyk + (1− θ)(H0 + εI)−1sk, (19)

where ε > 0 is a parameter and θ is adaptively computed by

θk = min

{
θ̃k,

L̃‖sk‖
‖yk‖

}
(20)
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with θ̃k being defined as [50]

θ̃k =


0.75(sk)T (H0+εId)

−1
sk

(sk)T (H0+εId)
−1sk−(sk)T yk ,

if (sk)T yk ≤ 0.25(sk)T
(
H0 + εId

)−1
sk,

1, otherwise

and L̃ > 0 being a parameter. Similar to damped regularized
limited-memory DFP, with the added term L̃‖sk‖

‖yk‖ in (20), ‖ŷk‖
can be upper bounded in terms of ‖sk‖. Then, we replace yk in
(18) with ŷk to obtain damped limited-memory BFGS update

Hk+1 =Hk − Hkŷk(sk)T + sk(ŷk)THk

(sk)T ŷk

+
sk(sk)T

(sk)T ŷk

(
1 +

(ŷk)THkŷk

(sk)T ŷk

)
.

As we will prove, the damping technique guarantees that
(sk)T ŷk > 0, from which we have λmin(Hk+1) > 0 for all
k.

Next, to guarantee that λmax(Hk+1) < ∞, we use the
limited-memory technique. Compared with the damped re-
gularized limited-memory DFP method in Section III-A, the
limited-memory technique used here is not only for bounding
the eigenvalues of the Hessian inverse approximations but also
for reducing storage and computational costs. Again, let us
reinstate the node index i to indicate that the computation is
done on node i. At time k, we set

H
k,(0)
i = min

{
max

{
(ski )T yki
(yki )T yki

, β

}
,B
}
Id (21)

to be the initial Hessian inverse approximation. Given two
sequences {spi } and {ŷpi }, where p = k+ 1−M̃, . . . , k, M̃ =
min{k + 1,M}, and M is the memory size, we compute

H
k,(t+1)
i = H

k,(t)
i − H

k,(t)
i ŷpi (spi )

T + spi (ŷ
p
i )TH

k,(t)
i

(spi )
T ŷpi

(22)

+
spi (s

p
i )
T

(spi )
T ŷpi

(
1 +

(ŷpi )TH
k,(t)
i ŷpi

(spi )
T ŷpi

)

=

(
Id −

spi (ŷ
p
i )T

(spi )
T ŷpi

)
H
k,(t)
i

(
Id −

ŷpi (spi )
T

(spi )
T ŷpi

)
+
spi (s

p
i )
T

(spi )
T ŷpi

for p = k + 1 − M̃ + t and t = 0, . . . , M̃ − 1. The second
equality above will be useful for our later analysis. At the end
of this inner loop, we set Hk+1

i = H
k,(M̃)
i to be the Hessian

inverse approximation at time k + 1.
One advantage of the proposed damped limited-memory

BFGS method is that the update (22) can be realized by a two-
loop recursion, where Hk,(t)

i is not generated explicitly; rather,
only its multiplications with certain vectors are computed. We
summarize the Hessian inverse approximation step and the
two-loop recursion step of the damped limited-memory BFGS
method on node i at time k in Algorithms 3 and 4, respectively.

Remark 1. Compared with the damped regularized limited-
memory DFP method, the damped limited-memory BFGS
method does not use regularization. The reason is that adding
the regularization term ρId at the end of update (22) will make
it difficult to realize the two-loop recursion. The memory requi-
rement and computational cost per iteration of the proposed

Algorithm 3 Hessian inverse approximation step of damped
limited-memory BFGS on node i at time k

Require: β; B; ε; L̃; M .
1: Update variable variation ski = xk+1

i − xki .
2: Update gradient variation yki = gk+1

i − gki .
3: Update modified gradient variation ŷki as in (19).
4: Initialize Hk,(0)

i as in (21).
5: Set M̃ = min{k + 1,M} and load {spi , ŷ

p
i }kp=k+1−M̃ .

6: Perform two-loop limited-memory BFGS in Algorithm 4.
7: Output direction dk+1

i = Hk+1
i gk+1

i .

Algorithm 4 Two-loop limited-memory BFGS on node i at
time k

Set qi ← gk+1
i .

for p = k, k − 1, . . . , k + 1− M̃ do
αpi ←

(spi )
T qi

(spi )
T ŷpi

.
qi ← qi − αpi ŷ

p
i .

end for
ri ← H

k,(0)
i qi.

for p = k + 1− M̃, k − M̃, . . . , k do
βi ←

(ŷpi )
T ri

(spi )
T ŷpi

.
ri ← ri + spi (α

p
i − βi).

end for
Output Hk+1

i gk+1
i = ri.

BFGS-type method are O(Md) and O(Md), respectively. By
contrast, the memory requirement and computational cost per
iteration of the proposed DFP-type method are O(d2 +Md)
and O(Md2), respectively.

IV. CONVERGENCE ANALYSIS OF GENERAL FRAMEWORK

In this section, we establish linear convergence of Algorithm
1 under the following assumption on the Hessian inverse
approximations Hk

i .

Assumption 4 (Bounded Hessian inverse approximations).
There exist constants M1 and M2 with 0 < M1 ≤ M2 < ∞
such that

M1Id � Hk
i �M2Id, ∀i ∈ {1, . . . , n}, ∀k ≥ 0.

Before we proceed, some remarks on Assumption 4 are in
order. First, one obvious construction that satisfies the assump-
tion is Hk

i = Id for all i ∈ {1, . . . , n} and k ≥ 0, which
corresponds to taking M1 = M2 = 1. However, there are other
constructions of the Hk

i ’s that not only satisfy Assumption
4 but can also exploit the curvature of the cost function to
accelerate the convergence of the method, including but not
limited to the proposed quasi-Newton methods in Section III.

Second, when Hk
i = Id for all i ∈ {1, . . . , n} and k ≥ 0,

the general framework (10) reduces to the first-order algorithm
GT-SVRG in [39]. In this case, we have xk+1 = xk − αvk,
where we substitute gk = vk due to the dynamic average
consensus step; see (31). Such an update is not too far away
from that of centralized gradient descent, as vk is an unbiased
estimator of ∇f(xk) and ∇f(xk)→ ∇F (xk) when the local
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decision variables reach a consensus asymptotically. Based on
this property, one can establish the convergence of ‖xk −x∗‖
as in the analysis of classic centralized gradient descent; see
[39, Lemma 5]. However, for general Hk

i ’s, the convergence
analysis of Algorithm 1 becomes much more challenging,
and the techniques developed in [39] are insufficient. Indeed,
in this case we can no longer characterize the convergence
of ‖xk − x∗‖ directly. Instead, we establish the decrease of
F (xk)−F (x∗); see Lemma 7 and Corollary 2. Moreover, we
encounter two additional terms when we bound the consensus
error ‖xk+1 − W∞xk+1‖2, one concerning the variance
‖vk −∇f(xk)‖2 and the other concerning the optimality gap
F (xk)−F (x∗); see Lemma 5. Their effects persist throughout
the analysis because the consensus error plays a fundamental
role in bounding the other error terms. Thus, our recursion is
more complicated, and we have to derive a tighter bound of
the variance to establish convergence; see Lemma 6.

A. Main Theorem

Motivated by the analysis in [23], [39], we use the consensus
error E[‖xk −W∞xk‖2], network optimality gap E[F (xk)−
F (x∗)], and the gradient tracking error E[‖gk−W∞gk‖2] to
establish the convergence rate. To begin, let

uk =

 E[‖xk −W∞xk‖2]
2n
L E

[
F (xk)− F (x∗)

]
1−σ2

L2 E
[
‖gk −W∞gk‖2

]
 ∈ R3

be the aggregated error vector at time step k. Note that uk

can be viewed as a measure of the discrepancy between xki
and x∗ since uk = 0 implies xki = xk = x∗,∀i. Next, set

B := max
i∈{1,...,n}

{
mi − bi

(mi − 1)bi

}
< 1. (23)

We call B non-sampling rate, since B = 0 means each node
i uses all mi samples to compute the local full gradient ∇fi.

Our main theorem gives the conditions on the parameters,
including the step size α, the non-sampling rate B, and the
period T of SVRG, that can guarantee the linear convergence
of Algorithm 1 to the optimal solution of (1).

Theorem 1. Under Assumptions 1–4, if the parameters satisfy

α ≤ (1− σ2)2µM1

200L2M2
2

, (24)

β := 16B ≤ 1

10
min

{
1,
ζ(1− σ2)2

γ2

}
,

T ≥ 2 log(280/(ζ(1− σ2)2))

ζα̃
,

where

ζ :=
(µ
L

)2(M1

M2

)2

, γ := 1− M1

M2
, α̃ :=

M2
2L

2

M1µ
α,

then for q = [1; 10; 200(ζ+β)
1−σ2 ] and ∀t ≥ 0, we have

‖u(t+1)T ‖q∞ ≤ 0.9‖utT ‖q∞. (25)

Theorem 1 implies that if the step size α and the non-
sampling rate B are small enough and the period T of SVRG

is long enough, then Algorithm 1 converges linearly to the
optimal solution of (1) with a contraction rate of at most 0.9.
Taking α = O

(
(1−σ2)2µM1

L2M2
2

)
, we can see that

T = O

(
κ2Fκ

2
H log κFκH

1−σ2

(1− σ2)2

)
,

where κF = L/µ is the condition number of the global
cost function F , κH = M2/M1 is the condition number of
the Hessian inverse approximations, and 1 − σ2 represents
the connectedness of the network. Therefore, to obtain a
∆-optimal solution, the total number of stochastic gradient
evaluations required by Algorithm 1 is

O

((
max
i
{mi}+

maxi{bi} · κ2Fκ2H log κFκH
1−σ2

(1− σ2)2

)
log

1

∆

)
.

Remark 2. If mi = m and Hk
i = Id for all i ∈ {1, . . . , n}

and k ≥ 0, then γ = 0, bi = O(1), and κH = 1. The number
of stochastic gradient evaluations of Algorithm 1 is

O

((
m+

κ2F log κF
1−σ2

(1− σ2)2

)
log

1

∆

)
,

which is similar to the bound

O

((
m+

κ2F log κF

(1− σ2)
2

)
log

1

∆

)
obtained in [39]. Our analysis cannot show better dependence
on κF , but it applies to more general Hessian inverse ap-
proximations (i.e., ones that have uniformly bounded positive
eigenvalues). The work [52] studies deterministic, quadratic
cost functions and shows that communicating Hessians helps
to achieve a better dependence on the condition number of cost
functions. Our framework applies to stochastic, general cost
functions and does not communicate Hessians. In addition,
the work [39] suggests setting the batch sizes bi = 1 for
their variance-reduced stochastic first-order method. Note that
smaller batch sizes reduce the number of stochastic gradient
evaluations per iteration but increase the number of iterations.
For the variance-reduced stochastic second-order methods
obtained from our framework, our result suggests using mode-
rate batch sizes. In fact, our numerical experiments will show
that slightly larger batch sizes are beneficial. We conjecture
that larger batch sizes lead to more stable gradient and
Hessian estimators and hence better convergence behavior.

B. Key Recursion for Establishing the Main Theorem
To prove Theorem 1, a key step is to establish the following

recursion for the sequence {uk}.

Proposition 1. Under the setting of Theorem 1, consider the
updates in (10). Let

J :=

1− 0.99(1−σ2)
2 0.011(1− σ2)ζα̃γ2 0.02ζα̃

4.1α̃ 1− 0.96ζα̃ 0.51α̃γ2

1−σ2

33 c 1− 0.99(1−σ2)
2

 ,
Q :=

0.01α̃βγ2(1− σ2) 0.01α̃βγ2(1− σ2) 0
0.03α̃ζ(1− σ2)2 0.03α̃ζ(1− σ2)2 0

2.03β 2.03β 0

 ,
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where c := 0.162(1− σ2)α̃ζ + 2.01β. For all k ≥ 0, we have

uk+1 ≤ Juk +Qũk (26)

with

ũk :=

 E[‖τk −W∞τ
k‖2]

2n
L E

[
F (τk)− F (x∗)

]
0

 .
Consequently, for all t ≥ 0, we have

u(t+1)T ≤

JT +

T −1∑
t̃=0

J t̃Q

utT . (27)

Proof. See Appendix VIII-B.

C. Proof of Theorem 1

With the recursion (27) in Proposition 1, we prove (25) in
Theorem 1. Let us first bound the spectral radius of J . The
following fact from [53] is useful for such a purpose.

Fact 2. Let A ∈ Rd×d be non-negative and z ∈ Rd be positive.
If Az ≤ ω̄z for some ω̄ > 0, then ρ(A) ≤ ‖A‖z∞ ≤ ω̄.

Lemma 1. Under the setting of Theorem 1, we have

Jz ≤
(

1− ζα̃

2

)
z, z = [1; z2; z3],

where z2 := 10
ζ + 1.2γ2z3

ζ(1−σ2) and z3 := 200(ζ+β)
ζ(1−σ2) . Then, we have

ρ(J) ≤ ‖J‖z∞ ≤ 1− ζα̃

2
. (28)

Proof. See Part I [54] of the full version of this paper.

Using (28) and the fact that J is non-negative, we have
T −1∑
t̃=0

J t̃ ≤
∞∑
t̃=0

J t̃ = (I3 − J)
−1
.

Therefore, it suffices to show that (25) follows from

u(t+1)T ≤
(
JT + (I3 − J)

−1
Q
)
utT . (29)

Lemma 2. Under the setting of Theorem 1, we have

(I3 − J)−1Qq ≤ 0.8q,

ρ
(
(I3 − J)−1Q

)
≤ ‖(I3 − J)−1Q‖q∞ ≤ 0.8.

Proof. See Part I [54] of the full version of this paper.

Now, since 10
ζ ≤ z2 ≤ 280

ζ(1−σ2)2 , we have q ≤ z ≤
28

ζ(1−σ2)2 · q. According to [53, Theorem 5.6.18], this yields

‖JT ‖q∞ ≤
28

ζ(1− σ2)2
· ‖JT ‖z∞.

Upon taking the norm ‖ · ‖q∞ on both sides of (29) and then
invoking Lemmas 1 and 2, we have

‖u(t+1)T ‖q∞ ≤ ‖JT + (I3 − J)
−1
Q‖q∞ · ‖utT ‖q∞

≤
(
‖JT ‖q∞ + 0.8

) ∥∥utT ∥∥q∞
≤
(

28

ζ(1− σ2)2
· (‖J‖z∞)

T
+ 0.8

)∥∥utT ∥∥q∞
≤
(

28

ζ(1− σ2)2
· exp

{
−ζα̃T

2

}
+ 0.8

)∥∥utT ∥∥q∞ ,

where we use the fact that ‖JT ‖z∞ ≤ (‖J‖z∞)
T and 1 + a ≤

exp{a},∀a ∈ R. By setting

T ≥ 2 log(280/(ζ(1− σ2)2))

ζα̃

in the last inequality above, we get (25) and complete the
proof of Theorem 1.

V. CONVERGENCE ANALYSIS OF PROPOSED
QUASI-NEWTON METHODS

In this section, we prove that the Hessian inverse approxima-
tions constructed by the proposed two quasi-Newton methods
satisfy Assumption 4 and thus fit into the general framework.

A. Analysis of Damped Regularized Limited-Memory DFP

Now, let us prove that the Hessian inverse approximati-
ons constructed by the proposed damped regularized limited-
memory DFP method have uniformly bounded positive eigen-
values. We begin with the following lemma, which shows the
damping technique guarantees that (ŝpi )

T ŷpi > 0 and hence
λmin(Hk

i ) > ρ for all i ∈ {1, . . . , n} and k ≥ 0.

Lemma 3. Consider the damped regularized limited-memory
DFP update in (16). We have

0 < θpi ≤ 1 and (ŝpi )
T ŷpi ≥ 0.25(ŝpi )

T (H
k,(0)
i + εI)−1ŝpi .

Moreover, with the initialization Hk,(0)
i defined in (15), the lo-

cal Hessian inverse approximation Hk+1
i output by Algorithm

2 satisfies λmin(Hk+1
i ) > ρ.

Proof. See Part II [55] of the full version of this paper.

Based on Lemma 3, the following theorem further gives
the specific lower and upper bounds on the eigenvalues of the
Hessian inverse approximations generated by Algorithm 2.

Theorem 2. The local Hessian inverse approximations {Hk
i }

returned by Algorithm 2 satisfy

M1Id � Hk
i �M2Id, ∀i ∈ {1, . . . , n}, ∀k ≥ 0,

where M1 = ρ + (1 + ω)−2M
(

1
β + 1

4(B+ε)

)−1
, M2 = B +

M(4B + 4ε+ ρ), and ω = 4(B + ε)
(
L̃+ 1

β+ε

)
.

Proof. See Appendix VIII-C.

B. Analysis of Damped Limited-Memory BFGS

Our goal now is to prove that the Hessian inverse approxi-
mations constructed by the proposed damped limited-memory
BFGS method have uniformly bounded positive eigenvalues.
We begin with the following lemma, whose proof is similar
to that of Lemma 3.

Lemma 4. Consider the damped limited-memory BFGS up-
date in (22). We have

0 < θpi ≤ 1 and (spi )
T ŷpi ≥ 0.25(spi )

T (H
k,(0)
i + εId)

−1spi .

Moreover, with the initialization Hk,(0)
i defined in (21), the lo-

cal Hessian inverse approximation Hk+1
i output by Algorithm

3 satisfies λmin(Hk+1
i ) > 0.
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Proof. See Part II [55] of the full version of this paper.

Based on Lemma 4, the following theorem further gives
the specific lower and upper bounds on the eigenvalues of
the Hessian inverse approximations generated by Algorithm
3. The proof is similar to that of Theorem 2.

Theorem 3. The local Hessian inverse approximations {Hk
i }

returned by Algorithm 3 satisfy

M1Id � Hk
i �M2Id, ∀i ∈ {1, . . . , n}, ∀k ≥ 0,

where we have M1 =
(

1
β + Mω2

4(B+ε)

)−1
, M2 = (1 + ω)2M(

B + 1
L̃(ω+2)

)
, and ω := 4(B + ε)

(
L̃+ 1

β+ε

)
.

Proof. See Part II [55] of the full version of this paper.

Remark 3. Before we proceed, several remarks are in order.
1) The Hessian inverse approximations constructed by the

proposed DFP- and BFGS-type methods satisfy Assumption 4.
Thus, by Theorem 1, these methods converge linearly to the
optimal solution of (1).

2) As the memory size M gets larger, the Hessian inverse ap-
proximations constructed by the proposed BFGS-type method
get closer to being singular. By contrast, the eigenvalues of the
Hessian inverse approximations constructed by the proposed
DFP-type method are uniformly bounded below by ρ > 0,
regardless of what M is. Nevertheless, for both proposed
methods, it is likely that the noise caused by randomness
and disagreement accumulates more with a larger M . On
the other hand, observe from the updates of the proposed
methods that if the memory size M is too small, then there
is insufficient second-order curvature information. Thus, we
recommend using a moderate memory size M , so that the
memory and computational costs can be kept low without
sacrificing the performance of the methods.

3) For the proposed DFP-type method, the regularization
term ρId in (16) lifts the lower bound M1 by ρ and lifts the
upper bound M2 by Mρ. It is worth noting that the analysis
of Theorem 2 also holds for ρ = 0. However, we observe from
our numerical experiments that a suitably tuned ρ > 0 can
improve the performance of the method.

4) The analyses in Theorems 2 and 3 also hold for ε =
0. However, we observe from numerical experiments that a
suitably tuned ε > 0 can improve performance of the proposed
DFP- and BFGS-type methods, especially the latter one.

VI. NUMERICAL EXPERIMENTS

In this section, we use either the DFP-type update in
Algorithm 2 or the BFGS-type update in Algorithm 3 to
compute the local Hessian inverse approximations {Hk

i } in the
general framework as shown in Algorithm 1. We then evaluate
the two resulting stochastic quasi-Newton methods by solving
a least-squares problem with synthetic data in Section VI-A
and a logistic regression problem with real data in Section
VI-B–VI-E. We randomly generate an undirected, connected
graph with n nodes and %n(n−1)

2 edges, where % ∈ (0, 1] is
the connectivity ratio. The performance metric is the relative
error defined as

relative error =
1

n

∥∥xk − x∗
∥∥2/∥∥x0 − x∗

∥∥2,

where the optimal solution x∗ is pre-computed through a
centralized Newton method.

Just as the first-order gradient tracking methods, the pro-
posed second-order methods require two rounds of commu-
nication of d-dimension vectors at each time step k. The
total number of communication rounds doubles the number of
the outer loops K in Algorithm 1. Instead of comparing the
communication rounds, we compare the number of epochs on
node i defined by K

Tmi [mi + 2bi(T − 1)], which means that
within each period, node i access mi sample costs once and
access 2bi sample costs for T − 1 times. We set bi = b and
mi = m for all i in the numerical experiments.

A. Effect of Condition Number

We consider the least-squares problem

min
x∈Rd

1

2

n∑
i=1

‖Aix− bi‖2,

where Ai ∈ Rm×d and bi ∈ Rm are synthetic data privately
owned by node i. Here, we set m = 500 and d = 8. For simpli-
city, we define the aggregated variables A = [A1; . . . ;An] ∈
Rnm×d and b = [b1; . . . ; bn] ∈ Rnm by vertically stacking the
local data. We define the condition number of the problem as

κLS =
λmax(ATA)

λmin(ATA)
.

To show the effect of the condition number, we generate
two groups of data with κLS = 10 and κLS = 2000,
respectively as follows. For κLS = 10, we fix λmin(ATA) =
0.1 and λmax(ATA) = 1. For κLS = 2000, we fix
λmin(ATA) = 0.001 and λmax(ATA) = 2. The other
(d−2) eigenvalues are randomly generated within the interval[
λmin(ATA), λmax(ATA)

]
. Fig. 1 records the results for

κLS = 10 and κLS = 2000, respectively. The parameters
are set as follows. We set n = 20 and % = 0.5 for the graph.
We set B = 104 for the two proposed quasi-Newton methods.
When κLS = 10 (resp., 2000), for the proposed DFP-type
method, we set α = 0.6 (resp., 0.6), ρ = 10−5 (resp., 10−5),
ε = 3 (resp., 5), β = 0.04 (resp., 0.01), L̃ = 10 (resp.,
10), M = 20 (resp., 20), and bi = 10 (resp., 15). For the
proposed BFGS-type method, we set α = 0.6 (resp., 0.6),
ε = 3 (resp., 37), β = 0.04 (resp., 0.01), L̃ = 10 (resp., 10),
M = 20 (resp., 50), and bi = 10 (resp., 15). We compare the
two proposed decentralized stochastic quasi-Newton methods
with four existing decentralized stochastic first-order methods,
namely DSA [38], GT-SVRG and GT-SAGA [39], and Acc-
VR-DIGing [40]. For DSA, we set the step size α = 0.9
(resp., 0.9) and batch size bi = 1 (resp., 1). For GT-SVRG,
we set the step size α = 0.9 (resp., 0.9) and batch size bi = 1
(resp., 1). For GT-SAGA, we set the step size α = 0.95 (resp.,
0.95) and batch size bi = 1 (resp., 1). For Acc-VR-DIGing,
we set the step size α = 0.9 (resp., 0.9), the two parameters
θ1 = 0.2 (resp., 0.1) and θ2 = 0.01 (resp., 0.01), and the batch
size bi = 1 (resp., 1). Note that all the first-order methods use
the batch size bi = 1, which yields the fastest convergence in
terms of the number of epochs in this set of experiments.
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Fig. 1: Least-squares problem with κLS = 10 and 2000.

TABLE II: Datasets used in numerical experiments.

Dataset # of Samples (
∑n
i=1mi) # of Features (d)

covtype 40000 54
cod-rna 52000 8

a6a 11220 123
a9a 32560 123

ijcnn1 91700 22

From Fig. 1, we see the proposed quasi-Newton methods
outperform the existing first-order methods, and their advan-
tages are more obvious for the ill-conditioned problem. The
DFP-type method performs better than the BFGS-type method
in terms of the number of epochs, but the latter has lower
storage and computational complexities, as we have discussed
in Remark 3.

B. Comparison with First-Order and Second-Order Methods

The ensuing numerical experiments are performed on real
datasets. We use the proposed quasi-Newton methods to solve
the logistic regression problem

min
x∈Rd

ι

2
‖x‖2 +

1

n

n∑
i=1

1

mi

mi∑
j=1

ln
(
1 + exp

(
−
(
oTijx

)
pij
))
,

where node i privately owns mi training samples (oil,pil) ∈
Rd × {−1,+1}; l = 1, . . . ,mi. We use five real datasets,5

whose attributes are summarized in Table II. We normalize
each sample so that ‖oil‖ = 1,∀i, l. Note that another way
is to normalize each feature, which yields better condition
number but is non-trivial to implement in the decentralized
setting. A regularization term ι

2‖x‖
2 with ι > 0 is used to

avoid over-fitting. We set n = 20, ι = 0.001, and B = 104

throughout the following numerical experiments. The training
samples are randomly and evenly distributed over all nodes.

We compare the two proposed decentralized stochastic
quasi-Newton methods with the four decentralized stochastic
first-order methods mentioned in the previous sub-section on
four real datasets. Different from our previous numerical ex-
periments on synthetic data, where the batch sizes are set as 1,
we now use larger batch sizes to boost the performance of the
four first-order methods. Fig. 2 depicts the results on covtype,
cod-rna, a6a, and a9a, respectively. The parameters are set as
follows. We set n = 20 and % = 0.5 for the graph. When the
dataset is covtype (resp., cod-rna, a6a, a9a), for the proposed
DFP-type method, we set α = 0.32 (resp., 0.3, 0.38, 0.38),
ρ = 0.01 (resp., 0.0002, 0.01, 0.001), ε = 0.02 (resp.,

5https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

0.03, 0.005, 0.1), β = 0.002 (resp., 0.002, 0.015, 0.5), L̃ = 50
(50, 20, 50), M = 3 (resp., 20, 40, 50), and bi/mi = 10%
(resp., 8%, 10%, 6%). For the proposed BFGS-type method,
we set α = 0.37 (resp., 0.35, 0.38, 0.35), ε = 0.001 (resp.,
100, 30, 30), β = 0.002 (resp., 0.002, 1.2, 0.5), L̃ = 50 (resp.,
50, 20, 20), M = 3 (resp., 40, 50, 50), and bi/mi = 10%
(resp., 10%, 10%, 10%). For GT-SVRG, we set the step size
α = 0.002 (resp., 0.01, 0.009, 0.004) and batch size bi = 5
(resp., 2, 1, 2). For DSA, we set the step size α = 0.001
(resp., 0.03, 0.009, 0.008) and batch size bi = 10 (resp.,
10, 1, 2). For GT-SAGA, we set the step size α = 0.002
(resp., 0.009, 0.009, 0.0035) and batch size bi = 5 (resp.,
2, 1, 1). For Acc-VR-DIGing, we set the step size α = 0.002
(resp., 0.03, 0.04, 0.015), the two parameters θ1 = 0.9 (resp.,
0.07, 0.1, 0.1) and θ2 = 0.01 (resp., 0.05, 0.1, 0.1), and the
batch size bi = 5 (resp., 10, 5, 5).

Fig. 2 shows the proposed methods outperform DSA, GT-
SVRG, GT-SAGA, and Acc-VR-DIGing in all four datasets,
demonstrating the gains of curvature information from the
constructed Hessian inverse approximations. The DFP-type
method is better than the BFGS-type method in all four
datasets, but again the latter has lower memory requirement
and lower computational cost.

Since there is no existing stochastic decentralized quasi-
Newton method, we modify the deterministic decentralized
BFGS method (abbreviated as D-BFGS) [28] to its stochastic
variant (named D-BFGS-SGD) and compare the two on the
a9a dataset. The parameters of D-BFGS and D-BFGS-SGD
are hand-tuned to the best. We run the proposed methods
with different memory sizes M = 30, 40, 50, and the other
parameters are the same as those used in Fig. 2.

As shown in Fig. 3, our quasi-Newton methods outperform
D-BFGS in terms of the number of epochs because the latter
accesses all the sample costs in every iteration. D-BFGS-SGD
is the slowest due to the existence of stochastic gradient noise.
This result validates the effectiveness of our Hessian approxi-
mations constructed from the noisy stochastic gradients.

We also compare the computational complexity in terms of
runtime in Table III. We report the runtime of Acc-VR-DIGing
(which is the best among all the first-order methods), D-BFGS,
D-BFGS-SGD, and the proposed DFP and BFGS with diffe-
rent memory sizes. D-BFGS-SGD converges slowly and we
just run a fixed number of iterations. For the other methods, we
report the runtime to reach below the accuracy of 10−3. Acc-
VR-DIGing requires a large number of iterations, although
its per-iteration computational complexity is low. D-BFGS
is slow due to the computation of inverses of neighboring
Hessian approximations with size R|Ni|d×|Ni|d, where |Ni| is
the number of neighbors of node i. D-BFGS-SGD suffers from
the same issue as D-BFGS and, in addition, progresses slowly
due to the stochastic gradient noise. The proposed DFP and
BFGS converge quickly with different memory sizes. Among
the two, BFGS is matrix-free and takes the least time.

C. Effect of Batch Size

Here, we numerically evaluate the effect of different batch
sizes on the performance of the proposed DFP- and BFGS-type
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Fig. 2: Comparison with first-order methods on covtype, cod-rna, a6a, and a9a.

Fig. 3: Comparison with second-order methods on a9a.

TABLE III: Runtime comparison on a9a.

Method Relative error Runtime (s)
Acc-VR-DIGing 0.00099 775.2
D-BFGS-SGD 0.014 465.6
D-BFGS 0.00099 322.5
DFP M = 50 0.00097 27.9
DFP M = 40 0.00093 29.4
DFP M = 30 0.00092 34.9
BFGS M = 50 0.00099 23.5
BFGS M = 40 0.00099 16.8
BFGS M = 30 0.00095 17.0

methods for solving the logistic regression problem using the
real dataset ijcnn1. In Fig. 4, we show the effect of different
batch size ratios (bi/mi = 2%, 4%, 6%, 8%, and 10%) on the
performance of the proposed DFP- and BFGS-type methods,
respectively. The parameters are set as follows. For the DFP-
type (resp., BFGS-type) method, we set α = 0.32 (resp., 0.31),
ρ = 0.005 (resp., 0), ε = 0.005 (resp., 0.005), β = 0.1 (resp.,
0.1), and M = 50 (resp., 50). The other settings are the same
as those used for Fig. 2.

From Fig.4, we observe that when the batch size is too
large or too small, the two methods require more epochs. This
is because a smaller batch size results in higher stochastic
gradient noise, while a larger batch size calls for more gradient
evaluations per iteration. For both proposed methods, a batch
size ratio of bi/mi = 6% gives the best performance.

D. Effect of Memory Size

In Fig. 5, we show the effect of different memory sizes
(M = 5, 10, 20, 30, 40, and 50) on the performance of the
proposed DFP- and BFGS-type methods when solving the
logistic regression problem using the real dataset ijcnn1,
respectively. The parameters are set as follows. For the DFP-
type (resp., BFGS-type) method, we set α = 0.32 (resp., 0.31),

Fig. 4: Effect of batch size of DFP and BFGS on ijcnn1.

Fig. 5: Effect of memory size of DFP and BFGS on ijcnn1.

ρ = 0.004 (resp., 0), ε = 0.005 (resp., 0.002), β = 0.001
(resp., 0.1), and bi/mi = 6% (resp., 6%). The other settings
are the same as those used for Fig. 2.

As Fig. 5 show, a larger memory size generally leads to
faster convergence, but the improvement becomes marginal
when the memory size is sufficiently large. Therefore, we can
use a moderate memory size, which leads to low memory and
computational costs.

E. Effect of Graph Topology

In Fig. 6, we show the effect of five different graph
topologies (cycle, star, random graphs with connectivity ratios
% = 0.2, 0.3, 0.5) on the performance of the proposed DFP-
and BFGS-type methods when solving the logistic regression
problem using the real dataset ijcnn1, respectively. The second
largest singular values σ of W (i.e., σ = ‖W − 1

n1n1Tn‖2) of
the five graphs are σ = 0.967, 0.950, 0.863, 0.797, and 0.569,
respectively. The parameters are set as follows. For the DFP-
type method, we set α = 0.035 (resp., 0.02, 0.2, 0.25, 0.32),
ρ = 0.003 (resp., 0.001, 0.001, 0.001, 0.005), ε = 0.005 (resp.,
0.005, 0.005, 0.005, 0.005), β = 0.1 (resp., 0.1, 0.1, 0.1, 0.1),
M = 50 (resp., 50, 50, 50, 50), and bi/mi = 6%
(resp., 6%, 6%, 6%, 6%). For the BFGS-type method, we set
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Fig. 6: Effect of topology of DFP and BFGS on ijcnn1.

α = 0.06 (resp., 0.07, 0.2, 0.3, 0.31), ε = 0.005 (resp.,
0.005, 0.002, 0.002, 0.002), β = 0.1 (resp., 0.1, 0.1, 0.1, 0.1),
M = 50 (resp., 50, 50, 50, 50), and bi/mi = 11% (resp.,
10%, 6%, 6%, 6%). The other settings are the same as those
used for Fig. 2.

From Fig. 6, we observe that the proposed DFP- and BFGS-
type methods converge linearly on different graphs. For both
methods, graphs with smaller σ give faster convergence rates,
which corroborates with the results in Theorem 1.

VII. CONCLUSION

The aim of this work is to develop viable stochastic quasi-
Newton methods for decentralized learning. We develop a
general algorithmic framework where each node adopts a local
inexact quasi-Newton direction that approaches the global
one asymptotically. To be specific, each node uses gradient
tracking to estimate the average of variance-reduced local
stochastic gradients and constructs a local Hessian inverse
approximation to exploit the curvature information of the
cost function. When the local Hessian inverse approximations
are positive definite with uniformly bounded eigenvalues, we
prove that the methods obtained from our general framework
converge linearly to the exact solution. Moreover, we propose
two fully decentralized quasi-Newton methods—namely, the
damped regularized limited-memory DFP and the damped
limited-memory BFGS—which exploit the curvature of the
objective function by constructing locally computable Hessian
inverse approximations. We use the damping and limited-
memory techniques to ensure that the constructed Hessian
inverse approximations have uniformly bounded positive ei-
genvalues. Our numerical experiments demonstrate that the
proposed decentralized stochastic quasi-Newton methods are
much faster than the existing decentralized stochastic first-
order methods for solving the least-squares and logistic re-
gression problems.

VIII. APPENDIX

A. Preliminaries

We start with some preliminaries. First, we have the follo-
wing “averaging” property of the mixing step:

‖Wxk −W∞xk‖ =
∥∥∥((W − 1

n
1n1Tn )⊗ Id

)
(xk −W∞xk)

∥∥∥
≤σ‖xk −W∞xk‖. (30)

By Assumption 3, we know that 0 ≤ σ < 1. Thus, we see
from (30) that Wxk is closer to the average W∞xk than the

unmixed xk. This “averaging” property will be frequently used
in our later analysis.

Next, we recall that in (10) the gradient approximation gk

is updated by dynamic average consensus [46]. Under the
initialization g0 = v0 = ∇f(x0), by taking average over
all the nodes and using induction [23], we have

gk = vk, ∀k. (31)

This implies that each gki approximately tracks the average of
the gradient estimators vki when all gki ’s are almost consensual.

To handle the randomness caused by sampling, let Fk be
the event generated by

⋃t∈{0,...,k−1}
i∈{1,...,n} Sti . For each node i,

the stochastic vector vki is an unbiased estimator of the local
gradient ∇fi(xki ) conditioned on Fk. In other words, we have

E
[
vki |Fk

]
= ∇fi

(
xki
)
. (32)

Further, by (31) and (32), we have

E
[
gk|Fk

]
= E

[
vk|Fk

]
= ∇f

(
xk
)
. (33)

On the other hand, under Assumption 1, we have∥∥∇f (xk)−∇F (xk)∥∥ ≤ L√
n

∥∥xk −W∞xk
∥∥ , ∀k. (34)

The proof can be found in [23, Lemma 8].

B. Proof of Proposition 1

The proof of Proposition 1 consists of four steps. We bound
the consensus error E[‖xk−W∞xk‖2], the network optimality
gap E[F (xk)−F (x∗)], and the gradient tracking error E[‖gk−
W∞gk‖2] in Steps I, II, and III, respectively. These bounds
lead to (26). Step IV derives (27) from (26).

1) Step I: The following lemma establishes a recursion for
the consensus error {E[‖xk −W∞xk‖2]}.

Lemma 5. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖xk+1 −W∞xk+1‖2

]
(35)

≤
(

1 + σ2

2
+

2α2γ2M2
2L

2

1− σ2

)
E
[
‖xk −W∞xk‖2

]
+

2α2M2
2

1− σ2

(
2E
[
‖gk −W∞gk‖2

]
+
γ2

n
E
[
‖vk −∇f(xk)‖2

]
+ 2γ2LnE

[
F (xk)− F (x∗)

] )
.

Proof. See Section I of the supplementary material.

As seen from the right-hand side of (35), we need to bound
the gradient tracking error E[‖gk−W∞gk‖2], the variance of
the gradient estimators E[‖vk −∇f(xk)‖2], and the network
optimality gap E[F (xk) − F (x∗)]. Let us first bound the
variance of the gradient estimators at time step k.

Lemma 6. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖vk −∇f(xk)‖2

]
(36)

≤4BL2 ·
(
E
[
‖xk −W∞xk‖2

]
+

2n

L
E
[
F (xk)− F (x∗)

]
+ E

[
‖τk −W∞τ

k‖2
]

+
2n

L
E
[
F (τk)− F (x∗)

] )
.
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Proof. See Section II of the supplementary material.

Different from [39, Lemma 11], our bound on the variance
of the gradient estimators in Lemma 6 is related to the non-
sampling rate B and is tighter. This is vital for establishing
the linear rate from the recursion (27). With Lemmas 5 and
6, we have the following corollary.

Corollary 1. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖xk+1 −W∞xk+1‖2

]
(37)

≤J11E
[
‖xk −W∞xk‖2

]
+ J12 ·

2n

L
E
[
F (xk)− F (x∗)

]
+ J13 ·

1− σ2

L2
E
[
‖gk −W∞gk‖2

]
+Q11E

[
‖τk −W∞τ

k‖2
]

+Q12 ·
2n

L
E
[
F (τk)− F (x∗)

]
.

Proof. See Section III of the supplementary material.

2) Step II: Next, we bound the network optimality gap
E[F (xk)− F (x∗)]. We first prove the following lemma.

Lemma 7. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖dk −H

k∇F (xk)‖2
]

(38)

≤2M2
2

n

(
L2E

[
‖xk −W∞xk‖2

]
+
γ2

4
E
[
‖gk −W∞gk‖2

]
+

1

n
E
[
‖vk −∇f(xk)‖2

] )
.

Proof. See Section IV of the supplementary material.

With Lemma 7, we are now ready to establish the following
recursion for the network optimality gap {E[F (xk)−F (x∗)]}.

Corollary 2. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

2n

L
E
[
F (xk+1)− F (x∗)

]
(39)

≤J21E
[
‖xk −W∞xk‖2

]
+ J22 ·

2n

L
E
[
F (xk)− F (x∗)

]
+ J23 ·

1− σ2

L2
E
[
‖gk −W∞gk‖2

]
+Q21E

[
‖τk −W∞τ

k‖2
]

+Q22 ·
2n

L
E
[
F (τk)− F (τ∗)

]
.

Proof. See Section V of the supplementary material.

3) Step III: We now move to establish the following
recursion for the gradient tracking error {E[‖gk−W∞gk‖2]}.

Lemma 8. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖gk+1 −W∞gk+1‖2

]
(40)

≤1 + σ2

2
E
[
‖gk −W∞gk‖2

]
+

4L2

1− σ2
E
[
‖xk+1 − xk‖2

]
+

4

1− σ2

(
E
[
‖vk+1 −∇f(xk+1)‖2

]
+ E

[
‖vk −∇f(xk)‖2

])
.

Proof. See Section VI of the supplementary material.

The right-hand side of (40) suggests that we need to
bound the difference of two successive iterations ‖xk+1 −
xk‖2 and the variance of the gradient estimators E[‖vk+1 −
∇f(xk+1)‖2]. This is achieved in the following two lemmas.

Lemma 9. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖xk+1 − xk‖2

]
(41)

≤8.01E
[
‖xk −W∞xk‖2

]
+

4α2M2
2

n
E
[
‖vk −∇f(xk)‖2

]
+ 16α2M2

2L · nE
[
F (xk)− F (x∗)

]
+ 4α2M2

2E
[
‖gk −W∞gk‖2

]
.

Proof. See Section VII of the supplementary material.

Lemma 10. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

E
[
‖vk+1 −∇f(xk+1)‖2

]
(42)

≤4L2B
(
E
[
‖xk −W∞xk‖2

]
+

3αM2
2

LM1
E
[
‖gk −W∞gk‖2

]
+ 1.01 · 2n

L
E
[
F (xk)− F (x∗)

]
+ 1.01E

[
‖τk −W∞τ

k‖2
]

+ 1.01 · 2n

L
E
[
F (τk)− F (x∗)

] )
.

Proof. See Section VIII of the supplementary material.

Corollary 3. Under the setting of Theorem 1, consider the
updates in (10). For all k ≥ 0, we have

1− σ2

L2
E
[
‖gk+1 −W∞gk+1‖2

]
(43)

≤J31E
[
‖xk −W∞xk‖2

]
+ J32 ·

2n

L
E
[
F (xk)− F (x∗)

]
+ J33 ·

1− σ2

L2
E
[
‖gk −W∞gk‖2

]
+Q31E

[
‖τk −W∞τ

k‖2
]

+Q32
2n

L
E
[
F (τk)− F (τ∗)

]
.

Proof. See Section IX of the supplementary material.

4) Step IV: Combining Corollaries 1, 2, and 3 directly
gives (26). Next, we establish (27). By unrolling (26), we get

u(t+1)T ≤ JT utT + JT −1QũtT + · · ·+QũtT+T −1

≤ JT utT +
(
JT −1Q+ · · ·+ J0Q

)
ũtT

≤

JT +

T −1∑
t̃=0

J t̃Q

utT ,

where we use the fact that τ tT = · · · = τ t(T+1)−1 = xtT for
SVRG in the second inequality and E[‖τ tT −W∞τ

tT ‖2] =
E[‖xtT −W∞xtT ‖2] so that QũtT = QutT in the third
inequality. This completes the proof of Proposition 1.

C. Proof of Theorem 2

Since our argument holds for any node, we again omit
the node index i in the proof. First, we establish the upper
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bound. According to (16), we know that Hk,(t+1) � Hk,(t) +
ŝp(ŝp)T

(ŝp)T ŷp
+ ρId. This implies that

‖Hk,(t+1)‖2 ≤ ‖Hk,(t)‖2 +

∥∥∥∥ ŝp(ŝp)T(ŝp)T ŷp

∥∥∥∥
2

+ ρ

≤ ‖Hk,(t)‖2 +
‖ŝp‖2

(ŝp)T ŷp
+ ρ,

(44)

where we use (ŝp)T ŷp > 0 in the last inequality. Then, with
Lemma 3, we have

(ŝp)T ŷp ≥ 0.25(ŝp)T
(
Hk,(0) + εId

)−1
ŝp ≥ 0.25‖ŝp‖2

B + ε
, (45)

where the last inequality holds since H0 � BId. Substituting
(45) into (44), we get

‖Hk,(t+1)‖2 ≤ ‖Hk,(t)‖2 + 4(B + ε) + ρ.

Unrolling the above recurrence gives

‖Hk+1‖2 = ‖Hk,(M̃)‖2 ≤ ‖Hk,(0)‖2 + M̃(4B + 4ε+ ρ)

≤ B +M(4B + 4ε+ ρ).

This establishes the upper bound M2 = B+M(4B+ 4ε+ ρ).
Now, using (13), (14), and the fact that 0 < θp ≤ L̃‖ŝp‖

‖yp‖ ,
we bound

‖ŷp‖ ≤ θp‖yp‖+ (1− θp)‖(Hk,(0) + εId)
−1ŝp‖

≤ L̃‖ŝp‖+
1

β + ε
‖ŝp‖.

(46)

Furthermore, using the Sherman-Morrison-Woodbury formula
on (16), we get(

Hk,(t+1) − ρId
)−1

(47)

=

(
Id −

ŷp(ŝp)T

(ŝp)T ŷp

)(
Hk,(t)

)−1(
Id −

ŝp(ŷp)T

(ŝp)T ŷp

)
+
ŷp(ŷp)T

(ŝp)T ŷp
.

Consider the two terms on the right-hand side of (47). Observe
that∥∥∥∥ ŷp(ŝp)T(ŝp)T ŷp

∥∥∥∥
2

≤ ‖ŷ
p‖ · ‖ŝp‖

(ŝp)T ŷp
≤ 4(B+ε)

(
L̃+

1

β + ε

)
, (48)

where we use (45) and (46) to get the last inequality. Moreover,
we have∥∥∥∥ ŷp(ŷp)T(ŝp)T ŷp

∥∥∥∥
2

≤ ‖ŷp‖2

(ŝp)T ŷp
≤ 4(B + ε)

(
L̃+

1

β + ε

)2

, (49)

where we again use (45) and (46) to get the last inequality.
Letting ω := 4(B + ε)

(
L̃+ 1

β+ε

)
and taking the norm on

both sides of (47), we get∥∥∥(Hk,(t+1) − ρId
)−1 ∥∥∥

2
(50)

≤
(

1 +

∥∥∥∥ ŷp(ŝp)T(ŝp)T ŷp

∥∥∥∥
2

)2

·
∥∥∥∥(Hk,(t)

)−1∥∥∥∥
2

+

∥∥∥∥ ŷp(ŷp)T(ŝp)T ŷp

∥∥∥∥
2

≤(1 + ω)2
∥∥∥∥(Hk,(t)

)−1∥∥∥∥
2

+
ω2

4(B + ε)

≤(1 + ω)2
∥∥∥∥(Hk,(t) − ρId

)−1∥∥∥∥
2

+
ω2

4(B + ε)
,

where the second inequality follows from (48) and (49) and
the last inequality follows from the fact that Hk,(t) � Hk,(t)−
ρId � 0. Unrolling the above recurrence gives∥∥∥∥(Hk,(M̃) − ρId

)−1∥∥∥∥
2

(51)

≤(1 + ω)2(M−1)

∥∥∥∥(Hk,(1) − ρId
)−1∥∥∥∥

2

+

ω2

4(B+ε)

(1 + ω)2 − 1


≤(1 + ω)2(M−1)

(∥∥∥∥(Hk,(1) − ρId
)−1∥∥∥∥

2

+
1

4(B + ε)

)
,

where the second inequality follows from
ω2

4(B+ε)

(1 + ω)2 − 1
=

ω

(ω + 2)4(B + ε)
<

1

4(β + ε)
.

Besides, by setting t = 0 in the second inequality of (50) and
using (15), we know that∥∥∥∥(Hk,(1) − ρId

)−1∥∥∥∥
2

≤ (1 + ω)2β−1 +
ω2

4(B + ε)
.

Substituting the above inequality into (51), we get∥∥∥∥(Hk,(M̃)
i − ρId

)−1∥∥∥∥
2

≤(1 + ω)2(M−1)
(

(1 + ω)2β−1 +
1 + ω2

4(B + ε)

)
≤(1 + ω)2M

(
β−1 +

1

4(B + ε)

)
,

(52)

where we use 1 + ω2 ≤ (1 + ω)2 in the last inequality. By
taking the inverse on both sides of (52), we get

λmin

(
Hk,(M̃)

)
≥ ρ+ (1 + ω)−2M

(
1

β
+

1

4(B + ε)

)−1
.

This establishes the lower bound M1 = ρ + (1 + ω)−2M(
1
β + 1

4(B+ε)

)−1
and completes the proof.
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