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a b s t r a c t

In this paper we develop a new delta expansion approach to deriving analytical ap-
proximation to the transition densities of multivariate diffusions using the Itô-Taylor
expansion of the conditional expectation of theDirac delta function. Our approach yields an
explicit recursive formulas for the expansion coefficients and is universally applicable for
a wide spectrum of models, particularly the time-inhomogeneous non-affine irreducible
multivariate diffusions. We show that this new approach can be viewed as an extension of
Aït-Sahalia (2002) and Lee et al. (2014) to the case of multivariate models. The derived
expansions are proved to converge to the true probability density as the observational
time interval shrinks. The obtained approximations can thereby be used to carry out the
maximum likelihood estimation for the diffusions with discretely observed data. Extensive
numerical experiments demonstrate the accuracy and effectiveness of our approach.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The transition probability densities constitute the essential inputs when we intend to apply the maximum likelihood
estimation (MLE) method to diffusion models for the purpose of parameter estimation (see, e.g., Lo, 1988). However, except
a handful of simple instances, explicit expressions of the transition density for a general multivariate diffusion process is not
available. To overcome this technical difficulty, an active research line, initiated by the seminal contribution of Aït-Sahalia
(2002, 2008), aims to constructing tractable approximations to the transition density of diffusion processes.

Following this rich literature, we propose a new delta expansion approach in the current paper to deriving density
approximations for multivariate time-inhomogeneous diffusion processes. The new approach represents the transition
density as a conditional expectation of the Dirac delta function on the diffusion process, and expands it into a sum of
Hermite polynomial based terms by applying the celebrated Itô-Taylor expansion on it. Due to the analytical formof the delta
expansion,we can easily obtain the corresponding approximatemaximum likelihood estimator for statistical inferencewhen
substituting it into the log-likelihood function of observations from the diffusion process sampled at finite time intervals.

The proposed approach contributes to the literature in two aspects. First, comparedwith the existent expansionmethods,
the most salient advantage of the new approach is that we can establish an explicit recursive formula among the expansion
coefficients for the density of a general time-inhomogeneous multivariate diffusion process. As far as we know, Lee et al.
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(2014) derive a similar result in their investigation on univariate diffusions. Our approach greatly generalizes their findings.
This new structural discovery brings forth to the delta expansion significant computational efficiency:we can easily compute
higher order expansion coefficients from the ones of lower orders through this explicit formula. In addition, since only
function differentiation is involved in our expansion, we may even utilize some symbolic computing softwares to speed
up calculation of the expansion coefficients.

Second, we manage to show that the obtained approximations will converge to the true probability densities of the
underlying diffusion processes under some regularity conditions as the observational time interval shrinks. This result is
new for the Hermite polynomial based approximations. Aït-Sahalia (2008) notes that the classical Hermite expansion in
general may not converge if applied to irreducible processes. The numerical experiments in the paper further demonstrate
the accuracy of the maximum likelihood estimators based on our density approximations for a wide range of diffusion
models.

Diffusion density approximation and the related MLE have been well investigated in the literature. Aït-Sahalia (2002)
makes a fruitful breakthrough in which he uses Hermite polynomials as the orthogonal basis to approximate the transition
density of a univariate time-homogeneous diffusion. Later on, Lee et al. (2014) obtain their delta expansion after some term
rearrangements of theHermite expansion developed in Aït-Sahalia (2002). It turns out that our expansion approach is closely
related to their methods. As discussed in Section 3.1, the delta expansion proposed in the current paper allows one degree
of freedom in a parameter µ0. We prove that our expansion will yield the same approximation as what Lee et al. (2014)
construct in the case of univariate time-homogeneous diffusions when we take µ0 = 0 in our expansion formula. In this
sense, our method can be viewed as one natural extension to the multivariate time-inhomogeneous setting of the Hermite
approach employed in Aït-Sahalia (2002). However, we need to emphasize that the flexibility in µ0 does grant our method
some efficiency in computing the expansion coefficients because we find that other choice of µ0 than 0 will typically lead
to different but much simpler expansion formulas.

One crucial step in the method proposed in Aït-Sahalia (2002) is to apply the Lamperti transform to unitize the process
volatility. Unfortunately, not every multivariate process is amenable to such a transformation. To circumvent the difficulty
in dealing with the irreducible processes, Aït-Sahalia (1999, 2008) suggest using the Kolmogorov backward and forward
equations to determine a small-time expansion of the diffusion probability densities. Choi (2013, 2015) extend this approach
to the time-inhomogeneous diffusions. By nature, our delta expansion is different from theirs. We expand the density of
irreducible processes in an ascending power order of

√
∆, the square root of the length of observational time interval, while

their method leads to an approximation series in the integer order of∆.
For time-homogeneous irreducible diffusions, Li (2013) proposes an alternative approximation to their density functions

based on the theory of Malliavin calculus. His method involves heavily computation of the conditional expectation of the
multiplication of iterated Itô integrals. As a sideline contribution of this paper, we explicitly express such expectations as a
linear combination of the Hermite polynomials and thereby develop a recursive formula for his expansion. This finding casts
new insights into Li’s method; that is, the small-time expansion of Li (2013), although being derived from more advanced
tools such as the Malliavin calculus, is essentially an expansion consisting of the Hermite polynomials. Moreover, we can
show through the symbolic computation function in Mathematica that his expansion leads to the same result as our delta
expansion with µ0 = 0 up to any given order for one- and two-dimensional diffusions with general drift and volatility
coefficients.

Although it still remains as an interesting open problem to theoretically justify whether Li (2013)’s expansion is identical
to our delta expansion with µ0 = 0 for general time-homogeneous diffusions in higher dimension, the differences between
the two methods are obvious. First, our method is extended to the time-inhomogeneous cases. Second, the flexibility in the
choice of µ0, which his expansion lacks of, enables us to simplify our delta expansion a lot.

Our research is also related to a rich body of literature about the Itô-Taylor expansion; see Milstein (1975), Kessler
(1997), Stanton (1997), Fan and Zhang (2003), Aït-Sahalia and Mykland (2003), Kristensen and Mele (2011), Uchida and
Yoshida (2012), Xiu (2014), and Li and Li (2015) for a variety of applications of this expansion in moment computing and
option pricing. It is worthwhile tomention that all of the above papers just directly apply the Itô-Taylor expansion to expand
the conditional expectation of smooth functions. But what we encounter in this paper is challenging: the irregularity of the
Dirac delta function may cause divergence of our approximations. As noted previously, we are the first ones to propose the
idea of approximating the true transition density by a special Itô-Taylor expansion and manage to prove its convergence.
Beyond the aforementioned research line initiated by the seminalwork of Aït-Sahalia (2002, 2008), alternative attempts have
also been made to obtain closed-form approximations of transition densities in multivariate models, including Aït-Sahalia
and Yu (2006), Yu (2007), Filipović et al. (2013), and Li and Chen (2016), just to name a few.

The rest of the paper is organized as follows. Section 2 defines the requirements on the diffusion model considered in
the paper. In Section 3, the major part of the paper, we develop our delta expansion to approximate the transition density
of a general multivariate diffusion process via the Itô-Taylor expansion and establish its convergence to the true transition
density. Section 4 presents some convergence results about the resulting approximate maximum likelihood estimators. We
discuss the relationship of our approach to the other existingmethods in Section 5. Section 6 contains numerical evidence of
the performance of the approximate transition densities and the approximatemaximum likelihood estimators under various
diffusions. Technical lemmas and proofs are collected in the Appendix.

For the convenience of reference, we would like to define here some notations that will be used throughout the paper.
Let D ⊂ Rm be the domain of state variables and denote Dc as a compact subset of D. Let ∥ · ∥ be the Euclidean norm. Denote
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⊤ to be the transpose operation onmatrices or vectors. Let h = (h1, h2, . . . , hm) be an index vector with nonnegative integer
components and |h| :=

∑m
i=1 hi. Let ei be a special index vector, in which the ith component is 1, and the others are 0. Define

∂t := ∂/∂t to be the partial derivative with respect to the time variable, and ∂h := ∂ |h|/(∂xh11 · · · ∂xhmm ) to be the partial
derivatives with respect to the state variable x := (x1, x2, . . . , xm)⊤ ∈ D. For example, ∂ei = ∂/∂xi and ∂ei+ej = ∂2/(∂xi∂xj).

2. The model

Consider a multivariate diffusion process

dX(t) = µ(t, X(t); θ )dt + σ (t, X(t); θ )dW (t), (1)

where X(t) is anm × 1 vector of state variables in the domain D ⊂ Rm, {W (t), t ≥ 0} is a d-dimensional standard Brownian
motion, µ(t, X(t); θ ) and σ (t, X(t); θ ) are an m × 1 drift vector and an m × d volatility (or dispersion) matrix, respectively.
The explicit forms of both functionsµ and σ are known.We emphasize that each component of the drift vector and volatility
matrix is a function dependent on the time variable t . Therefore the models considered in this paper are allowed to be time-
inhomogeneous. The unknown parameter θ belongs to a compact setΘ ⊂ RL. Define the variance–covariance (or diffusion)
matrix of the diffusion X by

ν(t, x; θ ) := σ (t, x; θ )σ (t, x; θ )⊤. (2)

Later we will use νij to denote its (i, j)-element, 1 ≤ i, j ≤ m.
Given any two time points t ′ > t , let p(t ′, x′

|t, x; θ ) be the conditional transition density function of the process driven
by the stochastic differential equation (SDE) in (1); that is,

P[X(t ′) ∈ dx′
|X(t) = x] = p(t ′, x′

|t, x; θ )dx′.

In order to build up an MLE for θ , we assume that a sequence of values of the state variables is observed over a discrete time
grid {t = ti : i = 0, 1, . . . , n}. By the Markovian property of (1), the log-likelihood function1 is then given by

ℓn(θ ) :=

n∑
i=1

ln p(ti, X(ti)|ti−1, X(ti−1); θ ). (3)

We have the maximum likelihood estimator of θ defined by the maximizer of the following optimization problem

θ̂n := argmax
θ∈Θ

ℓn(θ ).

However, it is well known that a major technical difficulty with the MLE method for diffusions resides in the fact that
closed-form expressions of p(t ′, x′

|t, x; θ ) are unavailable in most cases. As noted in the introduction, the focus of this
paper is to establish an analytical approximation to the function p via an Itô-Taylor expansion based approach. Through
it, we obtain an approximation to the MLE θ̂n and analyze its convergence properties in Section 4. Besides the MLE, our
density approximation can be potentially used in some other contexts such as option pricing, constructing test statistics for
diffusions, and so on.

Below are some technical conditions that we need for developing our approximation. Most of them are standard in the
literature of MLE for diffusion processes. The first assumption is

Assumption 2.1. Let D = Πm
i=1(xi, x̄i) be the domain of diffusion X defined in (1). It is possible that xi = −∞ and/or

x̄i = +∞. Moreover, the boundary of D is unattainable for the process X .

Note that in the applications relevant in finance, when the SDEs are used to model asset prices or nominal interest rates,
their domains are often taken as D = Πm

i=1(0,+∞). The literature has developed a systematic approach to testing whether
or not a boundary is attainable for a diffusion process through its drift and volatility coefficients. For instance, Karatzas
and Shreve (1991) and Aït-Sahalia (2002) consider the issue of unattainability for univariate diffusions; Friedman (1976)
discusses the boundary behaviors of multivariate diffusions in Chapter 11 of his book.

The proposed delta expansion requires us to repeatedly differentiate the driftµ(t, x; θ ) and the volatilitymatrix σ (t, x; θ ).
Hence additionally, we need

Assumption 2.2. All the components of µ(t, x; θ ) and σ (t, x; θ ) are infinitely differentiable in (t, x) at any (t, x, θ ) ∈

(0,+∞) × D ×Θ .

Furthermore, the differentiability of (µ, σ ) implies that they are locally Lipschitz continuous, thus ensuring that the
solution to SDE (1) is strongly unique in the sense of Definition 5.2.3 in Karatzas and Shreve (1991).

However, the above two assumptions are still not sufficient to guarantee the existence of a transition probability density
for X defined in (1). Therefore, we need to enhance our requirements by imposing two classical conditions as below:

1 As in Aït-Sahalia (2002, 2008), we ignore the unconditional density of the first observation (t0, X(t0)).
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Assumption 2.3. The diffusion matrix ν(t, x; θ ) is uniformly positive definite; that is, there exists a positive constant c0
such that ξ⊤ν(t, x; θ )ξ ≥ c0ξ⊤ξ for any nonzero vector ξ ∈ Rm and (t, x, θ ) ∈ [0,+∞) × D ×Θ .

and

Assumption 2.4. µ(t, x; θ ) and ν(t, x; θ ) are bounded and their derivatives exhibit at most polynomial growth in x for
(t, x, θ ) ∈ [0,+∞) × D ×Θ .

It is worth stressing that these two assumptions are conventionally proposed to provide sufficient (but not necessary)
conditions for the existence of the transition density (see, e.g., Friedman, 1964, Chapter 1, Theorem 10; Friedman, 1975,
Chapter 6, Theorem 4.5). For convenience, the theoretical proof of the convergence results of the paper is based on these
conditions. However, the practical usefulness of the proposed delta expansion covers a wide range of commonly used
models, rather than confined to those strictly satisfying Assumptions 2.3 and 2.4. For instance, these two assumptions
are not necessary for the algorithm to compute the expansion coefficients when we derive the density approximation in
Theorems 3.1 and 3.3. In addition, the numerical experiments in the paper also suggest that the approximations developed
from our expansion method performs very well for many processes that may not satisfy them. It points to the possibility of
relaxing these two conditions. We leave the related theoretical justification for future works.

3. The delta expansion of the transition density

This section is devoted to the development of the main results of the paper, how to obtain our delta expansion to
approximate the transition probability density of a diffusionprocess. As the first step to this end,weneed to use the Itô-Taylor
expansion to expand the density.Wemotivate the Itô-Taylor expansionmethod by first presenting the heuristic idea behind
it in Section 3.1.

3.1. Heuristic idea behind the Itô -Taylor expansion

Consider any sufficiently smooth function G(s, y). By the Itô formula, we have

G(s, X(s)) =G(t, X(t)) +

∫ s

t
∂uG(u, X(u))du +

m∑
i=1

∫ s

t
µi(u, X(u); θ )∂eiG(u, X(u))du

+
1
2

m∑
i,j=1

∫ s

t
νij(u, X(u); θ )∂ei+ejG(u, X(u))du +

m∑
i,j=1

∫ s

t
∂eiG(u, X(u))σij(u, X(u); θ )dWj(u),

where νij is the (i, j)-element of the diffusionmatrix ν (cf. Eq. (2) for its definition). Let Et,x
[·] denote expectation conditional

on X(t) = x. Taking expectations on both sides of the above equality, we have

Et,x
[G(s, X(s))] = G(t, x) +

∫ s

t
Et,x

[(∂u + L)G(u, X(u))]du, (4)

where L is the infinitesimal generator of process (1) such that

(LG)(u, y) =

m∑
i=1

µi(u, y; θ )∂eiG(u, y) +
1
2

m∑
i,j=1

νij(u, y; θ )∂ei+ejG(u, y), (5)

for any u ∈ (t, s) and y ∈ Rm.
Wemay continue to apply the above idea to expand Et,x

[(∂u +L)G(u, X(u))], treating (∂u +L)G(u, X(u)) as a new function
on the process X . This will lead to

Et,x
[(∂u1 + L)G(u1, X(u1))] = (∂t + L)G(t, x) +

∫ u1

t
Et,x

[(∂u2 + L)2G(u2, X(u2))]du2. (6)

Substituting (6) back into (4), we have

Et,x
[G(s, X(s))] = G(t, x) + (∂t + L)G(t, x) · (s − t) + Et,x

[∫ s

t
du1

∫ u1

t
(∂u2 + L)2G(u2, X(u2))du2

]
.

In this way, repeatedly applying the expansion for J times yields

Et,x
[G(s, X(s))] =

J∑
N=0

(s − t)N

N!
(∂t + L)NG(t, x) + RJ , (7)

where the remainder term RJ is given by

RJ = Et,x
[∫ s

t
du1

∫ u1

t
du2 · · ·

∫ uJ

t
(∂uJ+1 + L)J+1G(uJ+1, X(uJ+1))duJ+1

]
.
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Now, we turn to apply the Itô-Taylor expansion (7) to approximate the transition density p. The density function admits
the following expression (see, e.g., Watanabe, 1987; Li, 2013):

p(t ′, x′
|t, x; θ ) = Et,x

[δx′ (X(t ′))],

where δx′ (·) is theDirac delta function centered at x′. However, the function δx′ (·) does not have any derivatives in the classical
sense. To circumvent this obstacle from the irregularity of δx′ (·), we introduce a sequence of smooth functions to approximate
it. More precisely, for any given constant vector µ0 ∈ Rm, we may define a function G such that, for t ≤ s < t ′ and y ∈ Rm,

Gt ′,x′ (s, y) :=
1

(2π (t ′ − s))
m
2 det(ν0)

1
2
exp

(
−

(x′
− y − (t ′ − s)µ0)⊤ν−1

0 (x′
− y − (t ′ − s)µ0)

2(t ′ − s)

)
, (8)

where ν0 := ν(t, x; θ ) ∈ Rm×m, the diffusion matrix of the process X when Xt = x. In other words, if we fix t ′, s and
x′, Gt ′,x′ (s, ·) is simply the corresponding probability density function of a multivariate normal distribution with mean
x′

− (t ′ − s)µ0 and covariance matrix (t ′ − s)ν0. It is apparent to see that, as s → t ′, the function Gt ′,x′ converges to the
Dirac delta function δx′ in the following sense:

lim
s↑t ′

Et,x
[Gt ′,x′ (s, X(s))] = Et,x

[δx′ (X(t ′))] = p(t ′, x′
|t, x; θ ). (9)

Since the function Gt ′,x′ is infinitely differentiable for any fixed t ′ and x′, we now can invoke the Itô-Taylor expansion (7)
to expand the conditional expectation Et,x

[Gt ′,x′ (s, X(s))] on the left-hand side of (9). That is, if we omit the residual termRJ ,
then

Et,x
[Gt ′,x′ (s, X(s))] ≈

J∑
N=0

(s − t)N

N!

[
(∂s + L)NGt ′,x′ (s, y)

⏐⏐⏐
s=t,y=x

]
,

where the infinitesimal generator L is acting on the state variable y. From (9), letting s tend to t ′ in the above expression
results in our density approximation, we have

p(t ′, x′
|t, x; θ ) ≈

J∑
N=0

(t ′ − t)N

N!

[
(∂s + L)NGt ′,x′ (s, y)

⏐⏐⏐
s=t,y=x

]
=: p(J)(t ′, x′

|t, x; θ ) (10)

for any positive integer J . From now on, we will refer to p(J) as the Jth order Itô-Taylor expansion of the density p.
Note that in principle other forms of mollifiers are possible for approximating the Dirac delta function. Compared with

the other alternatives, the major advantage of the choice of the normal kernel (8) is that repeatedly differentiating it, as
what we do in (10), will lead to the Hermite polynomials, from which we can construct recursive formulae (cf. (18)–(19)) to
facilitate the computation of the coefficients of our expansion. In addition, it turns out that, under the aforementioned µ0
and ν0, the leading term of the resulting expansion (cf. (17)) is identical to the marginal distribution of the following process
X̃ at s = t ′:

dX̃(s) = µ0ds + σ (t; x, θ )dW (s), s ≥ t,

and X̃(t) = x. Obviously the process X̃ is a multivariate Brownian motion with constant drift µ0 and constant volatility
matrix σ (t; x, θ ). In this sense, our method essentially expands the transition probability density of the original process X
around that of X̃ . Recall that the process X after time t , if X(t) = x, satisfies

dX(s) = µ(s, X(s); θ )ds + σ (s, X(s); θ )dW (s), s ≥ t. (11)

The choice of ν0 thus entails that these two processes have the same volatilities at the initial time point s = t . From this
observation, we anticipate that the expansion based on such ν0 should provide a good approximation over a small time
scale.2 Theorem 3.2 in the next section corroborates this intuition.

2 This anticipation can be understood easily if we also choose µ0 = µ(t; x, θ ) in the expansion. In such case, the two processes have the same drift and
volatility coefficients at the initial point s = t . Intuitively, the drifted Brownian motion X̃ under these choices of µ0 and ν0 should evolve closely to the
process of X within a small time horizon after t because µ(s, X(s); θ ) and σ (s, X(s); θ ) will not change too much away from µ(t, x; θ ) and σ (t, x; θ ). This
intuition is exactly the origin of the Euler method for numerically simulating the solution of an SDE. Kloeden and Platen (1992) discuss the convergence
properties of the Euler method when small time steps are taken. Furthermore, we need to point out that, in contrast to the choice of ν0 , the value of µ0
is not crucial for the convergence of our expansion, although a proper µ0 will significantly simplify its expression. On one hand, the drift term is of order
‘‘dt ’’, while the volatility term is of order ‘‘

√
dt ’’. Thus, for a small time expansion, ν0 would play a more important role for the convergence analysis. On

the other hand, thanks to the Girsanov theorem, the probability distributions of X̃ under different choices of µ0 , as long as they share the same volatility
matrix σ (t, x; θ ), are absolutely continuous with each other. The differences in the expansion expressions led by different µ0 are mainly caused by the
corresponding Radon–Nikodym derivative. We show in Theorem 3.2 that such differences will not affect the rate of the convergence.
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3.2. The delta expansion from the Itô -Taylor expansion approach

Noting that the derivation in Section 3.1 is heuristic, in this sectionwe shall establish the convergence property of our Itô-
Taylor density approximation rigorously. From (10), it is easy to see that we construct the approximation p(J) via repeatedly
applying the differential operator L on a known function Gt ′,x′ . Define some more notations to facilitate the presentation of
the analytical form of p(J). Let φ(z;Σ) be the density of them-dimensional normal distribution with mean 0 and covariance
matrixΣ , i.e.,

φ(z;Σ) =
1

(2π )m/2 det(Σ)1/2
exp

(
−

z⊤Σ−1z
2

)
. (12)

For an m-dimensional nonnegative integer vector h = (h1, . . . , hm), define Hh(z;Σ) to be the corresponding multivariate
Hermite polynomial associated with this normal density; that is,

Hh(z;Σ) := (−1)|h|φ−1(z;Σ)∂hφ(z;Σ). (13)

Willink (2005) provides a recursive approach to computing these multivariate Hermite polynomials. Namely, for any vector
hwith hj ≥ 0, j = 1, . . . ,m, we have

Hh+ek (z;Σ) =

⎛⎝ m∑
j=1

Σ (kj)zj

⎞⎠Hh(z;Σ) −

m∑
j=1

Σ (kj)hjHh−ej (z;Σ), (14)

where Σ (kj) is the (k, j)-element of the matrix Σ−1. In addition, H0(z;Σ) = 1 and Hh(z;Σ) = 0 for any h with
min{h1, . . . , hm} < 0.

With the help of the Hermite polynomials, we can show

Theorem 3.1 (Itô-Taylor Expansion). Suppose that Assumptions 2.1–2.2 hold and ν(t, x; θ ) is non-degenerate. Let ν0 = ν(t, x; θ )
and µ0 be a constant vector. For J ≥ 1, there exists a sequence of functions {wN,h} such that

p(J)(t ′, x′
|t, x; θ ) = q(t ′, x′

|t, x)

⎛⎝1 +

J∑
N=1

⌊3N/2⌋∑
|h|=1

wN,h(t, x)Hh(z; ν0)
N!

∆N−
|h|
2

⎞⎠ , (15)

where ⌊3N/2⌋ is the largest integer less than or equal to 3N/2, and Hh(z; ν0) are the Hermite polynomials defined through (13)
with

∆ = t ′ − t, z =
x′

− x − µ0∆
√
∆

, (16)

and

q(t ′, x′
|t, x) :=

1
(2π∆)m/2 det(ν0)1/2

exp

(
−

z⊤ν−1
0 z
2

)
. (17)

Theorem 3.1 clearly characterizes the structure of p(J): it can be expressed in terms of a linear combination of Hermite
polynomials. More importantly, we can analytically determine the coefficient functionsw in a recursive fashion specified as
follows. This feature makes our expansion computationally more appealing than other Hermite polynomial based methods.

The series of functions {wN,h(s, y)} is defined on [0,+∞) × D. Each of them is indexed by a positive integer N and an
m-dimensional integer valued vector h = (h1, . . . , hm) with hj ≥ −2 for all j = 1, . . . ,m. Furthermore, they satisfy the
following three relations.

(i) For any N ≥ 1, wN,h(s, y) ≡ 0 if either min{h1, . . . , hm} < 0, either h = 0, or |h| > 2N .
(ii) When N = 1, we have⎧⎨⎩

w1,ei (s, y) = µi(s, y; θ ) − µ0i, i = 1, . . . ,m;

w1,2ei (s, y) =
1
2 (νii(s, y; θ ) − νii(t, x; θ )), i = 1, . . . ,m;

w1,ei+ej (s, y) = νij(s, y; θ ) − νij(t, x; θ ), i ̸= j, i, j = 1, . . . ,m,
(18)

where µi(·, ·; θ ) is the i-component of the drift vector µ and νij(·, ·; θ ) is the (i, j)-element of the diffusion matrix ν.
(iii) When N > 1 and all the components in h are nonnegative, and 0 < |h| ≤ 2N , we have

wN,h(s, y) = (∂s + L)wN−1,h(s, y) +

m∑
i=1

AiwN−1,h−ei (s, y) +
1
2

m∑
i,j=1

(νij(s, y; θ ) − νij(t, x; θ ))wN−1,h−ei−ej (s, y), (19)
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where the infinitesimal generator L is given in (5), and the operators {Ai, i = 1, . . . ,m} are defined as following: for a
smooth function f ,

(Ai)f (s, y) = (µi(s, y; θ ) − µ0i)f (s, y) +

m∑
j=1

νij(s, y; θ )∂ej f (s, y). (20)

The operators L and Ai are all acting on the state variable y.
Eq. (19) relates a function with higher indices to those with lower ones. We can repeatedly use it to compute the

explicit form of wN,h for any N and h. Meanwhile, only differentiation operations are involved in the computation. That
makes the implementation of our expansion convenient: we can even simply use some symbolic computation programs
such as Mathematica to accomplish the derivation. In this way, the method suggested in this paper avoids some complex
preprocessing for the symbolic calculation in solving Kolmogorov PDEs that some other expansion methods require.

The next theorem, as the key step to establish the convergence of the delta expansion in Theorem 3.3, characterizes the
uniform convergence rate of the expansion p(J) to the true transition density p.

Theorem 3.2. Suppose that Assumptions 2.1–2.4 hold. Define p(J)(t ′, x′
|t, x; θ ) through (15). Then, given any positive integer

J > 2m − 1 and compact subset Dc
⊂ D, as∆ = t ′ − t → 0, we have

sup
(t,x,x′,θ )∈[0,T ]×Dc×D×Θ

⏐⏐p(J)(t ′, x′
|t, x; θ ) − p(t ′, x′

|t, x; θ )
⏐⏐ = O

(
∆

1
2 ⌈

J+1
2 ⌉−

m
2

)
, (21)

where ⌈(J + 1)/2⌉ is the smallest integer larger than or equal to (J + 1)/2.

This theorem provides a theoretical guarantee of the accuracy of our Itô-Taylor expansion based approximation. It shows
that the absolute error between p(J) and the true density p is uniformly bounded by a quantity of order ∆(⌈(J+1)/2⌉−m)/2.
The conditions in the theorem statement (cf. Assumptions 2.1–2.4) further indicate another advantage of the Itô-Taylor
expansion; that is, its convergence property is insensitive to the special structure of the underlying diffusion. Under this
expansion, the above approximation order universally applies for a wide range of models, whether they are univariate or
multivariate, reducible or irreducible, affine or non-affine, or time-homogeneous or not. In a sharp contrast, the previous
literature, including Aït-Sahalia (2002, 2008), Egorov et al. (2003), Choi (2013, 2015), Li (2013), and Filipović et al. (2013),
develop model-specific expansion methods to obtain approximations to the probability densities of processes of different
types.

The proof of Theorem 3.2 is deferred to Appendix A.2. The key observation in it is that the coefficients wN,h(t, x) are all
zeros for |h| > 3N/2 under the choice of ν0 = ν(t, x; θ ) (cf. Lemma A.2).We thereby build up a tight upper bound estimation
on the approximation error in order to establish the convergence of the expansion.We find that such observationmay not be
true for some other choices of ν0, which implies that the resulting expansion will be divergent, consistent with the intuition
discussed in footnote 2.

The index of J in Theorem 3.2 is used to stress how many times we operate the differentiation ∂t + L for expanding the
density. Hence the previous Itô-Taylor expansion is not according to the power order of ∆, different from how a majority
of the existing methods present their results. For the convenience of making a comparison between our expansion and the
others, we arrive at a Delta expansion in the following theorem by rearranging the expansion terms in an ascending order of√
∆.

Theorem 3.3 (Delta Expansion). For any integer K ≥ 1, define the delta expansion of the transitional probability density
p(t ′, x′

|t, x; θ ) by

p(K ,∆)(t ′, x′
|t, x; θ ) = q(t ′, x′

|t, x)

(
1 +

K∑
k=1

∆
k
2 Ck

)
, (22)

where the coefficient Ck is given by

Ck =

2k∑
N=⌈(k+1)/2⌉

1
N!

∑
|h|=2N−k

wN,h(t, x)Hh(z; ν0). (23)

Suppose the assumptions in Theorem 3.2 hold. Then, given any positive integer K > m − 1 and compact subset Dc
⊂ D, as

∆ = t ′ − t → 0,

sup
(t,x,x′,θ )∈[0,T ]×Dc×D×Θ

⏐⏐p(K ,∆)(t ′, x′
|t, x; θ ) − p(t ′, x′

|t, x; θ )
⏐⏐ = O

(
∆

K+1
2 −

m
2

)
. (24)

Weneed to emphasize that this newdelta expansiondoes not change the order of the convergence.More accurately,when
we take J = 2K , both expansions are of the same order. However, as shown in the proof of Theorem 3.3, the delta expansion
is obtained essentially by omitting those terms of order higher than ∆(⌈J/2⌉−m)/2 in p(J). That is why the new expansion
usually leads to much simpler expressions than the Itô-Taylor expansion, especially when we choose µ0 = µ(t, x; θ ) in
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the expansion. In this way, the delta expansion yields computational efficiency in the numerical experiments; see more
discussion in Example A.2 in Appendix A.1. In addition to the numerical advantage, another appealing feature of the delta
expansion in the theoretical aspect is that it can be shown to be equivalent to the Hermite expansion developed in Aït-
Sahalia (2002) and the small-time expansion of Li (2013) in the case of time-homogeneous univariate diffusions. In this
sense, the delta expansion can be regarded as a generalization of these existing methods. For these two reasons, we focus
on the discussion of the delta expansion from now on.

3.3. The expansions for reducible diffusions

Aït-Sahalia (2008) introduces an important concept of reducibility to identify a class of multivariate diffusions that are
amenable to his multivariate Hermite expansion approach. A diffusion is said to be reducible if and only if there exists a one-
to-one transformation of the diffusion into a newonewhose diffusionmatrix is the identitymatrix. Every univariate diffusion
is reducible in this sense bymeans of the Lamperti transform.However, that is not true formultivariate diffusions. Aït-Sahalia
(2008) provides a necessary and sufficient conditions for the reducibility (cf. Section 3 in his paper). Choi (2013) further
extends the discussion of reducibility to the time-inhomogeneous diffusions.

Thanks to the identity diffusion matrix of the transformed process, approximating its probability density is computa-
tionally more tractable because it is ‘‘closer’’ to a standard normal than that of the original process (see, e.g., Aït-Sahalia,
2002). Once we have an expansion for the transition density of the transformed process, we can obtain the corresponding
approximation to the original object of interest, by applying the Jacobian formula. Hence, without loss of generality, we only
focus on a reducible diffusion process after the transformation in this subsection. Abuse the notation a little bit by using the
same X to refer to the post-transformation process; that is, it satisfies the following SDE

dX(t) = µ(t, X(t); θ )dt + dW (t). (25)

Note that the above diffusion (25) is just a special case of (1) when σ = Idm with Idm being anm×m identity matrix. We
can then easily invoke the computation in Theorems 3.1 and 3.2 to establish its Jth order Itô-Taylor expansion. In particular,

p(J)(t ′, x′
|t, x; θ ) = ∆−

m
2 φ(z; Idm)

⎛⎝1 +

J∑
N=1

N∑
|h|=1

wN,h(t, x)Hh(z; Idm)
N!

∆N−
|h|
2

⎞⎠ , (26)

where φ(z; Idm) and Hh(z; Idm) are the normal density function and the Hermite polynomials defined through (12) and
(14), respectively, with Σ replaced by Idm. Here z and {wN,h} are still defined by (16) and the recursive relations (i)–(iii),
respectively.

Weneed to stress that the reducibility does bring forth to us significant computational advantages.We show in LemmaA.2
that wN,h ≡ 0 if |h| > N . Due to this structural feature, the inner sum in the Itô-Taylor expansion (26) only needs to add
up to N terms. In contrast, we need up to 3N/2 summands in the expansion of an irreducible process (cf. (15)). We include
Examples A.1 and A.2 in the appendix for an illustration of this point. The reducibility allows us to enhance the error order
of the Itô-Taylor expansion from O(∆(⌈(J+1)/2⌉−m)/2) to O(∆(J+1)/2−m/2). Therefore, we have K th order the delta expansion
below by taking J = K in the Itô-Taylor expansion (26).

Corollary 3.1. For any integer K ≥ 1, define the Kth order delta expansion p(K ,∆) for the diffusion (25) by

p(K ,∆)(t ′, x′
|t, x; θ ) = ∆−

m
2 φ(z; Idm)

(
1 +

K∑
k=1

∆
k
2 Ck

)
, (27)

where

Ck =

k∑
N=⌈(k+1)/2⌉

1
N!

∑
|h|=2N−k

wN,h(t, x)Hh(z; Idm). (28)

Given any positive integer K > m − 1 and compact subset Dc
⊂ D, as∆ = t ′ − t → 0,

sup
(t,x,x′,θ )∈[0,T ]×Dc×D×Θ

⏐⏐p(K ,∆)(t ′, x′
|t, x; θ ) − p(t ′, x′

|t, x; θ )
⏐⏐ = O

(
∆

K+1
2 −

m
2

)
. (29)

Note that the outer sum in (28) only contains k terms rather than 2k terms, leading to a much simpler expression (cf. (23)
for the irreducible case).

4. Approximate maximum likelihood estimators

In this section, we shall use the delta expansion p(K ,∆) in (22) (or equivalently,the Itô-Taylor expansion p(J) in (15)) as
an approximate to the true but unknown transition density p to compute approximately MLE. To analyze the convergence
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properties of such approximations, assume that the parameter spaceΘ is a compact subset ofRL and denote the true value of
the parameter vector to be θ0 ∈ Θ . In addition, suppose that the drift vectorµ(t, x; θ ) and the diffusionmatrix ν(t, x; θ ) in the
model are infinitely continuous differentiable with respect to θ ∈ Θ . We have observed a set of data {X(t0), X(t1), . . . , X(tn)}
over a discrete time grid. For simplicity, assume that ti − ti−1 = ∆ for all i = 1, . . . , n. Suppose the log-likelihood function
ℓn(θ ) (cf. (3)) has a unique maximizer θ̂n ∈ Θ . Then, it should be the true MLE of parameter θ . But θ̂n is not computable
because we do not know the exact form of ℓn(θ ).

Replacing the true probability density p in (3) with its approximation p(K ,∆),3 we have an approximate log-likelihood
function

ℓ(K ,∆)
n (θ ) :=

n∑
i=1

ln p(K ,∆)(ti, X(ti)|ti−1, X(ti−1); θ ).

Maximizing ℓ(K ,∆)
n (θ ) overΘ leads to the approximate MLE θ̂ (K ,∆)

n . We can show that

Theorem 4.1. Fix the sample size n and K > m − 1. Under Assumptions 2.1–2.4,

θ̂ (K ,∆)
n − θ̂n → 0

in Pθ0-probability as∆ → 0.4

Theorem 4.1 constitutes a very useful step towards establishing the asymptotic consistency of our approximate MLE
θ̂
(K ,∆)
n . For instance, if we happen to know that the trueMLE θ̂n converges to θ0 as∆ → 0, then we can choose a subsequence
∆n → 0 such that θ̂ (K ,∆n)

n − θ0 → 0 as n → +∞, following the proof in Aït-Sahalia (2008). Aït-Sahalia (2002) and Chang
and Chen (2011) investigated the asymptotic properties of the true MLEs for univariate diffusions and use them to show the
consistency of their MLE approximations. To our best knowledge, the corresponding results about the convergence of the
trueMLEs inmultivariate diffusions are challenging and still open in the literature.We provide some supportive evidences in
numerical experiments to show that the approximate MLE from our delta expansion converge to the true parameter values.
A thorough theoretic investigation is beyond the scope of the current paper. We leave it for future research.

5. Relations to the existing density approximations

In this section, we discuss the relation of our delta expansion to some other existing approximations, including the
Hermite expansion approach proposed in Aït-Sahalia (2002) and Lee et al. (2014), the Malliavin calculus theoretic approach
suggested by Li (2013), and the Kolmogorov equation based method in Aït-Sahalia (1999, 2008) and Choi (2013, 2015).

5.1. Relation to the Hermite expansions

Aït-Sahalia (2002) pioneers the investigation onhow touseHermite polynomial series to approximate diffusion transition
densities. To make our comparison more concrete, let us briefly review the main results in that paper. It mainly focuses on
univariate processes. Note that any univariate process must be reducible in the sense of Section 3.3. We may start from the
following setup; that is, let X be a univariate time-homogeneous diffusion defined by

dX(t) = µ(X(t))dt + dW (t), (30)

whereW (t) is a one-dimensional standard Brownian motion. And denote the infinitesimal generator corresponding to (30)
by

L = µ(x)
∂

∂x
+

1
2
∂2

∂x2
. (31)

For any given states x and x′, use p(∆, x′
|x) to indicate the transition probability of X(t +∆) = x′ starting from X(t) = x.

The Hermite expansion proposed in Aït-Sahalia (2002) consists of two steps; see Eqs. (2.7) and (4.1)–(4.3) therein. First,
expand the true density p(∆, x′

|x) in an orthogonal basis comprising Hermite polynomials {Hh, h ≥ 0} to obtain

p(∆, x′
|x) =

1
√
∆
φ(z)

∞∑
h=0

η(h)(∆, x)Hh(z), (32)

where φ(·) is the standard normal density and z = (x′
− x)/

√
∆. Obviously each coefficient of the above expansion admits

the following expectation based representation

η(h)(∆, x) =
1
h!
Et,x

[
Hh

(
X(t +∆) − x

√
∆

)]
.

3 p(K ,∆) may be negative in our expansion. To make the computation of logarithm feasible, we truncate the approximate density at a sufficiently small
positive number when implementing the expansion in the numerical examples. More precisely, we take ln(·) on max{p(K ,∆), ε/K } for some fixed small
ε > 0. Similar procedures are also used in Aït-Sahalia (2002) and Egorov et al. (2003).
4 A similar convergence conclusion can be shown to be true for the approximate MLE θ̂ (J)n based on the Itô-Taylor expansion p(J) .
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The second step applies Taylor expansion, in conjunction with the process infinitesimal operator L (cf. (31)), to compute the
conditional expectation on the right-hand side. We then have

η(h)(∆, x) =
1
h!

∞∑
k=0

∆k

k!

(
LkHh

(
y − x
√
∆

))⏐⏐⏐⏐
y=x
. (33)

Substituting (33) back into (32) yields a double infinite sum to expand p(∆, x′
|x).

A variety of ways of gathering the terms are possible in order to obtain an approximation to the transition density. For
instance, Aït-Sahalia (2002) suggests expanding (32) and (33) up to prefixed orders of J and K respectively. That leads to,

p̂(J,K )(∆, x′
|x) =

1
√
∆
φ(z)

J∑
h=0

(
K∑

k=0

∆k

k!
1
h!

(
Lk

· Hh

(
y − x
√
∆

))⏐⏐⏐⏐
y=x

)
Hh(z). (34)

He shows that a relatively small value for K , say K = 3, will deliver satisfactory numerical accuracy in approximating the
densities of many univariate diffusion models. Lee et al. (2014) consider an alternative on the basis of the explicit form of
LkHh they find.

It turns out that our delta expansion produces essentially the same approximation as what Lee et al. (2014) construct if
we chooseµ0 = 0 in our expansion formula. Indeed, interchanging the order of summation in (34) and taking J as a function
of K , Lee et al. (2014) reach the following approximated Hermite expansion

p̂(K ,∆)
:=
φ(z)
√
∆

2K∑
k=0

∆
k
2

⎛⎝ k∑
N=⌈k/2⌉

1
N!
ζk−N,2N−k(x)H2N−k(z)

⎞⎠ , (35)

where the function ζ is defined in (75) (see also Definition 1 and Eq. (18) in their paper). We prove that

Proposition 5.1. Let p(2K ,∆) be the delta expansion obtained from our approach (cf. (27)) by taking µ0 = 0. Then,

p̂(K ,∆)
= p(2K ,∆). (36)

In the sense of the proposition, the delta expansion proposed in this paper can be viewed as a rearranged Hermite
expansion in the case of univariate diffusions.

As noted by Aït-Sahalia (2008), the classical Hermite expansion will not in general converge if applied to irreducible
processes. Contributing to this literature, our new method builds up expansions that can converge to the true probability
densities. In addition, the new expansion admits one degree of freedom in the choice of µ0. When we take µ0 = µ(t, x; θ ),
the resulting approximation will be significantly different from what we can obtain from any other existing methods.
Example A.2 shows that such choice of µ0 can greatly simplify the expressions of our expansion. We defer the related
discussion on the numerical performance to the next section.

5.2. Relation to the expansion of Li (2013)

Li (2013) presents a small-time asymptotic expansion of transition densities for multivariate diffusions based on the
theory of Malliavin calculus developed in Watanabe (1987) and Yoshida (1992). To facilitate the comparison, we manage to
establish in Appendix B a new recursive algorithm for his method. Note that Li’s expansion heavily relies on computation of
the conditional expectation of themultiplication of iterated Itô integrals. As a sideline contribution of this paper,we explicitly
reduce such expectations to a linear combination of the Hermite polynomials; see Propositions B.2 and B.3. This new result
enables us to compute the expansion coefficients of a given multivariate time-homogeneous diffusion up to any arbitrary
order in a more efficient way under Li’s expansion. More importantly, it also casts a new insight into the relation between
Li’s expansion and the Hermite polynomial based expansions: the density approximation led by his method is essentially an
expansion consisting of the Hermite polynomials.

With the help of the new recursive relation developed in Appendix B, we can show through the symbolic computation
function inMathematica that the small-time asymptotic method in Li (2013) leads to the same expansion result as our delta
expansion with µ0 = 0 up to any given order for one- and two-dimensional diffusions with general drift and volatility
coefficients.5

Although it remains as an interesting open problem to theoretically justify whether these two methods are the same for
general multivariate time-homogeneous diffusions, we still need to emphasize several appealing features of the proposed
delta expansion. First, the techniques that we use are more elementary, completely avoiding the heavy machinery of
Malliavin calculus. Second, our approach enjoys larger flexibility in the expansion. For example, taking µ0 = µ(t, x; θ )
leads to different but simpler expansions than what Li (2013) obtains.6 Finally, as Li (2013) focuses on time-homogeneous
processes, it is not obvious how his results would be extended to the time-inhomogeneous cases that we consider in this
paper.

5 We have implemented the two algorithms presented in Appendix B.1 and Theorem 3.3 inMathematica. The code is available upon request.
6 In Example A.2, the formulas in cases (a) and (b) are obtained by taking µ0 = 0 and µ0 = µ(t, x; θ ), respectively. Obviously, the formulas in case (b)

is much simpler than that in case (a), whereas the latter is the same as that provided by Li (2013).



266 N. Yang, N. Chen and X. Wan / Journal of Econometrics 209 (2019) 256–288

5.3. Relations to other methods

The multivariate diffusions are rarely reducible. An entirely different research venue is therefore pursued in Aït-Sahalia
(1999, 2008). It starts from a key observation that the transition probability density of a diffusion process should be a solution
to the Kolmogorov forward and backward equations. By postulating an appropriate form for the solution as an expansion of
both time and space, one can compute it approximately up to the relevant order. Choi (2013, 2015) extends this Kolmogorov
method to multivariate time-inhomogeneous cases. Our Itô-Taylor expansion approach is essentially different from the
above Kolmogorov equationmethod for irreducible diffusions, as we expand the density in an ascending power order of

√
∆

in (15) while their method expands it along the integer order of ∆. Such distinction can be easily seen from the unrelated
expressions of both expansions.

6. Numerical experiments

Belowweundertake somenumerical experiments to examine the performance of our delta expansion based approximate
densities and the associated approximate MLE. Nine different types of models are considered: the Ornstein–Uhlenbeck
(OU) model, the CIR model, the SEV-ND model (Aït-Sahalia, 1996), the bivariate OU (BOU) model, the time-inhomogeneous
bivariate OU model (BOUI), the Heston model, the non-affine GARCH, the stochastic volatility CEV (SVCEV) model, and the
time-inhomogeneous trivariate BDFS model (EBDFS, cf. Choi (2013) and Balduzzi et al. (1996)). The first three are univariate
diffusions, in which the SEV-ND is one model that explicit Lamperti transform is not available. The fourth and sixth models
(i.e., BOU and Heston) are multivariate reducible and irreducible diffusions, respectively. All the models of OU, CIR, BOU, and
Heston are affine and time-homogeneous. In contrast, the BOUI and EBDFSmodels are time-inhomogeneous and the GARCH
and SVCEV models are non-affine. The purpose of taking so many processes is to investigate how the approach will perform
under a wide spectrum of diffusions.

The assessments on the efficiency of our proposed approach mainly consist of two parts: one is about density approxi-
mation and the other is about MLE approximation. The subsequent contents in this section are thus organized as follows. In
Section 6.1, we providemore detailedmodeling information about these nine processes. In Section 6.2, we illustrate through
numerical experiments that the approximate density stemmed from our expansion converges to the true density in a very
fast manner. In Section 6.3, we provide Monte Carlo evidence to show the accuracy and efficiency of our approximate MLE.

6.1. Models

Model 1. Ornstein–Uhlenbeck (OU) Model.

dX(t) = κ(α − X(t))dt + σdW (t).

The OU process was first used by Vasicek (1977) to model the short term interest rate. Its true transition density
p(t ′, x′

|t, x) is normally distributed with mean

α + (x − α)e−κ(t ′−t)

and variance
σ 2

2κ
(1 − e−2κ(t ′−t)).

Model 2. Cox–Ingersoll–Ross (CIR) Model.

dX(t) = κ(α − X(t))dt + σ
√
X(t)dW (t).

It can be shown that X(t) remains nonnegative almost surely for all t ≥ 0. In addition, the process has a tendency of
reverting to its long-runmean α. For these two important features, the CIR model is widely used in the literature to describe
the movements of the short term interest rates (Cox et al., 1985) or equity volatilities (Heston, 1993). The true transition
density of this model is given by

p(t ′, x′
|t, x) =

eκ(t
′
−t)

2c(t ′ − t)

(
x′eκ(t

′
−t)

x

) d−2
4

exp

(
−

x + x′eκ(t
′
−t)

2c(t ′ − t)

)
Id/2−1

(√

xx′e−κ(t ′−t)

c(t ′ − t)

)
,

where

c(t) =
σ 2

4κ
(eκt − 1), d =

4κθ
σ 2 ,

and

Iγ (x) =

+∞∑
k=0

(x/2)2k+γ

k!Γ (k + γ + 1)

is the modified Bessel function of the first kind.
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Model 3 (The SEV-ND Model).

dX(t) = (α0 + α1X(t) + α2X2(t) + α3X−1(t))dt +

√
β0 + β1X(t) + β2Xβ3 (t)dW (t).

Aït-Sahalia (1996) proposes the above one-dimensional diffusion process tomodel the short term rate. Bakshi et al. (2006)
use this process tomodel equity volatility dynamics. A prominent feature of thismodel is that it allows a nonlinear drift and a
stochastic elasticity of variance. Under different choices of model parameters, it nests several theoretically appealingmodels
that admit constant elasticity of variance with nonlinear, linear, and constant drift, respectively. As pointed by Bakshi et al.
(2006), one may encounter a problem when using the method of Aït-Sahalia (2002) because the SEV-ND model does not
allow an explicit formula for the Lamperti transform. Bakshi et al. (2006) overcome this difficulty by reducing it to a set of
one-dimensional integrals.

Model 4. Bivariate Ornstein–Uhlenbeck (BOU) Model.

dX(t) = κ(α − X(t))dt + dW (t),

where X(t) = (X1(t), X2(t))⊤, α = (α1, α2)⊤, andW (t) = (W1(t),W2(t))⊤, t ≥ 0 is a 2-dimensional standard Brownianmotion.
κ is a 2 × 2 matrix:

κ =

(
κ11 0
κ21 κ22

)
.

The BOU diffusion is one of the fewmultivariate processes with explicitly known transition densities. Assume that κ has
full rank. The future state X(t ′), conditional on the current state X(t) = x, is bivariate-normally distributed (Aït-Sahalia,
2008). The mean of the distribution is

α + e−κ(t ′−t)(x − α)

and the covariance matrix is λ− e−κ(t ′−t ′)λe−κ⊤(t ′−t), where

λ =
1

2tr(κ)det(κ)

(
det(κ)Id2 + (κ − tr(κ)Id2)(κ − tr(κ)Id2)⊤

)
with Id2 being a 2 × 2 identity matrix.

Model 5. Bivariate Time-Inhomogeneous Ornstein–Uhlenbeck (BOUI) Model.

dX(t) = κ(α + βt − X(t))dt + dW (t),

is obtained if we add a deterministic term βt on the drift coefficient of Model 4, where β = (β1, β2)⊤.

Similarly to the BOUmodel, the BOUI model’s transition density is explicitly known. Under it, the distribution of a future
state X(t ′), conditional on the current state X(t) = x, is also a normal with the same covariance matrix as the BOU model.
But its mean is given by

α + βt + e−κ(t ′−t)(x − α − βt) + e−κ(t ′−t)
∫ t ′−t

0
eκuκβudu.

Model 6. Consider the following model

d
(
S(t)
Y (t)

)
=

(
µS(t)

κ(α − Y (t))

)
dt +

(√
(1 − ρ2)Y (t)S(t) ρ

√
Y (t)S(t)

0 σY β (t)

)
dW (t),

where W (t) = (W1(t),W2(t))⊤ is a 2-dimensional standard Brownian motion, µ, κ , α, ρ, and β are all constants, β ≥ 1/2.
Express the dynamic of S(t) in terms of X(t) = ln(S(t)). We have

d
(
X(t)
Y (t)

)
=

(
µ− Y (t)/2
κ(α − Y (t))

)
dt +

(√
(1 − ρ2)Y (t) ρ

√
Y (t)

0 σY β (t)

)
dW (t). (37)

This class of models nests several important stochastic volatility processes that are widely used in describing asset price
dynamics. Whenwe take β = 1/2 in (37), we have themodel proposed by Heston (1993); when β = 1, it will be identical as
the continuous-time GARCH model (cf. Nelson, 1990; Duan, 1995); when β is unspecified, it is the stochastic volatility CEV
(SVCEV) model. The Heston model is affine and irreducible, while the GARCH and SVCEV models are examples of non-affine
processes with the latter being more nonlinear.
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Fig. 1. The Itô-Taylor and delta expansionswith differentµ0 under the CIRmodel.Notes: Themaximum absolute error between the true densities p and the
delta expansion p(K ,∆) in (27) (the Itô-Taylor expansion p(J) in (26)) is defined as maxx′∈D |p(t ′, x′

|t, x; θ ) − p(K ,∆)(t ′, x′
|t, x; θ )| (maxx′∈D |p(t ′, x′

|t, x; θ ) −

p(J)(t ′, x′
|t, x; θ )|), where x, t , and t ′ are fixed, the region D of forward state x′ is large enough to include several standard deviations from the mean. We

use the following values for the parameters in CIR model: (κ , α, σ ) = (0.5, 0.06, 0.15).

Model 7. Extended BDFS (EBDFS) Model.

d

(X1(t)
X2(t)
X3(t)

)
=

⎛⎝ k1
(
X2(t) − X1(t)

)
k2
(
α2 + β2t − X2(t)

)
k3
(
α3 − X3(t)

)
⎞⎠ dt +

⎛⎝
√
(1 − ρ2)X3(t) 0 ρ

√
X3(t)

0 σ21eσ22t 0
0 0 σ31

√
X3(t)

⎞⎠ dW (t). (38)

Balduzzi et al. (1996) extended the univariate diffusion model of the short rate to a three-factor model by introducing a
stochastic long-run mean and a stochastic volatility. Choi (2013) added the time-inhomogeneity by using the Hull–White
model for the second factor. Thus, the model is time-inhomogeneous and irreducible.

6.2. Density approximation

This subsection examines the accuracy of our expansion p(J) defined in (15) or p(K ,∆) in (22) as an approximation to the
true transition probability density of the underlying process. Furthermore, for reducible diffusions, we first perform the
Lamperti transform, and then use (26) or (27) to compute the expansion formulas. For the convenience of comparison, we
consider the following four models: OU, CIR, BOU, and BOUI, because the transition densities of all of them are explicitly
known. We use the maximum absolute error between the Jth order Itô-Taylor or the K th order delta expansion and the true
density as a measure of approximation error. As noted in Section 3, we provide recursive relations between the expansion
coefficients. In which only differentiation is involved. We use Mathematica in the numerical experiments to compute the
expansion coefficients wN,h.

We take the value of κ in both the BOU and BOUImodels to be the same as what were used in Aït-Sahalia (2008) and Choi
(2013), respectively. Such a choice guarantees that the eigenvalues of the matrix κ are real positive numbers, which is a
necessary restriction to make sure that these parameters are identifiable in these two continuous models with discretely
observed data as discussed in Aït-Sahalia (2008). Onemay refer to, for example, Pedersen (1995), Hansen and Sargent (1983),
and Kessler and Rahbek (2004) for more discussions on the identification problem of model specification.

Fig. 1 plots the approximation errors of four kinds of our expansions for the CIRmodel: the Itô-Taylor expansion by taking
µ0 = µ(t, x; θ ) and µ0 = 0, and the delta expansion by taking µ0 = µ(t, x; θ ) and µ0 = 0. The numerical performances
for the expansion under the choices of µ0 = µ(t, x; θ ) and µ0 = 0 are comparable. Since the former leads to much simpler
expansion formulas (see Example A.2), from now on we take µ0 = µ(t, x; θ ) for all other models. Moreover, the delta
expansion ismore accurate than the Itô-Taylor expansion. Therefore,weuse the delta expansion to demonstrate the accuracy
of our density approximation.

Fig. 2 displays the approximation errors of the delta expansion under the four models whose true transition densities are
known. Two general patterns arise in the experiment outcomes. First, for a fixed number of terms K , the error of our density
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Fig. 2. Maximum absolute error between true and approximate densities. Notes: The maximum absolute error between the true densities p and the delta
expansion p(K ,∆) in (27) is similar to that defined in Fig. 1. All formulas take the advantage of the reducibility.We use the following values for the parameters
in these four models: OU: (κ , α, σ ) = (0.5, 0.06, 0.03); CIR: (κ , α, σ ) = (0.5, 0.06, 0.15); BOU: (α1 , α2 , κ11 , κ21 , κ22) = (0, 0, 5, 1, 10); BOUI: (α1 , α2 , κ11 , κ21 ,
κ22 , β1 , β2 , t) = (0, 0, 5, 1, 10, 0.1, 0.1, 0).

approximation decreases as the observational time interval ∆ shrinks. When we change ∆ from 1/12 to 1/252, i.e., the
observation frequency frommonthly to daily, themaximumabsolute error of the delta expansions reduced very significantly.
Second, when we fix the observation frequency∆, the expansion with a larger K will lead to a smaller approximation error.
Both patterns corroborate the theoretical statements in Eq. (29).

Through Fig. 3, we intend to compare the maximum absolute error of the delta expansion proposed in this paper with
those ones given by Aït-Sahalia (2008) and Choi (2013). Based on our theoretic results in Eq. (29), we should use a 6th order
delta expansion to compare with the 3rd order density expansion of Aït-Sahalia (2008),7 which are both of order O(∆3). In
this sense, the performance of Aït-Sahalia (2008) is better than our delta expansion. To get a similar accuracy to the 3rd order
density expansion of Aït-Sahalia (2008), the delta expansion needs about 8 terms. It is worth to mention that, Aït-Sahalia
(2008) applies the reducible Kolmogorov method to the OU, CIR and BOU models, which are time-homogeneous reducible
models. The reducible Kolmogorov method only involves a single series expansion in the time variable, which is more
accurate than that of the irreducible Kolmogorovmethod involving a double series expansion in the time and state variables.
For the time-inhomogeneous BOU model, our 4th order delta expansion is better that the 2nd order density expansion of
the reducible Kolmogorov method of Choi (2013),8 which theoretically are both of order O(∆2).

6.3. Monte Carlo evidences for the approximate MLE

In this subsection, we shall provideMonte Carlo evidences for the BOU, BOUI, SEV-ND, Heston, GARCH, SVCEV, and EBDFS
models to investigate the performance of the approximate MLE resulting from the delta expansion.

Recall that n is the number of observations in each path. In light of the following decomposition

θ̂ (K ,∆)
n − θ0 = (θ̂ (K ,δ)n − θ̂n) + (θ̂n − θ0),

7 Yacine Aït-Sahalia provides a 3rd order density approximate formula for the OU, CIR and BOU model on his website https://www.princeton.edu/
~yacine/.
8 We thank Seungmoon Choi for sharing with us his 2nd order density approximate formulas for the BOUI model.

https://www.princeton.edu/~yacine/
https://www.princeton.edu/~yacine/
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Fig. 3. Comparison of maximum absolute error between different expansions. Notes: This picture compares the maximum absolute error of our delta
expansion and that of the 3rd order approximate formula of Aït-Sahalia (2008) for the OU, CIR and BOU models and the 2nd order approximate formulas
of Choi (2013) for the BOUI model as the benchmarks. The formulas of Aït-Sahalia (2008) and Choi (2013) are derived through their reducible methods. The
definition of maximum absolute error is similar to that defined in Fig. 1. The values of parameters in these four models are given in the following: OU: (κ ,
α, σ , ∆) = (0.5, 0.06, 0.03, 1/252); CIR: (κ , α, σ , ∆) = (0.5, 0.06, 0.15, 1/252); BOU: (α1 , α2 , κ11 , κ21 , κ22 , ∆) = (0, 0, 5, 1, 10,1/252); BOUI: (α1 , α2 , κ11 , κ21 ,
κ22 , β1 , β2 ,∆, t) = (0, 0, 5, 1, 10, 0.1, 0.1, 1/252, 0).

we identify two sources of errors contributing to the estimation error of our delta expansion (i.e., (22) with µ0 = µ(t, x; θ ))
based MLE since the true densities are explicitly known for the BOU and BOUI models. We tabulate the means and standard
deviations of these errors in Tables 1 and 2.

Table 1 contains the estimation results for the BOU model. It shows that θ̂ (K ,∆)
n − θ̂n, the difference between our

approximate MLE based on the delta expansion and the true MLE, decreases rapidly as K increases, whereas we take
µ0 = µ(t, x; θ ) in the delta expansion since it simplifies the expansion formulas. In addition, this difference is dominated
(at least one order of magnitude) by θ̂n − θ0, the difference between the true MLE and the true parameter values. Similar
patterns arise for the estimator θ̂ (J)n based on the Itô-Taylor expansion.Moreover, with the same order of accuracy (i.e. K = J),
the performance of θ̂ (K ,∆)

n is better than that of θ̂ (J)n . Therefore, for the purpose of estimating θ0, our delta expansion based
estimator θ̂ (K ,∆)

n with a relatively small order (i.e. K = 4) can be used as a meaningful substitute for the (generally
incomputable) MLE θ̂n. From now on, we focus on the performance of θ̂ (K ,∆)

n for different models. We also report the
estimation results from the 3rd order expansion of Aït-Sahalia (2008) in Table 1. Note that the BOU process is an example
of the reducible multivariate diffusions, amenable to the Lamperti transform. Similarly to the density approximation, to be
comparable with his 3rd order estimator, we need to construct the estimator using 8 terms in the delta expansion.

Table 2 compares the performance of a variety of MLEs under a time-inhomogeneous model BOUI, including the MLE
derived from the true process density, the approximate MLE developed in Choi (2013), and the approximate MLE based on
the delta expansion. As we can see, the accuracy of the MLE yielded by the 4th order delta expansion is comparable to that
of the approximate MLE using the 2nd order Choi’s expansion, while both expansions are theoretically of order O(∆2). Like
what Table 1 reveals, the approximation error caused by the delta expansion (cf. the last column in Table 2) is dominated by
the sampling error of the maximum likelihood method (cf. the second column in Table 2).

Table 3 compares the performance of a variety of MLEs under the SEV-ND model, including the approximate MLE
developed in Aït-Sahalia (2008), and the approximateMLE based on our delta expansion.We can see that the accuracy of the
MLE yielded by the 2nd order delta expansion is comparable to that of the approximateMLE using the 1st order Aït-Sahalia’s
expansion, while both expansions are theoretically of orderO(∆). The biases from the approximateMLEs obtained from two
methods are both higher order of the parameter values.
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Table 1
Monte Carlo evidence for the BOU model with different order of expansion.

θ0 θ̂n − θ0 θ̂
(AS,3)
n − θ̂n θ̂

(4,∆)
n − θ̂n θ̂

(6,∆)
n − θ̂n θ̂

(8,∆)
n − θ̂n θ̂

(4)
n − θ̂n θ̂

(6)
n − θ̂n θ̂

(8)
n − θ̂n

κ11 = 5 0.43 −0.0019 0.0032 −0.00032 0.00044 −0.047 −0.0022 −0.00016
(1.13) (0.045) (0.083) (0.077) (0.065) (0.24) (0.059) (0.046)

κ21 = 1 0.020 −0.0010 0.0051 −0.0031 −0.0029 −0.021 −0.0015 −0.00069
(1.19) (0.029) (0.10) (0.065) (0.044) (0.24) (0.035) (0.035)

κ22 = 10 0.62 −0.0033 −0.0038 0.039 0.000039 −0.19 −0.0076 −0.0014
(1.55) (0.030) (0.26) (0.13) (0.061) (0.50) (0.077) (0.074)

α1 = 0 0.0049 −0.00094 −0.0012 −0.0012 −0.00065 −0.0016 −0.00075 −0.0001
(0.063) (0.015) (0.020) (0.018) (0.017) (0.023) (0.019) (0.016)

α2 = 0 −0.00033 0.000080 0.000043 −0.000029 −0.000031 −0.000027 −0.000027 −0.000083
(0.034) (0.0044) (0.0064) (0.0058) (0.0053) (0.0077) (0.0056) (0.0060)

Notes: We use θ0 to generate 1000 sample paths. Each of them contains 500 weekly observations (i.e.,∆ = 1/52). The first column reports true parameter
values θ0 . The second column reports the bias and the standard derivation (values in parentheses) of the true maximum likelihood estimator θ̂n . The third
column shows the difference between true maximum likelihood estimator θ̂n and the 3rd order approximate estimator θ̂ (AS,3)n developed by Aït-Sahalia
(2008). The remaining columns report the differences between true maximum likelihood estimator θ̂n and estimators θ̂ (K ,∆)

n , θ̂ (J)n developed in this paper,
with the standard derivation in parentheses. The estimators θ̂ (K ,∆)

n and θ̂ (J)n are based on the delta expansion in (27) and the Itô-Taylor expansion in (26),
respectively, by taking µ0 = µ(t, x; θ ). The order of our delta and Itô-Taylor expansions takes values from K , J = 4, 6, 8.

Table 2
Monte Carlo evidence for the BOUI model.

θ0 θ̂n − θ0 θ̂
(Choi,2)
n − θ̂n θ̂

(4,∆)
n − θ̂n

κ11 = 5 0.56 0.088 0.011
(1.17) (0.29) (0.23)

κ21 = 1 0.077 −1.04 0.000043
(1.21) (1.93) (0.17)

κ22 = 10 0.66 −0.36 0.016
(1.55) (0.40) (0.32)

α1 = 0 −0.00038 0.0022 0.0067
(0.091) (0.075) (0.076)

α2 = 0 0.0029 0.0029 0.00046
(0.061) (0.035) (0.034)

β1 = 0.1 0.00040 −0.000068 −0.00073
(0.019) (0.012) (0.012)

β2 = 0.1 −0.00080 0.00021 −0.000064
(0.011) (0.0055) (0.0053)

Notes: We use θ0 to generate 1000 sample paths. Each of them contains 500 weekly observations (i.e., we
take ∆ = 1/52). The first column reports true parameter values θ0 . The second column contains the bias of
the truemaximum likelihood estimator θ̂n . We display the differences between the truemaximum likelihood
estimator θ̂n and the 2nd order approximate estimator θ̂ (Choi,2)n developed by Choi (2013) in the third column.
The fourth column shows the differences between θ̂n and the 4th order approximate estimator θ̂ (4,∆)

n using
our delta expansion in (27) with µ0 = µ(t, x; θ ). All standard deviations are reported in the parentheses.

Table 3
Monte Carlo evidence for the SEV-ND model.

θ0 θ̂
(2,∆)
n − θ̂n θ̂

(AS,1)
n − θ̂n

Mean Stdev Mean Stdev

α0 = −4.643 × 10−3 7.2 × 10−8 7.0 × 10−5
−3.4 × 10−5 9.8 × 10−5

α1 = 4.333 × 10−2 1.5 × 10−5 5.5 × 10−4 3.5 × 10−4 6.6 × 10−4

α2 = −1.143 × 10−1
−1.1 × 10−5 4.6 × 10−4

−6.6 × 10−5 4.8 × 10−4

α3 = −1.304 × 10−4 2.8 × 10−7 1.0 × 10−6 5.3 × 10−8 2.6 × 10−7

β0 = 1.108 × 10−4 2.2 × 10−7 1.1 × 10−6 4.8 × 10−8 5.3 × 10−7

β1 = −1.883 × 10−3
−3.3 × 10−5 4.7 × 10−5 1.6 × 10−6 8.1 × 10−6

β2 = 9.681 × 10−3 2.1 × 10−5 1.6 × 10−4
−1.1 × 10−6 4.2 × 10−5

β3 = 2.073 0.052 0.051 0.069 0.043

Notes: We use θ0 to generate 1000 sample paths. Each of them contains 500 weekly observations (i.e., we take ∆ = 1/52). We display the differences
between the true value and the 2nd order approximate estimator θ̂ (∆,2)n obtained from the delta expansion in (27) withµ0 = µ(t, x; θ ), and the differences
between the true value and the 1st order approximate estimator θ̂ (AS,1)n .

We consider the Heston, GARCH, and SVCEV models in Table 4, demonstrating the performance of our method for
irreducible and nonaffine diffusion processes. None of these models admits closed-form expressions for their transition
densities. Hence, we compute the difference between the true parameter values and the delta expansion basedMLE to assess
the method’s accuracy. Aït-Sahalia (2008) expands the log-likelihood functions of such processes from their accompanying
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Table 4
Monte Carlo evidence for Heston, GARCH, and SVCEV models.
θ0 Heston model (β = 1/2) GARCH model (β = 1) SVCEV model (β)

θ̂
(AS,2)
n − θ0 θ̂ (4,∆)

− θ0 θ̂
(AS,2)
n − θ0 θ̂ (4,∆)

− θ0 θ̂
(AS,2)
n − θ0 θ̂ (4,∆)

− θ0

σ = 0.25 0.00064 0.00061 0.00060 0.00060 0.015 0.017
(0.0064) (0.0064) (0.0064) (0.0064) (0.099) (0.10)

ρ = −0.8 −0.00075 −0.00070 −0.00069 −0.00070 −0.0010 −0.00099
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

α = 0.1 0.00024 0.00024 −0.000033 0.0000045 0.000072 0.00010
(0.0074) (0.0074) (0.0023) (0.0023) (0.0031) (0.0031)

µ = 0.03 −0.0028 −0.0028 0.0022 0.00051 −0.0017 −0.0031
(0.082) (0.081) (0.079) (0.081) (0.053) (0.051)

κ = 3 0.15 0.16 0.15 0.16 0.14 0.14
(0.54) (0.54) (0.54) (0.54) (0.54) (0.54)

β = 0.8 – – – – −0.0025 0.00077
– – – – (0.15) (0.15)

Notes: We use θ0 to generate 1000 sample paths. Each of them contains 500 weekly observations (i.e., ∆ = 1/52). The three subtables correspond to the
results from theHeston, GARCH, and SVCEVmodels, respectively. The first column of each subtable displays the bias of the 2nd order approximate estimator
θ̂
(AS,2)
n developed by Aït-Sahalia (2008); the second column illustrates the bias of the 4th order approximate estimator θ̂ (4,∆)

n using our delta expansion in
(22) with µ0 = µ(t, x; θ ). All standard deviations are reported in the parentheses.

Table 5
Monte Carlo evidence for the EBDFS model.
θ0 500 weekly observations 500 daily observations 5000 daily observations

θ̂
(2,∆)
n − θ0 θ̂

(Choi,1)
n − θ0 θ̂

(2,∆)
n − θ0 θ̂

(Choi,1)
n − θ0 θ̂

(2,∆)
n − θ0 θ̂

(Choi,1)
n − θ0

k1 = 10 −0.69 1.38 0.85 5.18 −0.25 1.54
(1.07) (2.19) (2.92) (12.52) (0.99) (1.47)

k2 = 7 0.062 0.64 3.33 3.56 0.70 0.85
(1.12) (1.43) (3.70) (3.89) (0.50) (0.53)

k3 = 3 0.21 0.20 1.76 2.38 0.071 0.013
(0.71) (0.85) (2.38) (1.95) (0.35) (0.41)

α2 = 0.06 0.0081 0.0096 0.0020 0.0019 0.0010 0.0010
(0.0044) (0.0029) (0.0061) (0.0074) (0.0023) (0.0023)

β2 = 0.001 −0.00084 −0.0010 −0.00096 −0.0010 −0.00095 −0.00095
(0.00060) (0.00052) (0.0053) (0.0050) (0.00020) (0.00020)

α3 = 0.1 0.0000087 0.0029 −0.000041 0.0045 0.00027 0.0041
(0.0014) (0.0019) (0.0099) (0.020) (0.0.0010) (0.0016)

σ21 = 0.03 0.00032 0.00032 0.00019 0.00020 −0.00028 −0.00014
(0.0012) (0.0013) (0.0011) (0.0011) (0.00029) (0.00030)

σ22 = 0.001 0.000097 0.000039 −0.000057 −0.00016 0.00047 −0.000028
(0.0049) (0.0050) (0.015) (0.015) (0.00031) (0.0012)

σ31 = 0.05 0.000064 0.00012 0.000013 0.000037 0.00036 0.00039
(0.0014) (0.0016) (0.0016) (0.0016) (0.00029) (0.00029)

ρ = 0.5 −0.0023 0.0049 −0.0010 0.0031 0.0016 0.0039
(0.031) (0.034) (0.032) (0.036) (0.0084) (0.0088)

Notes: We use θ0 to generate 1000 sample paths with weekly observations (i.e.,∆ = 1/52). The three subtables correspond to the results from 500 weekly,
as well as 500 and 5000 daily observations, respectively. The first column of each subtable illustrates the bias of the 2nd order approximate estimator θ̂ (2,∆)

n
using our delta expansion in (22) with µ0 = µ(t, x; θ ). The second column displays the difference between the true values and the 1st order approximate
estimator θ̂ (Choi,1)n developed by Choi (2013). All standard deviations are reported in the parentheses.

Kolmogorov equations to develop approximate MLEs. We also include the estimation results from his method in Table 4
for the purpose of comparison.9 The biases of our estimators from the 4th order delta expansion, which is of order O(∆2),
are very small relative to the true parameter values. The accuracy of our results are comparable to that of the 2nd order
approximation of Aït-Sahalia (2008), which is of order O(∆2).

Table 5 illustrates the performance of our estimator for the EBDFS, which is a three-dimensional irreducible, time-
inhomogeneous diffusion. Since an explicit-form transition density for the EBDFS model does not exist, we compute the
difference between the true parameter values and the 2nd order delta expansion based MLE. We also report the estimation
results from the 1st order expansion of Choi (2013).10 Both expansions are theoretically as accurate as O(∆). Overall, the
performances of two estimators are comparable. As noted by Choi (2013), both the biases and standard errors are small
relative to the true values, and have declined significantly as the monitored dates increase from 500 to 5000.

9 The 2nd order density approximation formulas for the Heston, GARCH, and SVCEV models are also available on Yacine Aït-Sahalia’s website.
10 We thank Seungmoon Choi for sharing with us his 1st order approximation formulas for the EBDFS.
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Table 6
Comparison between asymptotic and finite-sample standard deviation for the BOU model.
θ0 500 observations 2000 observations 5000 observations

ASD FSSD ASD FSSD ASD FSSD

κ11 = 5 1.02 1.11 0.51 0.52 0.32 0.34
κ21 = 1 1.08 1.19 0.54 0.55 0.34 0.35
κ22 = 10 1.45 1.51 0.73 0.73 0.46 0.44
α1 = 0 0.065 0.061 0.032 0.030 0.020 0.019
α2 = 0 0.033 0.033 0.016 0.017 0.010 0.011

Notes: This table presents the asymptotic standard deviation (ASD) and the finite-sample standard deviation (FSSD) as the number of observations are 500,
2000, and 5000, respectively. The number of simulation trials is 1000 for all three cases. The length of the time interval is fixed at∆ = 1/52. All the results
for FSSD are based on the 4th order approximate estimator θ̂ (4,∆)

n using our delta expansion in (27) with µ0 = µ(t, x; θ ).

Finally, we examine the standard deviation of our estimators with finite samples. In theory, when a process is known to
be stationary, its true MLE should have a local asymptotic normal structure, that is,

√
n(θ̂n − θ0) → N (0, i(θ0)−1),

as n → ∞ with∆ fixed, where i(θ0) is the Fisher’s information matrix defined as

i(θ ) = E

[(
∂

∂θ
ln p(X(t1)|X(t0); θ )

)(
∂

∂θ
ln p(X(t1)|X(t0); θ )

)⊤
]
.

In Table 6, we take certain parameters under which the BOU model is stationary. Using its explicit density function and
our approximations, we compute the asymptotic standard deviation (ASD) of the true MLE and the finite-sample standard
deviation (FSSD) of the approximate MLE respectively. The table demonstrates that the finite-sample standard deviations of
our estimators are very close to the efficient asymptotic standard deviations, for different number of observations (n = 500,
2000, 5000). Moreover, the rate they decrease is the same as the order of

√
n, consistent with what predicted by the local

asymptotic normal structure.
We carry out the sameexperiments for someother non-stationary diffusions. The results in Table 7 show that the standard

deviations of our estimators for the BOUI, Heston, GARCH, and SVCEV models all decrease at a rate of
√
n, similar to that in

the stationary case.

7. Conclusion

This paper constructs a closed-form delta expansion of the transition densities for time-inhomogeneous irreducible
multivariate diffusions. The explicit recursive formulas for the expansion coefficients in the method enables us to easily
compute the approximation through some symbolic computing softwares. We manage to prove that our expansions will
converge to the true density under a set of very mild technical conditions. Numerical experiments for wide-ranging models
illustrate the efficiency and accuracy of the expansions of the density and the resulted approximate MLE. In addition, we
build explicit connections in the case of time-homogeneous diffusions between our delta expansion under a specially chosen
parameter and some existing methods such as Aït-Sahalia (2002) and Lee et al. (2014).
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Appendix A. The proofs

A.1. Technical lemmas and examples

Lemma A.1. Fix (t ′, x′) and (t, x).11 For N ≥ 1,

(∂s + L)Nq(t ′, x′
|s, y) =

2N∑
|h|=1

wN,h(s, y)∂hq(t ′, x′
|s, y), (39)

11 Thus, ν0 = ν(t, x; θ ) is also fixed.



274 N. Yang, N. Chen and X. Wan / Journal of Econometrics 209 (2019) 256–288

Table 7
Finite-sample standard deviation for the BOUI, Heston, GARCH, SVCEV models with different number of
observations.
θ0 500 observations 2000 observations 5000 observations

BOUI

κ11 = 5 1.18 0.52 0.34
κ21 = 1 1.22 0.56 0.33
κ22 = 10 1.55 0.73 0.44
α1 = 0 0.093 0.039 0.025
α2 = 0 0.063 0.029 0.017
β1 = 0 0.018 0.0021 0.00052
β2 = 0 0.012 0.0013 0.00033

Heston

σ = 0.25 0.0065 0.0033 0.0028
ρ = −0.8 0.013 0.0066 0.0042
α = 0.1 0.0076 0.0033 0.0020
µ = 0.03 0.087 0.032 0.020
κ = 3 0.50 0.24 0.19

GARCH

σ = 0.25 0.0065 0.0031 0.0022
ρ = −0.8 0.013 0.0064 0.0040
α = 0.1 0.0022 0.0011 0.00067
µ = 0.03 0.078 0.036 0.020
κ = 3 0.51 0.24 0.16

SVCEV

σ = 0.25 0.088 0.043 0.029
ρ = −0.8 0.013 0.0065 0.0041
α = 0.1 0.0032 0.0017 0.0010
µ = 0.03 0.054 0.032 0.018
κ = 3 0.52 0.24 0.18
β = 0.8 0.14 0.074 0.053

Notes: This table presents the finite-sample standard deviation for the BOUI, Heston, GARCH, and SVCEV
Models. The number of observations are 500, 2000, and 5000, respectively. The number of simulation trials
is 1000 for all three cases. The length of the time interval is fixed at∆ = 1/52. The results for the BOUI and
the rest are based on θ̂ (4,∆)

n and θ̂ (2,∆)
n using our delta expansion in (22) with µ0 = µ(t, x; θ ), respectively.

where the operator L is defined by (5) acting on the state variable y, the multivariate normal density q(t ′, x′
|s, y) is defined by

(17), and the coefficient function wN,h(s, y) is defined by (18) and (19).

Proof of Lemma A.1. We use mathematical induction to prove this lemma. For simplicity, we omit the arguments in the
functions q(t ′, x′

|s, y), µi(s, y; θ ), νij(s, y; θ ), and wN,h(s, y) without confusion hereafter.
For N = 1, by the definition of q(t ′, x′

|s, y), we have

∂sq = −L0q, (40)

where L0 is a differential operator acting on y defined by

L0 =

m∑
i=1

µ0i∂ei +
1
2

m∑
i,j=1

ν0ij∂ei+ej .

Then we have

(∂s + L)q = (−L0 + L)q =

m∑
i=1

(µi − µ0i)∂eiq +
1
2

m∑
i,j=1

(νij − ν0ij)∂ei+ejq.

Recalling the definition of wN,h in (18), (39) holds for N = 1.
Next, assume that (39) holds for N . Then, for N + 1, we have

(∂s + L)N+1q = (∂s + L)
( 2N∑

|h|=1

wN,h∂hq
)

=

2N∑
|h|=1

(
∂s(wN,h∂hq) + L(wN,h∂hq)

)
. (41)

Applying (40) to the first term gives that

∂s(wN,h∂hq) = (∂swN,h)∂hq + wN,h(∂s∂hq) = (∂swN,h)∂hq + wN,h(∂h∂sq)
= (∂swN,h)∂hq − wN,h(∂hL0q) = (∂swN,h)∂hq − wN,hL0(∂hq).
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The second term on the right hand side of (41) follows

L(wN,h∂hq) =

m∑
i=1

µi∂ei (wN,h∂hq) +
1
2

m∑
i,j=1

νij∂ei+ej (wN,h∂hq)

= (LwN,h)∂hq + wN,hL(∂hq) +

m∑
i,j=1

νij(∂ejwN,h)∂h+eiq.

Putting them together, we have

(∂s + L)N+1q =

2N∑
|h|=1

((∂s + L)wN,h)∂hq +

2N∑
|h|=1

m∑
i=1

AiwN−1,h−ei∂h+eiq +

2N∑
|h|=1

1
2

m∑
i,j=1

wN,h · (νij − ν0ij)∂h+ei+ejq.

Rewriting the index in the summation gives that

(∂s + L)N+1q =

2N∑
|h|=1

(
(∂s + L)wN,h

)
∂hq +

2N+1∑
|h|=2

m∑
i=1

AiwN−1,h−ei∂hq +

2N+2∑
|h|=3

1
2

m∑
i,j=1

(νij − ν0ij)wN,h−ei−ej∂hq

=

2N+2∑
|h|=1

wN+1,h∂hq.

The last equality holds by the definition of wN+1,h in (19) and the assignment that wN,h(s, y) ≡ 0 if min{h1, . . . , hm} < 0, or
h = 0, or |h| > 2N . Hence, (39) holds for N + 1. □

Lemma A.2. Fix t and x. Recall that the series of functions {wN,h(s, y) : s ≥ 0, y ∈ D} is defined by the recursive relations (i)–(iii).
The following statement holds: for each N ≥ 1,

wN,h(s, y)|s=t,y=x= 0, if 3N/2 < |h| ≤ 2N. (42)

Moreover, if ν(t, x; θ ) ≡ Idm, then for each N ≥ 1,

wN,h(s, y) = 0, if N < |h| ≤ 2N. (43)

Proof of Lemma A.2. The statement (42) obviously holds for N = 1. Indeed, for N = 1, 3N/2 < |h| ≤ 2N implies that
|h| = 2. Thus by (18), we have{

w1,2ei (t, x) =
1
2

(
νii(s, y; θ )|s=t,y=x−νii(t, x; θ )

)
= 0, i = 1, . . . ,m;

w1,ei+ej (t, x) = νij(s, y; θ )|s=t,y=x−νij(t, x; θ ) = 0, i ̸= j, i, j = 1, . . . ,m.
(44)

Inspired by (44), by Taylor’s Theorem and Assumption 2.2, we can expand the functionwN,h(s, y) at (t, x) up to the K th order
as follows:

wN,h(s, y) =

∑
0≤a0+|a|≤K

ξN,ha0,a · (s − t)a0 (y − x)a +

∑
a0+|a|=K

ΩN,h
a0,a(s, y) · (s − t)a0 (y − x)a,

where a0 is a nonnegative integer number, a = (a1, . . . , am) is a vector index with nonnegative integer components, and
xa = xa11 · · · xamm . For each a0, a, the coefficient ξN,ha0,a := ∂

a0
s ∂awN,h(s, y)|s=t,y=x is a constant, and the functionΩN,h

a0,a(s, y) satisfies
lims→t,y→xΩ

N,h
a0,a(s, y) = 0. Thus, we can define the Order of the function wN,h(s, y) at (t, x) as follows

Or(wN,h) := min
{
k
⏐⏐ ξN,ha0,a ̸= 0, a0 + |a| = k

}
.

Obviously, wN,h(s, y)|s=t,y=x= 0 if Or(wN,h) ≥ 1. Then, we can prove the statement (42) by showing a stronger statement
below: for each N ≥ 1

Or(wN,h) ≥ 2|h| − 3N, if 3N/2 < |h| ≤ 2N. (45)

It is equivalent to say, for each N ≥ 1 and 3N/2 < |h| ≤ 2N ,

wN,h(s, y) =

∑
a0+|a|=2|h|−3N

(
ξN,ha0,a +ΩN,h

a0,a(s, y)
)
· (s − t)a0 (y − x)a. (46)

We usemathematical induction to verify that (45) holds. ForN = 1, (45) holds by (44). Assume that (45) holds forN . Note
that (i) the Order of a summation of functions is at least the minimum Order of each function; (ii) a first order differential
operator acting on a function will decrease its Order at most by 1; (iii) the Order of a multiplication of functions is the
summation of the Order of each function; (iv) Or(νij(s, y; θ ) − νij(t, x; θ )) ≥ 1. Therefore for N + 1, by Eq. (19), we have

Or(wN+1,h) ≥ min{Or(wN,h) − 2,Or(wN,h−ei ),Or(wN,h−ei ) − 1, 1 + Or(wN,h−ei−ej )}
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≥ min{(2|h| − 3N) − 2, (2(|h| − 1) − 3N) − 1, 1 + (2(|h| − 2) − 3N)}
≥ 2|h| − 3(N + 1).

Hence we have verified that (45) holds for N + 1. Thus, we have proved that (42) holds.
If ν(t, x; θ ) ≡ Idm, we directly prove that (43) holds using the mathematical induction. For N = 1, (18) holds by (44).

Assume that (43) holds for N ≤ 1, that is, wN,h(s, y) = 0 for N < |h| ≤ 2N . Thus the derivatives of wN,h(s, y) are all zeros
N < |h| ≤ 2N . Then by (19), for |h| > N + 1

wN+1,h(s, y) = (∂s + L)wN−1,h(s, y) +

m∑
i=1

AiwN,h−ei (s, y) = 0. (47)

Therefore, (43) holds for N + 1. □

Example A.1 (The CIR Model Without Lamperti Transform). Consider the CIR Model 2 without Lamperti transform. We first
verify the result (42) in Lemma A.2 for N = 1, 2, 3, 4. By a direct computation (cf. Eqs. (18) and (19)), the coefficients
{wN,h(s, y), 3N/2 < h ≤ 2N} are given by

w1,2(s, y) =
1
2
σ 2(y − x);

w2,4(s, y) =
1
4
σ 4(y − x)2;

w3,5(s, y) =
3
4
σ 4(y − x)

((
κ(α − x) − µ0

)
(y − x) − σ 2x

)
;

w3,6(s, y) =
1
8
σ 6(y − x)3;

w4,7(s, y) =
1
4
σ 6(y − x)2

(
2
(
κ(α − x) − µ0

)
(y − x) + 3σ 2x

)
;

w4,8(s, y) =
1
16
σ 8(y − x)4.

It is obvious that all above are zeros when y = x.
Moreover, if we take µ0 = µ(t, x), the first several terms in the delta expansion (22) are given below:

C1 =
1

4σ 2x2
(
z3 − 3σ 2xz

)
;

C2 =
1

32σ 4x4

(
σ 4x3

(
8ακ − 3σ 2

− 24κx
)
+ σ 2x2z2

(
−8ακ + 21σ 2

+ 24κx
)
− 11σ 2xz4 + z6

)
;

C3 =
1

384σ 6x6

(
z
(
−16σ 4x3z2

(
−13ακ + 15σ 2

+ 33κx
)
+ 6σ 2x2z4

(
−4ακ + 25σ 2

+ 12κx
)

+3σ 4x4
(
−88ακσ 2

+ 15σ 4
+ 64κ2x2 − 8κx

(
8ακ − 21σ 2))

− 24σ 2xz6 + z8
))
,

where z = (x′
− x − µ0∆)/

√
∆ and µ0 = κ(α − x).

Example A.2 (The CIR Model after Lamperti Transform). The CIR Model (2) is reducible. Thus, we first perform a Lamperti
transform to obtain a simplified process Y (t) = 2

√
X(t)/σ satisfying

dY (t) =

(
λ

Y (t)
−
κ

2
Y (t)

)
dt + dW (t), λ =

4κα − σ 2

2σ 2 . (48)

Then, we find the approximations formulas for (48) using the delta expansion (27) with different µ0.
(a) The delta expansion when µ0 = 0.

C1 = z
(
λ

y
−
κy
2

)
;

C2 =
1
2

(
z2 − 1

)(
−
κ

2
−
λ

y2
+

(
λ

y
−
κy
2

)2
)

;

C3 =
1

48y3
z
(
κ3y6

(
−
(
z2 − 3

))
+ 6κ2y4

(
−3λ+ (λ+ 1)z2 − 2

)
− 12κλ2y2

(
z2 − 3

)
+ 8(λ− 1)λ

(
−3λ+ (λ− 2)z2 + 3

))
;

where z = (y′
− y)/

√
∆.
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(b) The delta expansion when µ0 = µ(t, y).

C1 = 0;

C2 = −

(
z2 − 1

) (
2λ+ κy2

)
4y2

;

C3 =
z
(
3κ2y4 − 4λ

(
3λ− 2z2 + 3

))
24y3

;

where z = (y′
− y − µ0∆)/

√
∆ and µ0 = λ/y − κy/2.

Comparing the formulas in (a) with that in (b), we can find that the expansion formulas are significantly simplified when
we take µ0 = µ(t, y). In addition, comparing the terms in (b) with that presented in Example A.1, we can see that the
expansion formulas are much simpler after performing the Lamperti transform.

A.2. The proofs

Proof of Theorem 3.1. Fix (t, x) and (t ′, x′). For any s ∈ [t, t ′) and y ∈ D, by the definition in (10), we have

p(J)(t ′, x′
|s, y; θ ) =

J∑
N=0

(t ′ − s)N

N!
(∂s + L)Nq(t ′, x′

|s, y), (49)

where the operator L is defined by (5) acting on state variable y. By (39) in Lemma A.1, we have

p(J)(t ′, x′
|s, y; θ ) = q(t ′, x′

|s, y) +

J∑
N=1

2N∑
|h|=1

(t ′ − s)N

N!
wN,h(s, y)∂hq(t ′, x′

|s, y). (50)

Note that (cf. (13))

∂hq(t ′, x′
|s, y) = (t ′ − s)−

|h|
2 Hh(z; ν0)q(t ′, x′

|s, y) (51)

with z = (x′
− y − µ0(t ′ − s))/

√
t ′ − s. Plugging it into (50), we have

p(J)(t ′, x′
|s, y; θ ) = q(t ′, x′

|s, y)
(
1 +

J∑
N=1

2N∑
|h|=1

(t ′ − s)N−
|h|
2

N!
wN,h(s, y)Hh(z; ν0)

)
. (52)

Taking s = t and y = x, by (42) in Lemma A.2, we see that Eq. (15) holds. This completes the proof. □

Proof of Theorem 3.2. Firstly, fix (t, x) and µ0, then and ν0 = ν(t, x; θ ) are also fixed. For s ∈ [t, t ′) and y ∈ D, consider
p(t ′, x′

|s, y; θ ) and p(J)(t ′, x′
|s, y; θ ). Note that, p(t ′, x′

|s, y; θ ) satisfies the backward Kolmogorov PDE associated with SDE (1)
(see, e.g., Section 5.1 in Karatzas and Shreve, 1991)

(∂s + L)p(t ′, x′
|s, y; θ ) = 0, lim

t ′−s→0
p(t ′, x′

|s, y; θ ) = δ(x′
− y), (53)

where L is defined in (5). Applying (∂s + L) to p(J)(t ′, x′
|s, y; θ ) (cf. (49)), we have

(∂s + L)p(J)(t ′, x′
|s, y; θ ) =

J∑
N=0

(∂s + L)
(
(t ′ − s)N

N!
(∂s + L)Nq(t ′, x′

|s, y)
)

=
(t ′ − s)J

J!
(∂s + L)J+1q(t ′, x′

|s, y) := ψJ (s, y; t, x, t ′, x′). (54)

Note that

lim
t ′−s→0

q(t ′, x′
|s, y) = δ(x′

− y). (55)

To establish a similar initial condition for p(J), consider any test function ϕ(·), which is continuous with compact support on
D. By (52),
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D

(
p(J)(t ′, x′

|s, y; θ ) − q(t ′, x′
|s, y)

)
ϕ(x′)dx′

=

J∑
N=1

2N∑
|h|=1

(t ′ − s)N−|h|/2

N!
wN,h(s, y)

∫
D
q(t ′, x′

|s, y)Hh(z; ν0)ϕ(x′)dx′, (56)

where z = (x′
− y − µ0(t ′ − s))/

√
t ′ − s. Note that (cf. (12))

q(t ′, x′
|s, y) = (t ′ − s)−m/2φ(z; ν0).

Changing the variable from x′ to z, and denoting DZ as the domain of z, we have∫
D
q(t ′, x′

|s, y)Hh(z; ν0)ϕ(x′)dx′
=

∫
DZ

φ(z; ν0)Hh(z; ν0)ϕ(y + µ0(t ′ − s) + z
√
t ′ − s)dz.

Then, taking t ′ − s → 0 on both sides of (56), we have

lim
t ′−s→0

∫
D

(
p(J)(t ′, x′

|s, y; θ ) − q(t ′, x′
|s, y)

)
ϕ(x′)dx′

= ϕ(y)
J∑

N=1

∑
|h|=2N

1
N!
wN,h(s, y)

∫
DZ

φ(z; ν0)Hh(z; ν0)dz, (57)

which is zero when s = t and y = x, because wN,h(t, x) = 0 for all |h| = 2N (cf. (42)).
For any J , such that J > 2m − 1, define the error between the partial sum p(J) and the true density p as

r (J)(t ′, x′
|s, y; θ ) = p(J)(t ′, x′

|s, y; θ ) − p(t ′, x′
|s, y; θ ).

Then, by (53) and (54), it satisfies the following Kolmogorov PDE:

(∂s + L)r (J)(t ′, x′
|s, y; θ ) = ψJ (s, y; t, x, t ′, x′). (58)

Besides, by (53), (55) and (57), when s = t and y = x, the initial condition becomes

lim
t ′−t→0

r (J)(t ′, x′
|t, x; θ ) = 0. (59)

Thus,

r (J)(t ′, x′
|t, x; θ ) =

∫ t ′

t

∫
D
ψJ (s, y; t, x, t ′, x′) · p(s, y|t, x; θ )dyds. (60)

Recalling (54) and (39), we decompose ψJ into three terms:

ψJ := ψ
(1)
J + ψ

(2)
J + ψ

(3)
J , (61)

where for i = 1, 2, 3,

ψ
(i)
J (s, y; t, x, t ′, x′) =

∑
h∈Ii

(t ′ − s)J

J!
wJ+1,h(s, y)∂hq(t ′, x′

|s, y),

and I1 =
{
h
⏐⏐1 ≤ |h| ≤ 3(J + 1)/2

}
, I2 =

{
h
⏐⏐3(J + 1)/2 < |h| < 2(J + 1)

}
, I3 =

{
h
⏐⏐|h| = 2(J + 1)

}
. Then, by (60) and (61),

we can rewrite the error term into a summation r (J) = r (J)1 + r (J)2 + r (J)3 , where

r (J)i (t ′, x′
|t, x; θ ) =

∫ t ′

t

∫
D
ψ

(i)
J (s, y; t, x, t ′, x′) · p(s, y|t, x; θ )dyds, i = 1, 2, 3.

Recalling z = (x′
− y)/

√
t ′ − s and (51), we further have

r (J)i =

∫ t ′

t

∫
D

∑
h∈Ii

(t ′ − s)J−
|h|
2

J!
Hh(z; ν0)q(t ′, x|s, y)wJ+1,h(s, y)p(s, y|t, x; θ )dyds. (62)

Next, consider the bounds for r (J)1 , r (J)2 , and r (J)3 , respectively. To bound each remainder term in (62), the basic idea
is to decompose the integrand in (62) into two parts: Hh(z; ν0)q(t ′, x|s, y) and wJ+1,h(s, y)p(s, y|t, x; θ ), and bound them
respectively.

Consider the first term r J1 with h ∈ I1 (i.e., 1 ≤ |h| ≤ 3(J+1)/2). Recall that ∂hq(t ′, x′
|s, y)= (t ′−s)−|h|/2Hh(z; ν0)q(t ′, x′

|s, y)
in (51), together with Theorem 1 in Chapter 9 of Friedman (1964), we have

|Hh(z; ν0)q(t ′, x|s, y)| ≤ C(t ′ − s)−
m
2 e−

λ0∥x′−y∥2

2(t′−s) , (63)
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where λ0, C are positive constants depending only on ν(t, x; θ ), t , x, J . Moreover, by Assumptions 2.3 and 2.4 and (6.12) in
Chapter 1 of Friedman (1964), there exists λ1 > 0 such that

|p(s, y|t, x; θ )| ≤ C(s − t)−
m
2 e−

λ1∥y−x∥2
2(s−t) .

Since wJ+1,h is a polynomial and x belongs to a compact set Dc , there exists λ2 ∈ (0, λ1) such that

|wJ+1,h(s, y)p(s, y|t, x; θ )| ≤ C(s − t)−
m
2 e−

λ2∥y−x∥2
2(s−t) . (64)

Combining (63) and (64), we have∫
D
|Hh(z; ν0)q(t ′, x|s, y)wJ+1,h(s, y)p(s, y|t, x; θ )|dy

≤C
∫
D
(t ′ − s)−

m
2 e−

λ∥x′−y∥2

2(t′−s) (s − t)−
m
2 e−

λ∥y−x∥2
2(s−t) dy ≤ C(t ′ − t)−

m
2 e−

λ∥x′−x∥2

2(t′−t) ,

whereλ = min{λ0, λ2} is a positive constant depending only on t , x, and J . Recalling (62) and h ∈ I1 (i.e., 1 ≤ |h| ≤ 3(J+1)/2),
thus we have

|r (J)1 | ≤

∑
h∈I1

C(t ′ − t)−
m
2 e−

λ∥x′−x∥2

2(t′−s)

∫ t ′

t

(t ′ − s)J−
|h|
2

J!
ds

≤C(t ′ − t)
1
2 ⌈

J+1
2 ⌉−

m
2 e−

λ∥x′−x∥2

2(t′−t)

=O((t ′ − t)
1
2 ⌈

J+1
2 ⌉−

m
2 ), for small (t ′ − t). (65)

For the term r (J)2 with h ∈ I2 (i.e., 3(J + 1)/2 < |h| < 2(J + 1)), the inequality in (63) still holds. Using the expansion of
wJ+1,h in (46), we have an alternative bound as follows

|wJ+1,h(s, y)p(s, y|t, x; θ )| ≤ C(s − t)a0+
|a|
2 −

m
2 e−

λ2∥y−x∥2
2(s−t)

= C(s − t)
a0
2 +

2|h|−3(J+1)
2 −

m
2 e−

λ2∥y−x∥2
2(s−t) , (66)

where a0 is a nonnegative integer satisfying a0 +|a| = 2|h|−3(J +1), and the first inequality holds due to the following fact⏐⏐⏐⏐( y − x
√
s − t

)a

p(s, y|t, x; θ )
⏐⏐⏐⏐ ≤ C

⏐⏐⏐⏐( y − x
√
s − t

)a⏐⏐⏐⏐ e−
λ1∥y−x∥2
2(s−t)

(s − t)
m
2

≤ C(s − t)−
m
2 e−

λ2∥y−x∥2
2(s−t) .

Then, combining (62), (63) with (66) and h ∈ I2 (i.e., 3(J + 1)/2 < |h| < 2(J + 1)), we have

|r (J)2 | ≤C
∑
h∈I2

(t ′ − t)−
m
2 e−

λ∥x′−x∥2

2(t′−t) ·

∫ t ′

t

(t ′ − s)J−
|h|
2

J!
(s − t)

a0
2 +

2|h|−3(J+1)
2 ds (67)

=C
∑
h∈I2

(t ′ − t)
a0
2 +

|h|−(J+1)
2 −

m
2 e−

λ∥x′−x∥2

2(t′−t) ·B
(
1+J− |h|

2 ,1+
a0
2 +

2|h|−3(J+1)
2

)

=O((t ′ − t)
1
2 ⌈

J+1
2 ⌉−

m
2 ), for small (t ′ − t), (68)

where the beta function B(x, y) is finite for x > 0 and y > 0.
For the term r (J)3 with h ∈ I3 (i.e., |h| = 2(J + 1)), the integrand (t ′ − s)J−|h|/2

= (t ′ − s)−1 in (67) is not integrable
around s = t ′. To overcome the problem, we use integration by parts to reduce the order of differentiation by one. By
∂hq(t ′, x′

|s, y) = ∂ei∂h−eiq(t
′, x′

|s, y) and integration by parts,12 then we have,∫
D
∂ei∂h−eiq(t

′, x′
|s, y) · wJ+1,h(s, y)p(s, y|t, x; θ )dy

=

∫
D
∂h−eiq(t

′, x′
|s, y) ·

(
∂eiwJ+1,h(s, y) · p(s, y|t, x; θ ) + wJ+1,h(s, y) · ∂eip(s, y|t, x; θ )

)
dy.

Recalling (51), similarly to (63), we have

|∂h−eiq(t
′, x′

|s, y)| = |(t ′ − s)−
|h|−1

2 Hh−ei (z; ν0)q(t
′, x′

|s, y)|≤ C(t ′ − s)−
|h|−1+m

2 e−
λ0∥x′−y∥2

2(t′−s) . (69)

12 Since the values at the boundaries are of order exp(−c0∥x∥2/(s − t)) (if it is not zero), which decays faster than any polynomials, we do not consider
the values at the boundaries when using integration by parts.
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Mimicking the proof of (66), by (46), we have

|∂eiwJ+1,h(s, y) · p(s, y|t, x; θ )| ≤ C(s − t)
a0
2 +

2|h|−3(J+1)−1
2 −

m
2 e−

λ2∥y−x∥2
2(s−t) . (70)

Similarly to (64), by (46) and (6.13) in Chapter 1 of Friedman (1964), we have

|wJ+1,h(s, y) · ∂eip(s, y|t, x; θ )| ≤ C(s − t)
a0
2 +

2|h|−3(J+1)
2 −

m+1
2 e−

λ2∥y−x∥2
2(s−t) . (71)

Recall r (J)3 defined in (60) and (61) with h ∈ I3 (i.e., |h| = 2(J + 1)). Then, using similar arguments for r (J)2 and combining
(69)–(71), we have

|r (J)3 | ≤C
∑
h∈I3

(t ′ − t)−
m
2 e−

λ∥x′−x∥2

2(t′−t) ·

∫ t ′

t

(t ′ − s)J−(|h|−1)/2

J!
(s − t)

a0
2 +

2|h|−3(J+1)
2 −

1
2 ds

=C
∑
h∈I3

(t ′ − t)
a0
2 +

|h|−(J+1)
2 −

m
2 e−

λ∥x′−x∥2

2(t′−t) ·B
(
1+J− |h|−1

2 ,1+ a0
2 +

2|h|−3(J+1)
2 −

1
2

)

=O((t ′ − t)
1
2 ⌈

J+1
2 ⌉−

m
2 ), for small (t ′ − t). (72)

Finally, putting (65), (68), and (72) into together, the error |r (J)(t ′, x′
|t, x; θ )| = O((t ′−t)

1
2 ⌈

J+1
2 ⌉−

m
2 ) as t ′−t → 0, uniformly

for (t, x, x′, θ ) ∈ [0, T ] × Dc
× D ×Θ . □

Proof of Theorem 3.3. Rewrite (15) of Theorem 3.1 as

p(J)(t ′, x′
|t, x; θ ) = q(t ′, x′

|t, x)
(
1 + AJ

)
, (73)

where AJ is defined as

AJ =

J∑
N=1

⌊3N/2⌋∑
i=1

∑
|h|=i

wN,h(t, x)Hh(z; ν0)
N!

∆N−i/2.

Letting k/2 = N − i/2 i.e. k = 2N − i or i = 2N − k, we have

AJ =

J∑
N=1

2N−1∑
k=2N−⌊3N/2⌋

∑
|h|=2N−k

wN,h(t, x)Hh(z; ν0)
N!

∆k/2,

We exchange the order of summation with respect to N and k:

AJ =

2J−1∑
k=1

∆k/2
(2k)∧J∑

N=⌈(k+1)/2⌉

1
N!

∑
|h|=2N−k

wN,h(t, x)Hh(z; ν0),

Choose J = 2K for some positive integer K . Then

AJ =

K∑
k=1

∆k/2Ck +

4K−1∑
k=K+1

∆k/2
2K∑

N=⌈(k+1)/2⌉

1
N!

∑
|h|=2N−k

wN,h(t, x)Hh(z; ν0)

=

K∑
k=1

∆k/2Ck + O
(
∆

K+1
2

)
, (74)

where Ck is defined in (23). Dropping the high order terms, we get the delta expansion p(K ,∆) as defined in (22).
Note thatwN,h(t, x)Hh(z; ν0) is uniformly bounded for any N, h and (t, x, x′, θ ) ∈ [0, T ] ×Dc

×D×Θ . Then by (73)–(74),
(22) and J = 2K , we have

sup
(t,x,x′,θ )∈[0,T ]×Dc×D×Θ

⏐⏐p(K ,∆)(t ′, x′
|t, x; θ ) − p(J)(t ′, x′

|t, x; θ )
⏐⏐ = O

(
∆

K+1
2 −

m
2

)
.

Together with (21), we get (24). □

Proof of Theorem 4.1. For fixed x ∈ Dc , T > 0 and 0 ≤ t < t ′ ≤ T , let

R(K ,∆)(t ′, x′
|t, x;Θ) := sup

θ∈Θ

|p(t ′, x′
|t, x; θ ) − p(K ,∆)(t ′, x′

|t, x; θ )|.

According to Theorem 3.3, for fixed x and t , p(K ,∆)(t ′, x′
|t, x) converges to p(t ′, x′

|t, x; θ ) uniformly in x′
∈ D and θ ∈ Θ

as ∆ → 0. That is, for any ϵ > 0, there exists a positive ∆ϵ independent of x′ and θ , such that for all ∆ ≤ ∆ϵ , we have
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R(K ,∆)(t ′, x′
|t, x;Θ) < ϵ, and

Eθ0 [R
(K ,∆)(t ′, X(t ′)|t, X(t);Θ)|X(t) = x] =

∫
D
R(K ,∆)(t ′, x′

|t, x;Θ)p(t ′, x′
|t, x; θ0)dx′

≤ ϵ

∫
D
p(t ′, x′

|t, x; θ0)dx′
= ϵ.

Thus, by Chebyshev’s inequality, the sequence R(K ,∆)(t ′, Xt ′ |t, Xt;Θ) converges to zero in probability, given Xt = x, that is,
given any ζ > 0,

lim
∆→0

Prob[|R(K ,∆)(t ′, Xt ′ |t, Xt;Θ)| > ζ |Xt = x; θ0] = 0.

Then,

Prob[|R(K ,∆)(t ′, Xt ′ |t, Xt;Θ)| > ζ ; θ0] =

∫
D
Prob[|R(K ,∆)(t ′, Xt ′ |t, Xt;Θ)| > ζ |Xt = x; θ0]πt (x; θ0)dx,

where πt (x; θ0) is the marginal density of Xt at the true parameter value θ0. Since the probability is bounded and the density
is integrable, by the dominated convergence theorem, we have

lim
∆→0

Prob[|R(K ,∆)(t ′, Xt ′ |t, Xt;Θ)| > ζ ; θ0] = 0,

that is, R(K ,∆)(t ′, Xt ′ |t, Xt;Θ) converges to zero in probability, as∆ → 0. And the convergence of supθ∈Θ |ℓ
(K ,∆)
n (θ ) − ℓn(θ )| to

zero in probability follows from the continuity of the logarithm functions (e.g. Lemma 4.3 in Kallenberg, 2002). The existence
of the approximate MLE θ̂ (K ,∆)

n and its convergence in probability to the true MLE θ̂n are guaranteed by the continuous
differentiability in θ of the log-likelihood function ℓn(θ ) and the approximate log-likelihood functions ℓ(K ,∆)

n (θ ) for all K . □

Proof of Proposition 5.1. Recall that ζl,j(x) is given by (cf. Definition 1 of Lee et al., 2014): for l, j ≥ 1,

ζl,j(x) = Lζl−1,j(x) +

(
µ(x) +

∂

∂x

)
ζl,j−1(x). (75)

Furthermore, ζ0,0(x) = 1 and ζl,j(x) = 0 if l < 0 or j < 0.
By the above definition of ζ , we know that ζ0,0(x) = 1; ζk−⌈k/2⌉,2⌈k/2⌉−k(x) = ζk/2,0 = 0 if k is an evennumber. Furthermore,

⌈k/2⌉ = ⌈(k + 1)/2⌉ if k is an odd number. Using these facts, we can rewrite (35) as follows:

p̂(K ,∆)
=
φ(z)
√
∆

⎛⎝1 +

2K∑
k=1

∆
k
2

⎛⎝ k∑
N=⌈(k+1)/2⌉

1
N!
ζk−N,2N−k(x)H2N−k(z)

⎞⎠⎞⎠ . (76)

A key observation is that the following statement holds:

ζN−h,h(x) = wN,h(x), for 0 ≤ h ≤ N, (77)

where w(x) is defined by the recursive relations (i)–(iii), i.e., (18)–(19). Noting that the model (30) is time-homogeneous,
thus we can omit the time variable in the coefficientw(t, x). Moreover, the corresponding Eq. (19) does not contain the time
derivatives. Then, combining (77) with (76), we have

p̂(K ,∆)
=
φ(z)
√
∆

⎛⎝1 +

2K∑
k=1

∆
k
2

⎛⎝ k∑
N=⌈(k+1)/2⌉

1
N!
wN,2N−k(x)H2N−k(z)

⎞⎠⎞⎠ .
Recalling the definition of p(2K ,∆) in (27), we have proved that the equality (36) holds.

Therefore, we only need to verify (77), which is proved by mathematical induction over N . For N = 0, both sides of (77)
are equal to one by definition. Assume (77) holds for N . For N + 1,

ζN+1−h,h(x) = LζN−h,h(x) +

(
µ(x) +

∂

∂x

)
ζN−(h−1),h−1(x)

= LwN,h(x) +

(
µ(x) +

∂

∂x

)
wN,h−1(x)

= wN+1,h(x), (78)

where we have used (75) and (19) to get the first and third equalities, respectively. □
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Appendix B. A new explicit recursive algorithm for the expansion of Li (2013)

B.1. The explicit recursive algorithm

In this section we present a new explicit recursive algorithm to compute the expansion coefficients in the density
approximation of Li (2013). To derive the explicit algorithm and facilitate the comparison with the delta expansion, we
use the Itô integral, instead of the Stratonovich integral, to rewrite the expansion algorithm.

Consider a rescaledm-dimensional diffusion process X(t) := (X1(t), . . . , Xm(t))⊤ satisfying

dX ϵ(t) = ϵ2µ(X ϵ(t))dt + ϵσ (X ϵ(t))dW (t), (79)

where {W (t) := (W1(t), . . . ,Wm(t))⊤, t ≥ 0} is a m-dimensional standard Brownian motion. The corresponding infinitesi-
mal generator and differential operators are

L0 =

m∑
i=1

µi(x)∂xi +
1
2

m∑
i,j=1

νij(x)∂2xixj , (80)

Lj =

m∑
i=1

σij(x)∂xi , j = 1, . . . ,m. (81)

For convenience, let

i = (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}
n

associated with the ‘‘norm’’ ∥i∥ =
∑n

l=1(2 · 1{il=0} + 1{il ̸=0}), and define the set

Mk = {i = (i1, i2, . . . , in)
⏐⏐∥i∥ = k}.

Note that we can recursively define (Mk)k≥0 below:

M0 = ∅; M1 = {(1), . . . , (m)}; (82)

Mk+1 = {i
⏐⏐i1 = 0, (i2, . . . , in) ∈ Mk−1}

m⋃
a=1

{i
⏐⏐i1 = a, (i2, . . . , in) ∈ Mk}. (83)

Similarly to the proof of Theorem 3.3 in Watanabe (1987) and Lemma 1 in Li (2013), we have the following pathwise
expansion of X ϵ(1). The difference is that we present the expansion via the Itô integral.

Lemma B.1. The expansion of the random variable X ϵ(1) now reads as

X ϵ =

J∑
k=0

ϵkFk + O
(
ϵJ+1

)
, (84)

where F0 = x, and the expansion coefficients have the following general form

Fk =

∑
i∈Mk

Ci(x) · Ii(1), (85)

where i = (i1, i2, . . . , in) and

Ci(x) = (Lin ◦ · · · ◦ Li2 )σ·i1 (x). (86)

Here σ·0 = µ and σ·i1 = (σ1i1 , . . . , σmi1 )
⊤. The iterated Itô integral Ii(t) is defined through

Ii(t) =

∫ t

0

∫ t1

0
· · ·

∫ tk−1

0
dWik (tk) · · · dWi2 (t2)dWi1 (t1), (87)

where W0(t) = t.

Consider the following changing of variable

Y ϵ := D(x)
X ϵ(1) − x

ϵ
→ B(1), as ϵ → 0, (88)

where B(1) is a correlated Brownian motion with covariance matrix

Σ(x) = D(x)σ (x)σ (x)⊤D(x),
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and D(x) is the diagonal matrix defined by

D(x) = diag
(( m∑

j=1

σ 2
1j(x)

)−1/2
, . . . ,

( m∑
j=1

σ 2
mj(x)

)−1/2)
. (89)

By Lemma B.1, we have the expansion of Y ϵ(1):

Y ϵ =

J∑
i=0

D(x)Fi+1ϵ
i
+ O(ϵJ+1). (90)

Therefore, we have the following expansion of the composition of the Dirac delta function and the random variable Y ϵ:

δ(Y ϵ − y) :=

J∑
k=0

Φk(y)ϵk + O(ϵJ+1). (91)

On the other hand, the transition density pX (∆, x′
|x) of X ϵ (from (t, x) to (t ′, x′)) is given by

pX (∆, x′
|x) = ∆−

m
2 det(D(x))E[δ(Y ϵ − y)|X(0) = x], (92)

where y := D(x) x
′
−x

√
∆

and∆ = t ′ − t . Thus the density pX (∆, x′
|x) admits the expansion below:

pX (∆, x′
|x) = ∆−

m
2 det(D(x))

J∑
k=0

ϵkΩk(y) + O(ϵJ+1), (93)

whereΩk(y) := E[Φk(y)] is the expansion coefficient of the transition density. Then using integration by parts formula, we
can derive the explicit formula for the expansion coefficient in Proposition B.1. Before presenting it, we define a set Sk with
j := (j1, j2, . . . , jl) as follows:

Sk = {j |jω ≥ 1, ω = 1, . . . , l; j1 + j2 + · · · + jl = k, ; l = 1, 2, . . .}. (94)

Note that we can also define (Sk)k≥1 recursively by S1 = {(1)} and

Sk+1 = {j |j1 = 1, (j2, . . . , jl) ∈ Sk} ∪ {j |(j1 − 1, j2, . . . , jl) ∈ Sk}. (95)

Proposition B.1. The explicit formula for the expansion coefficientΩk(y) is given by

Ωk(y) =

∑
(j1,j2,...,jl)∈Sk

(−1)l

l!

∑
(r1,...,rl)∈{1,2,...,m}l

l∏
ω=1

Drωrω (x)∂
l
yr1 ···yrl

(
E

[
l∏

ω=1

Fjω+1,rω

⏐⏐⏐W (1) = z

]
φ(y;Σ(x))

)
, (96)

where z = σ (x)−1D(x)−1y, Sk, Fjω+1 and Drωrω (x) are defined by (95), (85) and (89), respectively. φ(y;Σ(x)) is the m-dimensional
normal density function with mean 0 and covariance matrixΣ(x) = D(x)σ (x)σ (x)⊤D(x). The conditional expectation is given by

E

[
l∏

ω=1

Fjω+1,rω

⏐⏐⏐⏐⏐W (1) = z

]
=

∑
iω∈Mjω+1
ω=1,...,l

(
l∏

ω=1

Ciω,rω (x) · E

[
l∏

ω=1

Iiω (1)
⏐⏐⏐W (1) = z

])
, (97)

where Ciω,rω (x) is for (86), and Mj is recursively defined by (82) and (83).

To obtain the explicit formula for (96), a major obstacle is to compute the conditional expectation of the product of
iterated Itô integrals in (97). Li (2013) introduces an algorithm to compute this conditional expectation, which is simplified
by Li et al. (2016).

We contribute an explicit recursive algorithm to compute the expansion coefficients Ωk(y). First, in contrast to the
algorithms in Li (2013); Li et al. (2016), the newly derived algorithm does not require the conversion from iterated
Stratonovich integrals to Itô integrals because we state the expansion using the Itô integral directly. Second and most
importantly, we establish an explicit recursive formula for the conditional expectation of the product of iterated Itô integrals
in the following two propositions. Specifically, in Proposition B.2, we prove that the conditional expectation of an iterated Itô
integral in fact corresponds to a Hermite polynomial. Proposition B.3 states that the conditional expectation of the product
of iterated Itô integrals is a linear combination of the Hermite polynomials. The results in these propositions are new to the
literature.

Proposition B.2. The conditional expectation of the iterated Itô integral defined in (87) can be expressed as a standard Hermite
polynomial below:

E[Ii(t)|W (t) = x] =

√
t
∥i∥

n!
Hni

(
x

√
t

)
, (98)
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where i = (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}
n, ni = (ni(1), . . . , ni(m)) with ni(a) being the number of a (for a = 0, 1, . . . ,m) in i,

and ∥i∥ = 2ni(0)+
∑m

a=1 ni(a). The multivariate Hermite polynomial in (98) is defined through the univariate standard Hermite
polynomial as follows:

Hni

(
x

√
t

)
=

m∏
a=1

Hni(a)

(
xa
√
t

)
. (99)

Proposition B.3. The conditional expectation of the product of iterated Itô integrals is a linear combination of the Hermite
polynomials as below

E

[
l∏

ω=1

Iiω (t)
⏐⏐⏐W (t) = x

]
=

∑
0≤α≤⌊n(⃗i)/2⌋

w̃α,⃗i ·

⎛⎝ √
t
∥⃗i∥

(ℓ(⃗i) − |α|)!
Hn(⃗i)−2α

(
x

√
t

)⎞⎠ , (100)

where i⃗ := {i1, . . . , il}, n(⃗i) = (ni⃗(1), . . . , ni⃗(m)) with ni⃗(a) =
∑l

ω=1 niω (a), ∥⃗i∥ =
∑l

ω=1 ∥iω∥, and ℓ(⃗i) is the total length of all
vectors iω (for ω = 1, . . . , l) in i⃗, α = (α1, . . . , αm) with |α| = α1 + · · · + αm and min(α) = min(α1, . . . , αm). The coefficient
w̃α,⃗i is recursively determined as follows: w̃α,⃗i = 1{α=0} if i⃗ = ∅ or {i1}; w̃α,⃗i = 0 ifmin(α) < 0 or min(⌊n(⃗i)/2⌋ − α) < 0; and

w̃α,⃗i =

l∑
ω1=1

w̃α,⃗i−ω1
+

∑
1≤ω1<ω2≤l

1{iω1,1=iω2,1 ̸=0}w̃α−eiω1,1
,⃗i−ω1−ω2

, (101)

where ea (for a = 1, . . . ,m) is the m-dimensional index vector, in which the ath component is 1, and the others are 0; i⃗−ω1 means
replacing iω1 = (iω1,1, iω1,2, . . . , iω1,nω1

) with −iω1 = (iω1,2, . . . , iω1,nω1
) in the set i⃗.

B.2. Related proofs for Appendix B.1

Lemma B.2. Let (Ft )t≥0 be the natural filtration generated by a standard m-dim Brownian motion {W (t), t ≥ 0}. Given s ≤ t,
for a Fs-measurable random variable Z, the following equation holds:

E [Z |W (t) = x] = E [E[Z |W (s)]|W (t) = x] . (102)

Moreover, for a Ft adapted process {f (t), t ≥ 0}, we have

E
[∫ t

0
f (s)dW (s)|W (t) = x

]
= E

[∫ t

0
E[f (s)|W (s)]dW (s)|W (t) = x

]
. (103)

Proof of Lemma B.2. Assume m = 1 without loss of generality because each component of the m-dimensional Brownian
motion is mutually independent. Then by the iterated conditional expectation, we have

E [Z |W (t) = x] =E [E[Z |W (s),W (t)]|W (t) = x]

=E
[∫

Zg(Z |W (s),W (t))dZ |W (t) = x
]
, (104)

where g(Z |W (s),W (t)) is the conditional density function of Z conditional onW (s) andW (t). By the definition of conditional
density and the Markov property of the Brownian motion, we have

g(Z |W (s),W (t)) =
g(Z,W (s),W (t))
g(W (s),W (t))

=
g(W (t)|Z,W (s))g(Z,W (s))

g(W (t)|W (s))g(W (s))
=

g(Z,W (s))
g(W (s))

= g(Z |W (s)).

Substituting the above formula into (104), we have

E [Z |W (t) = x] = E
[∫

Zg(Z |W (s))dZ |W (t) = x
]

= E [E[Z |W (s)]|W (t) = x] .

Next, we consider (103). Let ti = i · t/n for i = 0, 1, . . . , n. By the definition of the Itô integral, we have∫ t

0
f (s)dW (s) = lim

n→∞

n∑
i=1

f (ti−1)(W (ti) − W (ti−1)), (105)

and ∫ t

0
E[f (s)|W (s)]dW (s) = lim

n→∞

n∑
i=1

E[f (ti−1)|W (ti−1)](W (ti) − W (ti−1)). (106)
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By the formula (102), we have

E
[(

E[f (ti−1)|W (ti−1)]
)
(W (ti) − W (ti−1))|W (t) = x

]
=E

[
E
[(

E[f (ti−1)|W (ti−1)]
)
W (ti)|W (ti)

]
|W (t) = x

]
− E

[
E
[(

E[f (ti−1)|W (ti−1)]
)
W (ti−1)|W (ti−1)

]
|W (t) = x

]
=E

[(
E [f (ti−1)W (ti)|W (ti)]

)
|W (t) = x

]
− E

[(
E [f (ti−1)W (ti−1)|W (ti−1)]

)
|W (t) = x

]
=E [f (ti−1)(W (ti) − W (ti−1))|W (t) = x] . (107)

By (105), (106) and (107), we know that (103) holds. □

Proof of Proposition B.2. We prove (98) bymathematical induction on the length of i (i.e., n). If n = 1, (98) obviously holds.
Suppose (98) holds for n > 1. For i = (i1, . . . , in, in+1), we consider two cases i1 = 0 and i1 ̸= 0.

If i1 = 0, then

Ii(t) =

∫ t

0
I−i(s)ds,

where −i := (i2, . . . , in+1) means deleting the first element of i. By (102) of Lemma B.2, we have

E[Ii(t)|W (t) = x] =

∫ t

0
E [I−i(s)|W (t) = x] ds

=

∫ t

0
E [E[I−i(s)|W (s)]|W (t) = x] ds

=

∫ t

0
E

[√
s∥i∥−2

n!
Hni

(
W (s)
√
s

)
|W (t) = x

]
ds,

where the last holds since (98) is true for n.
Let |ni| = ni(1) + · · · ni(m) and note that

E
[
√
s
−|ni|Hni

(
W (s)
√
s

)
|W (t) = x

]

=

m∏
a=1

√
s
−ni(a)

∫
R

√
2π t

e−
x2a
2t

e−
(xa−ξa)2
2(t−s)

√
2π (t − s)

e−
ξ2a
2s

√
2πs

Hni(a)

(
ξa
√
s

)
dξa

=

m∏
a=1

√
2π t · e

x2a
2t

∫
R
(−1)ni(a)∂ni(a)ξa

⎛⎝ e−
ξ2a
2s

√
2πs

⎞⎠ e−
(xa−ξa)2
2(t−s)

√
2π (t − s)

dξa

=

m∏
a=1

√
2π t · e

x2a
2t

∫
R
(−1)ni(a)

e−
ξ2a
2s

√
2πs

∂
ni(a)
xa

⎛⎝ e−
(xa−ξa)2
2(t−s)

√
2π (t − s)

⎞⎠ dξa

=

m∏
a=1

√
2π t · e

x2a
2t (−1)ni(a)∂ni(a)xa

⎛⎝∫
R

e−
ξ2a
2s

√
2πs

e−
(xa−ξa)2
2(t−s)

√
2π (t − s)

dξa

⎞⎠
=

m∏
a=1

√
t
−|ni|Hni(a)

(
xa
√
t

)
=

√
t
−|ni|Hni

(
x

√
t

)
. (108)

Then, noting that ∥i∥ = |ni| + 2ni(0) and |ni| + ni(0) = n + 1, we have∫ t

0
E

[√
s∥i∥−2

n!
Hni

(
W (s)
√
s

)
|W (t) = x

]
ds =

√
t
∥i∥

(n + 1)!
Hni

(
x

√
t

)
, (109)

then, (98) is true for n + 1 when i1 = 0.
For the case i1 ̸= 0, assume i1 = 1 without loss of generality. Then,

Ii(t) =

∫ t

0
I−i(s)dW1(s).
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Applying (103) in Lemma B.2 repeatedly, we have

E[Ii(t)|W (t) = x] =E
[∫ t

0
I−i(s)dWi1 (s)|W (t) = x

]
=E

[∫ t

0
E[I−i(s)|W (s)]dW1(s)|W (t) = x

]
=E

[∫ t

0

√
s∥i∥−1

n!
Hn−i

(
W (s)
√
s

)
dW1(s)|W (t) = x

]

=E

[∫ t

0

sn

n!
Q1′

(
m∏

a=2

Qa

)
dW1(s)

⏐⏐W (t) = x

]
, (110)

where

Q1′ =
√
s
−(npi(1)−1)

Hni(1)−1

(
W1(s)
√
s

)
; (111)

Qa =E
[
√
s
−ni(a)Hni(a)

(
Wa(s)
√
s

) ⏐⏐Wa(t) = xa

]
, a = 2, . . . ,m.

Similarly to the derivation of (108), we can obtain the formula for Qa (for a ≥ 2)

Qa =
√
t
−ni(a)Hni(a)

(
xa
√
t

)
.

Substituting the above formula back to (110), then we have

E[Ii(t)|W (t) = x] = Q1

m∏
a=2

(
√
t
−ni(a)Hni(a)

(
xa
√
t

))
. (112)

where

Q1 :=E
[∫ t

0

sn

n!
Q1′dW1(s)

⏐⏐W (t) = x
]

=E
[∫ t

0

sn

n!
√
s
−(ni(1)−1)

Hni(1)−1

(
W1(s)
√
s

)
dW1(s)

⏐⏐W1(t) = x1

]
. (113)

We only need to derive the formula for Q1. By the Itô formula, we have

tn+1
√
t
−ni(1)

(n + 1)!
Hni(1)

(
W1(t)
√
t

)
=

ni(1)!tn+1−ni(1)

(n + 1)!
·

√
t
ni(1)

ni(1)!
Hni(1)

(
W1(t)
√
t

)
=

∫ t

0
(n + 1 − ni(1))

ni(1)!sn−ni(1)

(n + 1)!

√
sni(1)

ni(1)!
Hni(1)

(
W1(s)
√
s

)
ds

+

∫ t

0

ni(1)!sn+1−ni(1)

(n + 1)!
·

√
sni(1)−1

(ni(1) − 1)!
Hni(1)−1

(
W1(s)
√
s

)
dW1(s)

=
n + 1 − ni(1)

n + 1

∫ t

0

sn

n!
·
√
s
−ni(1)Hni(1)

(
W1(s)
√
s

)
ds

+
ni(1)
n + 1

∫ t

0

sn

n!
·
√
s
−(ni(1)−1)

Hni(1)−1

(
W1(s)
√
s

)
dW1(s).

Taking expectation on both sides conditional onW1(t) = x1, we have

tn+1
√
t
−ni(1)

(n + 1)!
Hni(1)

(
x1
√
t

)
=

n + 1 − ni(1)
n + 1

tn+1
√
t
−ni(1)

(n + 1)!
Hni(1)

(
x1
√
t

)
+

ni(1)
n + 1

Q1,

where the first term on the right hand side can be derived similarly to (109), and the second term is from the definition of
Q1 in (113). Thus, the formula for Q1 is given by

Q1 =
tn+1

√
t
−ni(1)

(n + 1)!
Hni(1)

(
x1
√
t

)
. (114)
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Recalling that ∥i∥ = |ni| + 2ni(0) and |ni| + ni(0) = n + 1, combining with (112) and (114), we know that (98) is true for
n + 1 when i1 ̸= 0. □

Proof of Proposition B.3. We prove it by mathematical induction on the total length of all vectors iω (for ω = 1, . . . , l)
in i⃗, i.e., ℓ(⃗i). For ℓ(⃗i) = 0, that is, i⃗ = ∅. The product of iterated Itô integrals on the left of (100) degenerates to 1, then
w̃α,∅ = 1{α=0}. For ℓ(⃗i) = 1, that is, i⃗ = {(i1)}, then (100) holds from (98) under the setting w̃α,{(i1)} = 1{α=0}. Assume (100)
is true for ℓ(⃗i) ≤ N . Consider the case ℓ(⃗i) = N + 1. By the Itô’s formula, we have

l∏
ω=1

Iiω (t) =

l∑
ω1=1

∫ t

0

∏
ω ̸=ω1

Iiω (s)I−iω1 (s)dWiω1,1
(s)

+

∑
1≤ω1<ω2≤l

1{iω1,1=iω2,1 ̸=0}

∫ t

0

∏
ω ̸=ω1,ω2

Iiω (s)I−iω1 (s)I−iω2 (s)ds. (115)

Using (103), we have

E
[∫ t

0

∏
ω ̸=ω1

Iiω (s)I−iω1 (s)dWiω1,1
(s)
⏐⏐⏐W (t) = y

]
  

Tω1

= E
[∫ t

0
E
[ ∏
ω ̸=ω1

Iiω (s)I−iω1 (s)
⏐⏐⏐W (s)

]
  

T ′
ω1

dWiω1,1
(s)
⏐⏐⏐W (t) = y

]
.

Since (100) is true for ℓ(⃗i) ≤ N , we have

T ′

ω1
=

∑
0≤α≤⌊n(⃗i−iω1

)/2⌋

w̃α,⃗i−ω1
·

( √
s∥⃗i−ω1 ∥

(ℓ(⃗i−ω1 ) − |α|)!
Hn(⃗i−ω1 )−2α

(
W (s)
√
s

))
.

Mimicking the proof of (109) and (114) leads to that

Tω1 =

∑
0≤α≤⌊n(⃗i−iω1

)/2⌋

w̃α,⃗i−ω1
·

⎛⎝ √
t
∥⃗i∥

(ℓ(⃗i) − |α|)!
Hn(⃗i)−2α

(
x

√
t

)⎞⎠ . (116)

Under the condition iω1,1 = iω2,1 ̸= 0, define

Tω1,ω2 := E

⎡⎣∫ t

0

∏
ω ̸=ω1,ω2

Iiω (s)I−iω1 (s)I−iω2 (s)ds
⏐⏐⏐W (t) = y

⎤⎦ .
Using (102) and (109), similarly to the derivation of (116), we have

Tω1,ω2 =

∑
0≤α≤⌊n(⃗i)/2⌋−eiω1,1

w̃α,⃗i−ω1−ω2

⎛⎝ √
t
∥⃗i∥

(ℓ(⃗i) − 1 − |α|)!
Hn(⃗i)−2eiω1,1

−2α

(
x

√
t

)⎞⎠
=

∑
eiω1,1

≤α≤⌊n(⃗i)/2⌋

w̃α−eiω1,1
,⃗i−ω1−ω2

⎛⎝ √
t
∥⃗i∥

(ℓ(⃗i) − |α|)!
Hn(⃗i)−2α

(
x

√
t

)⎞⎠ . (117)

Taking conditional expectation on both sides of (115), and by (116) and (117), we get (100) for ℓ(⃗i) = N + 1, where the
coefficients are recursively defined by (101). □
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