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In this paper, we develop efficient Monte Carlo methods for estimating American option sensitivities. The

problem can be re-formulated as how to perform sensitivity analysis for a stochastic optimization problem

with model uncertainty. We introduce a generalized infinitesimal perturbation analysis (IPA) approach to

resolve the difficulty caused by discontinuity of the optimal decision with respect to the underlying parame-

ter. The IPA estimators are unbiased if the optimal decisions are explicitly known. To quantify the estimation

bias caused by untractable exercising policies in the case of pricing American options, we also provide an

approximation guarantee which relates the sensitivity under the optimal exercise policy to that computed

under a suboptimal policy. The price-sensitivity estimators yielded from this approach demonstrate signif-

icant advantages numerically in both high-dimensional environments and various process settings. We can

easily embed them into many of the most popular pricing algorithms without extra simulation effort to

obtain sensitivities as a by-product of the option price. Our generalized approach also casts new insights on

how to perform sensitivity analysis using IPA: we do not need pathwise continuity to apply it.

Key words : finance: asset pricing: American option; price sensitivities; simulation: applications; dynamic

programming: applications: optimal stopping.

History :

1. Introduction

An American option entitles the holder to a right to buy or sell a certain amount of underlying

assets at a pre-specified price any time up to contract maturity. It is one of the most important

path-dependent options: nearly all exchange-traded stock options are American-style and many

other derivatives, such as callable interest rate exotics, have this feature. Price sensitivities of such

options, or Greeks as they are known in market jargon, reflect how much the option price will
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change in response to changes of market parameters. They play a vital role in risk management

on options. For instance, the risk in a short position on an option can be offset effectively by

the strategy that the option seller holds delta units of underlying assets (see, e.g., Chapter 17

of Hull (2009)), where the delta is simply the first-order partial derivative of the option price

with respect to the current price of the underlying asset. Another example is the vega, which is

defined as the rate of value change of the option with respect to the underlying asset’s volatility.

Traders typically rely on some calibration methods to obtain volatility estimates. Therefore, the

vega measures the magnitude of the pricing error caused by a wrong estimation of the underlying

volatility. Whereas option prices can often be observed in the market, their sensitivities cannot.

The accurate calculation of sensitivities is arguably even more important than the calculation of

prices in this sense.

American option pricing and hedging can be viewed as a typical application of optimal control

theory. In a broader class of optimal control problems, a decision maker needs to determine control

policies for a complex stochastic system on the basis of some parametric models for which the

modeling parameters are estimated through empirical data and subject to considerable statistical

error. The sensitivity of the system’s expected performance with respect to the estimated parameter

characterizes the effect of such “model risk” on the quality of her decision. With the help of this

information, she can identify the most important system parameters and prioritize related analysis

on them.

Aiming to establish American option sensitivity estimators, we develop an efficient Monte Carlo

method in this paper for estimating sensitivities for stochastic control problems. The standard sim-

ulation procedure to obtain sensitivities takes differentiation on the payoff along each sample path

with respect to the parameter of interest. People usually refer to this method as the infinitesimal

perturbation analysis (IPA); see Ho and Cao (1983), Suri and Zazanis (1988), Glasserman (1991,

2004), and Asmussen and Glynn (2007) for instance. The continuity of the performance value with

respect to the parameter of interest turns out to be a vital precondition to warrant the success of

this method; see p. 396 of Glasserman (2004), p. 600 of Fu (2006), and Remark 7.2.6 of Asmussen

and Glynn (2007). However, we find that it is no longer the case in American options: sometimes

the optimal exercising policy, one crucial component in determining the eventual payoff along each

sample path, changes discontinuously even under a small parameter perturbation!

To resolve this difficulty, we investigate a generalized IPA approach for studying the sensitivity

analysis of the performance of a stochastic system in the presence of decision variables, especially

focusing on those cases in which the optimal decisions are not sufficiently smooth in the underlying

parameters. The key observation is that we can still obtain IPA-like sensitivity estimators, as long

as we can show that the expected value change for those sample paths on which the pathwise
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continuity fails is a higher order infinitesimal than the parameter’s change. This observation extends

the traditional IPA approach significantly: we do not need pathwise continuity to apply it. In a

stochastic optimization problem, the expected value of the optimal performance is typically less

sensitive to a change in the underlying parameter than the optimal decision itself. Accordingly,

the expected value change resulting from a discontinuous change in the optimal decision can still

be negligible. On the basis of the previous discussions, we develop sensitivity estimators for the

stochastic system with decision variables, even though the parameter perturbation does create

dramatic changes in the decision. We show our IPA sensitivity estimators are unbiased if the used

decision is optimal, using an example from the dynamic inventory management theory.

We further proceed to apply this approach to the case of American options. Under some very

mild regularity conditions, we manage to derive IPA estimators to the first-order sensitivities in the

current underlying price and model parameters, respectively. For most cases of practical interest,

the optimal exercising policies of American-type options are untractable. All pricing algorithms in

the existing literature are subject to simulation bias and they can only produce “good” sub-optimal

exercising policies at best. We should acknowledge that our IPA estimators suffer from such policy

bias because they are based on these exercising policies obtained from one pricing algorithm.

We therefore perform an error analysis to attempt to quantify the magnitude of policy bias

relative to the quality of input exercising policies. The analysis indicates that the IPA estimators

can also achieve asymptotic unbiasedness when we increase the computational effort to infinity.

Observing some existing literature about price convergence when the quality of approximate opti-

mal exercising policy is improved (see, e.g., Clément, Lamberton and Protter (2002), Glasserman

and Yu (2004), Stentoft (2004), and Belomestny (2011)), we find that convergence to the correct

sensitivity values also requires an additional increment of computational effort in approximation

improvement, along with the growth of the number of simulated paths. The numerical examples in

the paper demonstrate that our estimators perform accurately and efficiently across a wide range

of problem dimensionality and underlying asset price models.

There are two main contributions of the paper. It contributes to the literature of financial engi-

neering first, extending the Monte Carlo Greeks proposed by Broadie and Glasserman (1996),

which mainly handle European-style derivatives, to American-style ones. A huge body of litera-

ture has accumulated around American option Monte Carlo pricing; see Chapter 8 in Glasserman

(2004) and the references therein for a comprehensive overview. In contrast to the full-fledged

pricing literature, the research on estimating price sensitivities for American options is somewhat

underdeveloped. We aim to fill this gap in the existing literature of financial engineering in this

paper.
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Several papers are closely related with the main theme of this paper. Piterbarg (2003, 2004)

discusses sensitivity estimators for American-style swaptions, a special kind of options based on

interest rate swaps. These two papers have already developed IPA-like estimators for estimating

some Greeks of American options. However, their justification, in particular the derivation of vega,

is informal and highly dependent on the structure of swaptions. We improve upon these earlier

works by providing theoretical justification and extend them to a broader class of optimal control

problems. Belomestny, Milstein, and Shoemakers (2010) follow the works of Piterbarg to construct

delta estimators based on the least-square and the finite-difference methods. Gobet (2004) develops

a delta estimator under continuous-time diffusion models. His result relies on a key assumption that

the option price function satisfies the smooth pasting condition; that is, it is differentiable over the

exercise boundary. The current paper weakens this requirement significantly. We focus on a general

discrete-time framework that is more suitable for the discussion of Monte Carlo simulation. Kaniel,

Tompaidis, and Zemlianov (2008) explore using the dual pricing approach to develop confidence

interval estimation for the delta and gamma. This method is appealing because it can provide true

bounds on sensitivities. But like all other likelihood-ratio (LR) based methods, its application is

limited by two features: it requires explicit knowledge of the relevant probability densities and its

estimates often have large variance. In addition, it is very time consuming when implementing.

Wang and Caflisch (2010) propose an approach based on the celebrated Longstaff-Schwartz regres-

sion method, which can be viewed as a variation of the finite-difference approximation to option

sensitivities. Our numerical examples show that their method is prone to large simulation bias.

The proposed approach in this paper treats sensitivity analysis for stochastic optimization prob-

lems and therefore is more general than these alternative methods. In this sense, the results in this

paper should be of interest to an audience beyond the field of option pricing. Moreover, it enjoys

significant advantages over these competing methods in terms of bias, variance, and computational

time. Our estimators can be easily embedded to various popular pricing methods to produce sensi-

tivities simultaneously as a by-product of prices, no matter whether the pricing procedure is based

on value approximations or direct specification of an exercise strategy. In contrast, some existing

methods are only applicable for the cases in which value approximations are available.

The second contribution of this paper is to the methodology of simulation. The generalized IPA

approach leads to pathwise sensitivity estimates for the system’s performance when we adopt the

optimal policy made under the estimated parameter value. It helps the decision maker to make use

of Monte Carlo simulation to assess the effectiveness of the control in the presence of model error.

The aforementioned case of vega exemplifies this situation. The underlying asset price volatility is

not directly observable from the market. A large vega may raise a flag to warn the trader of a risk

of model mis-specification and call for hedging needs using other financial instruments.
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Several works in the simulation literature relate to this paper. L’Ecuyer (1995) (Section 3.2)

and Asmussen and Glynn (2007) (Section 7.4) perform sensitivity analysis on a stochastic process

stopped by a random time. Constrained by the traditional IPA framework, they assume that the

random time has no pathwise dependence on the parameter of interest. Some recent papers, such

as Liu and Hong (2010) and Wang, Fu, and Marcus (2009), investigate sensitivity estimation for

some financial applications in which sample pathwise differentiability is absent. In particular, they

are interested in barrier options whose payoffs are defined by the random time when an underlying

asset price crosses a pre-specified level. This paper complements the preceding literature by adding

another dimension that shows how to develop sensitivity estimators when the pathwise continuity

is lost due to the discontinuity of an optimal decision.

The remainder of the paper is organized as follows. Section 2 introduces the notations to set up

the American option pricing problem. We present the main results in Sections 3 and 4. Section

3 consists of two parts. The first part is about the generalized IPA approach in a generic set-

ting and the second part uses one example from dynamic inventory management to illustrate the

unbiasedness of the IPA sensitivity estimators when the optimal decision is tractable. In Section

4, we apply the approach to develop sensitivity estimators for American options and also discuss

some implementation issues, especially an analysis of the error due to suboptimal exercising policy

approximation. Some numerical experiments are presented in Section 5. We defer the proofs of all

main theorems to the E-Companion. For completeness, another important sensitivity estimation

method, the LR method, is investigated rigorously in the E-Companion. The LR method is very

helpful for establishing unbiased estimators for second-order sensitivities. There we introduce a

mixed approach based on a combination of the LR method and our generalized IPA approach to

avoid a non-smooth difficulty when we derive the second-order sensitivities.

2. Formulation of the American Option Pricing Problem

In this section, we set up the notations for the American option pricing problem. From now on,

we use Rd+ to denote [0,+∞)d. For any pair of vectors a, b ∈Rd+, denote their inner product to be

aT ·b, where the superscript T indicates the transpose of a vector. Given a multivariate differentiable

function f(x) :Rd+→R, denote its gradient vector by ∇f , i.e., ∇f(x) = (∂f/∂x1, · · · , ∂f/∂xd)T.

Consider an American option issued at time 0 and maturing at time T > 0. The option holder

is allowed to exercise at a fixed set of dates: 0 < t1 < ... < tN = T . Without loss of generality,

we assume that all exercise times are evenly distributed on [0, T ], i.e., ti − ti−1 = ∆t= T/N . Let

Xθ = {Xθ
i ,0≤ i≤N} be a Markov process valued on Rd+, representing the values of d underlying

assets over the time grid. A generic parameter θ affects the evolution of X and we are interested in

the option price sensitivities with respect to θ and the current underlying price Xθ
0 , respectively.
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Denote F = {Fi,0 ≤ i ≤ N} to be the information filtration generated by X. Suppose that h :

{1, · · · ,N} × Rd+ → R+ is the (discounted) payoff function to the option holder from exercising.

Then, the problem of pricing the American option can be formulated as

Q0(x;θ) = sup
τ∈T

E
[
h(τ,Xθ

τ )|Xθ
0 = x

]
(1)

for x∈Rd+, where T is a class of stopping times valued at {t1, · · · , tN} adaptive to F . Some literature

would like to call the above security Bermudan options and restrict the term American to those

with continuously exercisable features. We do not stress this subtle difference between the two

terms because Monte Carlo simulation in principle can only cope with the former.

The theoretical foundation for a variety of simulation methods is the following dynamic-

programming characterization of the option value. Let Qi(x;θ) be the option value at ti given

Xθ
i = x, assuming that the option has not been exercised previously. Then, we have a recursion as

follows to determine Q′is:

QN(x;θ) = h(N,x); (2)

Qi(x;θ) = max{h(i, x),E[Qi+1(Xθ
i+1;θ)|Xθ

i = x]}, 1≤ i≤N − 1; (3)

Q0(x;θ) =E[Q1(Xθ
1 ;θ)|Xθ

0 = x]. (4)

In words, Eq. (2) states that the option value at maturity should equal the payoff at that time

because no further exercising opportunities are left; Eq. (3) states that in an intermediate time step,

the option value is the maximum of the immediate exercise payoff and the expected present value

of continuing. In Eq. (4) we assume that there is no exercise at the initial time 0. Furthermore, an

optimal stopping rule can be constructed if we specify that

τ ∗ = min{i∈ {1,2, · · · ,N} : h(i,Xθ
i )≥Ci(x;θ)}, (5)

where Ci(x;θ) :=E[Qi+1(Xθ
i+1;θ)|Xθ

i = x], 1≤ i≤N − 1, and CN(x;θ) = 0. Eq. (5) simply asserts

that the option holder should exercise her option the first time the payoff exceeds what she can

get by continuing to hold it.

To solve Q0 through the recursions (2-4) using Monte Carlo, one key step lies in how to evaluate

the continuation values Ci(x;θ) in an efficient manner. Some algorithms start from approximations

of the option value function. They use a pilot program to generate C̃i, an approximate continuation

value function at ti, for all 1≤ i≤N , and then determine the value function Qi approximately by

substituting C̃i in (3). See Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999, 2001),

and Broadie and Glasserman (2004) for the representatives of this approach. Sometimes, it may be

possible to develop a good exercising policy independently of continuation value approximations.
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For instance, Andersen and Andreasen (2001) find that the suboptimal exercise strategies derived

from a best-fit single-factor model result in only a very insignificant loss for Bermudan swaptions.

Svenstrup (2005) uses relatively crude low-dimensional approximations in finite difference grids to

produce excellent exercise policies for Bermudan swaptions in a multifactor world.

In light of these two approaches widely used in the literature of American option Monte Carlo

pricing, our sensitivity estimators demonstrate a great flexibility because they are compatible with

both of them, as shown in Section 4. One can easily implement the estimators as a complementary

part of the pricing algorithm to produce sensitivities estimates without re-simulation at multiple

parameter values.

We need to impose some additional structures on Xθ to discuss Monte Carlo sensitivity estimators.

Suppose that {Ri,1≤ i≤N} are independent random variables in Rn. The parameter θ is valued

in Θ⊆R. Given Xθ
i−1, there exists a function Fi : Rd+×Rn×Θ→Rd+ such that the value of Xθ

i is

defined recursively by

Xθ
i = Fi(X

θ
i−1,Ri;θ) =

(
Fi,1(Xθ

i−1,Ri;θ), · · · ,Fi,d(Xθ
i−1,Ri;θ)

)T
(6)

for all 1≤ i≤N . Furthermore, we require the differentiability of F :

Assumption 2.1 The function Fi is Lipschitz continuous in x and θ, respectively. In other words,

at any fixed θ ∈Θ and r ∈Rn, there exists a constant Ki(r, θ) such that

‖Fi(x, r;θ)−Fi(y, r;θ)‖ ≤Ki(r, θ)‖x− y‖

for all x, y ∈Rd; at any fixed x∈Rd+ and r ∈Rn, there exists a constant Gi(x, r) such that

‖Fi(x, r;θ1)−Fi(x, r;θ2)‖ ≤Gi(x, r)|θ1− θ2|

for all θ1, θ2 ∈ Θ. The Lipschitz constants satisfy that E[supθ∈ΘKi(Ri, θ)] < +∞ and

E[supθ∈ΘGi(X
θ
i−1,Ri)]<+∞ for any θ ∈Θ. In addition, the partial derivatives ∂Fi,j(x, y;θ)/∂xk

and ∂Fi,j(x, y;θ)/∂θ exist for all 1≤ i≤N and 1≤ j, k≤ d.

The settings in many financial applications satisfy the preceding assumption. Take the geometric

Brownian motion (GBM), a benchmark model in finance, as an example. It follows a stochastic

differential equation dSt/St = µdt+ σdWt, S0 = s, where {Wt} is a standard Brownian motion.

Over the time grid {t0, t1, · · · , tN}, the recursive dynamic of S is given by

Sti = Sti−1
exp

(
(µ− 1

2
σ2)∆t+σ(Wti −Wti−1

)

)
. (7)
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In this case, choose Ri :=Wti −Wti−1
∼N(0,∆t) and Fi(x, r;µ,σ) = x exp

(
(µ− 1

2
σ2)∆t+σr

)
. It

is straightforward to verify that Assumption 2.1 covers this model.

In contrast to pure diffusion models represented by GBM, Assumption 2.1 also puts some popular

pure jump or jump-diffusion mix models under its umbrella. An example is the variance gamma

(VG) process proposed by Madan, Carr, and Chang (1998). It is a pure jump process and allows

for more flexible skewness and kurtosis than GBM does. The discrete version of this process is

given by

Sti = Sti−1
exp

(
µ∆t+ θGi +σ

√
GiVi

)
, 1≤ i≤N, (8)

where Gi ∼ Gamma(∆t/β,β), a gamma distributed random number with scale ∆t/β and shape

β, and Vi ∼ N(0,1). The accompanying function Fi under this model is Fi(x, g, v;µ,σ, θ) =

x exp
(
µ∆t+ θg+σ

√
gv
)
, which maps the current price Sti−1

, a random vector Ri = (Gi, Vi), and

two parameters µ and σ into Sti . We will discuss more underlying models in the numerical exper-

iments of Section 5.

With a realization of {Ri,1≤ i≤N} held fixed, think of Xθ as a function that maps θ and the

initial value x to a stochastic process. Assumption 2.1 implies that this mapping is smooth with

respect to θ and x. By the chain rule of differentiation,

∂Xθ
i,j

∂xk
=

d∑
l=1

∂Fi,j
∂xl

(Xθ
i−1,Ri;θ) ·

∂Xθ
i−1,l

∂xk
(9)

and

∂Xθ
i,j

∂θ
=

d∑
l=1

∂Fi,j
∂xl

(Xθ
i−1,Ri;θ) ·

∂Xθ
i−1,l

∂θ
+
∂Fi,j
∂θ

(Xθ
i−1,Ri;θ) (10)

for 1≤ i≤N , 1≤ j ≤ d, and 1≤ k ≤ d. When i= 0, we have ∂Xθ
0,j/∂xk = δjk and ∂Xθ

0,j/∂θ = 0,

where δjk is the Kronecker symbol, equal to 1 if j = k and 0 otherwise.

Denote

Y k
i :=

(
∂Xθ

i,1

∂xk
, · · · ,

∂Xθ
i,d

∂xk

)T

and Zi :=

(
∂Xθ

i,1

∂θ
, · · · ,

∂Xθ
i,d

∂θ

)T

.

The two processes Y k = {Y k
i ,0≤ i≤N} and Z = {Zi,0≤ i≤N} record how the impacts of value

changes in x and θ will be propagated over time along each sample path of Xθ. We call these two

processes the derivative processes of Xθ from now on. They constitute an essential component in

the estimators we will build up later. Similar processes have been used in the literature to obtain

sensitivity for models involving continuous-time stochastic differential equations; see Example 7.2.7

of Asmussen and Glynn (2007), Fournié et al. (1999), and Chen and Glasserman (2007). Processes

Y and Z here can be viewed as their counterparts in a discrete-time setting.
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The recursions in (9) and (10) are very helpful in generating Y and Z along each sample path

of Xθ with little extra effort. We can generate {Ri,1≤ i≤N} one by one and substitute them into

(6) to produce a sample path of Xθ; at the same time, plugging the obtained {Ri} and {Xθ
i } into

(9) and (10) will yield paths of Y and Z.

3. A Generalized IPA Approach in the Presence of a Decision Variable

This section is devoted to presenting how to obtain unbiased Monte Carlo estimators for the price

sensitivities with respect to x and θ, i.e.,

∂Q0

∂xj
(x;θ) =

∂

∂xj
E
[
h(τ ∗,Xθ

τ∗)
∣∣∣X0 = x

]
and

∂Q0

∂θ
(x;θ) =

∂

∂θ
E
[
h(τ ∗,Xθ

τ∗)
∣∣∣X0 = x

]
,

where τ ∗ is the optimal exercise rule given by (5). As noted in the introduction, we find that the

optimal stopping time τ ∗ changes discontinuously in response to small perturbations in parameters.

This poses a fundamental difficulty for us to apply directly the IPA approach in the traditional

simulation literature. To resolve it, we develop a generalized theoretical framework in Section 3.1

to investigate the issue of sensitivity analysis in the presence of decision variables, especially for

those cases in which the optimal decisions change discontinuously to the underlying parameters.

We use an example from the dynamic inventory management theory in Section 3.2 to show our

IPA sensitivity estimators are unbiased if the optimal decision is explicitly known.

To demonstrate the difficulty in a more concrete way, we use the delta of an American put under

the GBM model (7) as a showcase. The holder receives max{K−St,0} when she chooses to exercise

the option at t. From this payoff, it is apparent to see that the holder has a strong incentive to

exercise if the option is deeply in-the-money, i.e., St is sufficiently low. Figure 1 shows the optimal

exercise boundary in this case.

Figure 1 The exercise boundary for an American put. It is defined as the critical value B∗i satisfying that max{K−

B∗i ,0} = E[Qi+1(Sti+1)|Si = B∗i ] for all 1 ≤ i ≤ N − 1. The holder should exercise the option at τ∗ =

min{i ∈ {1, . . . ,N} : Sti ≤B∗i }. The optimal exercising time τ∗ = t5 for the sample path shown in the

figure.
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Fixing a realization of the Brownian motion {Wt,0≤ t≤ T}, we perturb the initial price S0 with

a small quantity ∆S0. Figure 2 illustrates two possible consequences of the small perturbation to

the optimal exercising time τ ∗. For some sample paths of W as shown in the left plot, it changes

not the value of τ ∗, but the value of S at τ ∗. For such W as the one in the right plot, the small

perturbation ∆S0 results in a value change even for τ ∗. The discontinuity on τ ∗ in the right plot

Figure 2 The effects of a small perturbation on S0. In the left plot, it changes the payoff value only. The perturbed

underlying process (shown by the dotted curve) has the same optimal exercising time as the unperturbed

one (the solid curve). The right plot shows that the perturbation can change τ∗ for some sample paths.

Originally the holder should exercise the option at t5. But, with a small perturbation ∆S0, she should

exercise the option at t4.

prevents us from taking differentiation inside the expectation directly to obtain

d

dS0

E
[
max{0,K −Sτ∗}

∣∣∣S0

]
=E

[
d

dS0

max{0,K −Sτ∗}
∣∣∣S0

]
.

A more general approach is therefore needed to address this issue.

3.1. The Estimators

In view of the aforementioned obstacle, we develop a generalized IPA approach in this subsection to

estimate value sensitivities in the presence of a decision variable. Suppose that we have a probability

space (Ω,F , P ) and an action space Ψ (it may or may not be Euclidean). Consider a system whose

performance measure, L(ψ, ξ, θ) : Ψ×Rn ×Θ→ R, depends on a random factor ξ defined on the

probability space, a model parameter θ, and more importantly, a decision variable ψ ∈ Ψ. One

decision maker solves the following maximization problem

α(θ) := sup
ψ∈A

E[L(ψ, ξ, θ)] (11)
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by selecting an optimal ψ∗, where A is a subset of all Ψ-valued σ(ξ)-measurable random variables.

Assume that for any θ ∈Θ, there exists a solution ψ∗(θ)∈A to the optimization problem (11). For

a fixed θ0 ∈Θ, define

α′(θ0) := lim
∆θ→0

α(θ0 + ∆θ)−α(θ0)

∆θ
= lim

∆θ→0

E[L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)]−E[L(ψ∗(θ0), ξ, θ0)]

∆θ
.(12)

We are interesting in finding estimators for α′(θ0), which serves as an important measure to assess

the impact of a mis-specification in the modeling parameter θ to the system performance.

It is straightforward to see that the problem of American option sensitivities is a special example

of this setting, simply noting that L is now corresponding to the option payoff function and the

random factor ξ consists of {R1, · · · ,RN}. The optimal τ ∗ is chosen from the set of stopping times

T , which is of course a subset of all σ(R1, · · · ,RN)-measurable random variables. To emphasize

the difficulty we encounter in American options, we do not assume differentiability of the optimal

ψ∗(θ) with respect to the parameter θ, excluding the possibility of using the vanilla IPA approach

to obtain unbiased estimators directly.

The main result is summarized in the following theorem:

Theorem 3.1 Suppose that

(i)

E

[
sup
ψ∈Ψ

sup
θ1,θ2∈Θ

|L(ψ, ξ, θ1)−L(ψ, ξ, θ2)|
|θ1− θ2|

]
<+∞;

(ii) given any ψ ∈Ψ and θ ∈Θ, ∂L(ψ, ξ, θ)/∂θ exists with probability 1;

(iii) there exists a constant δ such that

lim
∆θ→0

E

[
sup

θ̃∈(θ0−δ,θ0+δ)

∣∣∣∣∂L∂θ (ψ∗(θ0 + ∆θ), ξ, θ̃)− ∂L
∂θ

(ψ∗(θ0), ξ, θ̃)

∣∣∣∣
]

= 0.

Then, α′(θ0) exists and

α′(θ0) =E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
.

Theorem 3.1 sheds new insights into the problem of IPA sensitivity estimation in the presence

of decision variables. To understand this result, given the existence of α′(θ), let us conduct the

following decomposition on it:

α′(θ0) = lim
∆θ→0

E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0 + ∆θ)]

∆θ

+ lim
∆θ→0

E

[
L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

]
=: Term 1 + Term 2, (13)
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by simultaneously adding and subtracting E[L(ψ∗(θ0), ξ, θ0 + ∆θ)] on the right hand side of (12).

This decomposition reflects the discussion following Figure 2. In particular, Term 2 captures

the essence of the scenario illustrated by the left plot: the parameter change does not affect the

optimal decision, i.e., ψ∗(θ0 + ∆θ) =ψ∗(θ0). Conditions (i) and (ii) in the theorem ensure that L is

sufficiently smooth in θ with the optimal decision ψ∗ being unchanged before and after perturbation.

Therefore, we can invoke the traditional IPA method to take derivative under the expectation to

get

Term 2 =E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
.

As noted at the beginning of this subsection, applying the IPA method directly on Term 1 is

not appropriate, because the optimal decision ψ∗ now changes discontinuously along such sample

paths as shown in the right plot of Figure 2. However, we show in the proof that the magnitude of

the expected change in the optimal function value, if we perturb the optimal decision from ψ∗(θ0)

to ψ∗(θ0 + ∆θ), is actually a higher order infinitesimal than ∆θ. That is,

E[L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0 + ∆θ)] = o(∆θ), (14)

or in other words, Term 1 is actually zero. This can be viewed as a reminder of the celebrated first-

order condition in mathematical optimization: due to the optimality of ψ∗, a small perturbation

on it just leads to a negligible first-order impact on the expected value of L. We thereby can still

obtain an IPA-like sensitivity estimator.

Eq. (14) and its relation to the IPA estimators point to an observation that may have broader

implications beyond the context of American option sensitivities. To ensure that we can take dif-

ferentiation under expectations to obtain IPA estimators, the existing simulation literature always

emphasizes the importance of continuity of the payoff with respect to the underlying parameter.

By Theorem 3.1, we complement this postulation with a new discovery that the conventional IPA

estimator is still valid even in the absence of such continuity along each sample path. As long as, for

the non-smooth part, the expected value change of the payoffs is in a higher order magnitude than

the change of the parameter, the non-smoothness will have no contribution to the final sensitivity

estimates.

It is worth stressing the indispensable role of the optimality condition in ψ∗ in yielding a vanishing

Term 1. If we drop this condition, the expected value change is generally in the same order of ∆θ

and the limit of Term 1 is therefore not zero. As shown by the following example, we may end up

with a much more complicated estimator in absence of the optimality.



Chen and Liu: Monte Carlo and American Option Sensitivities
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

Example 3.1 Consider a two-period time horizon {t0, t1, t2}. Assume that the underlying St starts

from S0 = s >K and it follows the discrete GBM (7), i.e.,

St1 = S0 exp

(
(µ− 1

2
σ2)∆t+σξ1

)
and St2 = St1 exp

(
(µ− 1

2
σ2)∆t+σξ2

)
for independent ξ1, ξ2 ∼N(0,∆t). Let ψ = inf{t ∈ {t1, t2} : St <K} ∧ t2 (assume that inf ∅ =∞).

Define the performance measure function to be L(ψ, ξ1, ξ2, s) = max{K − Sψ,0}. Appendix EC.4

shows

d

ds
E[L(ψ, ξ1, ξ2, s)] = −E

[
dSt1
ds

1{ψ=t1}

]
−E

[
dSt2
ds

1{ψ=t2;St2<K}

]
+E[(K −St2)+|St1 =K] · K

s
· g1(K;s), (15)

where g1(K;s) is the probability density of St1 at St1 =K, given S0 = s.

It is straightforward to see that the first two terms on the right hand side of (15) are obtained

by fixing the value of ψ and taking differentiation on Sψ with respect to s. The absence of the

optimality of ψ introduces an additional term, the third summand in (15), to the final expression.

3.2. Unbiasedness of IPA Estimators: An Example from Dynamic Inventory Management

Theorem 3.1 suggests that our generalized IPA estimators will be unbiased under some stochas-

tic optimization problems in which determining optimal decision policy is tractable. We provide

one classical example from the literature of dynamic inventory management in this subsection to

corroborate this observation.

Consider a dynamic version of the newsvendor problem over N periods (see, e.g., Veinott

(1965a,b), Tsitsiklis (1984), and Porteus (2002) for details). The vendor manages a single-product

inventory to meet random demands from her customers. As shown in Figure 3, she decides how

much to order, if any, at the beginning of each period. A proportional ordering cost of c per unit

is thus incurred, and orders placed are received immediately. For 0≤ i≤N − 1, we denote xi to

be the initial inventory level at the beginning of period i, which connotes leftover stock when pos-

itive and the backlog when negative. Then the vendor makes an order of quantity ui to increase

the inventory level to yi, i.e., yi = xi + ui. Here we assume all admissible sizes of orders are in

U ⊆ R+. The demand of period i, Di, is observed and the vendor will meet such demand based

on the currently available inventory level yi. The inventory level at the beginning of period i+ 1

drops down to xi+1 = yi−Di. Demands in different periods are supposed to be independently and

identically distributed with a common cumulative distribution function ΦD. For simplicity, assume

that backlogs must be met first before any future demands can be satisfied.
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Figure 3 Timeline of the dynamic inventory management problem. At the beginning of the i-th period, the initial

inventory is xi. The vendor then increases the inventory level to yi. A random demand of Di is realized

in the middle of the period. If yi ≥ Di, all demands are satisfied and a proportional holding cost is

incurred at the end of the period. If yi < Di, unsatisfied demands are backlogged and will cause a

penalty cost. This figure shows a situation in which all demands are met and there is a positive leftover

stock at the beginning of the next period.

The cost structure of the problem is as follows. Any unsold stock at the end of one period will

be kept in inventory and used for meeting future demands in the following periods. Each unit of

leftover stock causes a holding cost cH per period, which is charged at the end of each period.

Excess demands, if any, will be backlogged in this period and satisfied at the beginning of the next

period when the vendor makes new orders. The backlogging penalty cost is cP per unit. At the

end of the final period N − 1, the vendor can obtain a salvage value of c for each unit of leftover

inventory or must make an additional order immediately (at the usual unit cost c) to satisfy any

outstanding demands. That is, the terminal (salvage) value is

vN(x) =−cx,

where x = yN−1 −DN−1. Suppose that there is a discount factor per period α and assume cP >

(1−α)c and cH + (1−α)c > 0 to exclude trivial solutions.

The objective of the vendor can be formulated as finding optimal inventory levels yi for each

period to minimize the total expected cost

min
{ui∈U :0≤i≤N−1}

E

[
N−1∑
i=0

αi
(
cui + cH(xi +ui−Di)

+ + cP (Di−xi−ui)+
)
−αNcxN

]
, (16)
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where x0 is a known constant to represent the initial inventory at time 0. Veinott (1965a,b),

Tsitsiklis (1984), and Porteus (2002) show that there exists a tractable optimal policy, known as

the base stock policy, such that the vendor should ensure that the stock level after ordering is as

close to the base stock level as possible.

From the discussion in Appendix EC.5, we can easily see that the optimal policy is highly

dependent on the distribution function of random demands. In practice, people rely on statistical

estimation to find the value of related parameters to determine ΦD from observed demand samples.

This process of course is subject to considerable statistical errors. We can apply the estimators

developed in Theorem 3.1 here to assess how significant the influence of such error will be on the

quality of our inventory decision.

Appendix EC.5 takes continuous demand with continuous or discrete ordering quantities (U is

a continuum set or a lattice) as examples to demonstrate technical details. Note that the optimal

ordering policy is not smooth with respect to the demand model parameter under the constraint

that U is discrete. The numerical experiments show that our IPA sensitivity estimator is indeed

unbiased. Moreover, an interesting sideline observation from our numerical experiments is that the

costs under the base stock policy sometimes are very sensitive to the value of model parameter of

random demands, meaning that users should make substantial efforts to obtain accurate parameter

estimates before applying the policy.

4. First-Order Sensitivity Estimators for American Options

We will use the generalized IPA approach developed in the last section to construct first-order

price sensitivity estimators for American options in this section. The optimal exercising rules of

many American-type options are not known explicitly. Therefore, their numerical approximations

introduce a new bias to sensitivity estimates using IPA. We discuss the error analysis issue in

Section 4.2 and point out that in addition to increasing the number of simulation samples to

reduce the estimation variance, we may also need a separate passage to the limit, in which the

computational effort to obtain better approximate exercising rule increases, in order to achieve the

asymptotic unbiasedness.

4.1. Option Sensitivity Estimators

Some regularity conditions are needed beforehand to ensure we can apply Theorem 3.1 here. First,

assume that

Assumption 4.1 The payoff function h is Lipschitz, i.e., there exists a constant k≥ 0 such that

|h(i, x1)−h(i, x2)| ≤ k‖x1−x2‖

for any x1, x2 ∈Rd+ and 1≤ i≤N .
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Various American-style securities, such as the vanilla put and American max-call option, satisfy

Assumption 4.1. The put’s payoff is h(i, x) = max{K−x,0}. The max option is written on multiple

assets and it entitles a payoff of [max{X1
i , · · · ,Xd

i }−K]+ to the holder when she exercises it at ti,

where Xj
i is the price of the jth underlying, 1≤ j ≤ d. It is easy to check that both functions are

Lipschitz.

The previous two examples reveal that option payoffs often fail to be differentiable everywhere.

But the points at which differentiability fails can often be ignored because the probability that the

state process X hits them is usually 0. We need this technical condition as well. To make it more

precise, let Dh
i := {x∈Rd+ : h(i, ·) is differentiable at x} and we require

Assumption 4.2 P (Xθ
i ∈Dh

i |Xθ
0 = x) = 1, 1≤ i≤N .

Clearly, the examples of standard put and American max-call both satisfy Assumption 4.2 too,

when the underlying asset prices follow either GBM or VG. The put option’s payoff is not differ-

entiable only at the strike price K. The probability that the underlying asset prices exactly equals

K is zero. The payoff of American max-call is differentiable in the sets

{(x1, · · · , xd) : max
1≤i≤d

xi <K} and {(x1, · · · , xd) : xi >max
j 6=i

xj, xi >K}, 1≤ i≤ d.

With probability 1, the underlying asset prices will fall into one of these sets.

Under Assumptions 4.1 and 4.2, the payoff h(i,Xθ
i ) is pathwise smooth. Using the chain rule of

differentiation again, we have

∂h

∂xj
(i,Xθ

i ) =
d∑
k=1

∂h

∂xk
(i,Xθ

i ) ·
∂Xθ

i,k

∂xj
=∇Th(i,Xθ

i ) ·Y j
i (17)

and

∂h

∂θ
(i,Xθ

i ) =
d∑
k=1

∂h

∂xk
(i,Xθ

i ) ·
∂Xθ

i,k

∂θ
=∇Th(i,Xθ

i ) ·Zi. (18)

These two equations demonstrate the use of the derivative processes clearly: after Y and Z are

simulated, we can easily obtain the derivatives of h(Xθ) along each path of Xθ from (17) and (18).

Based on these two derivatives, we present the main results of the paper in Theorem 4.1.

Theorem 4.1 Fix x ∈ Rd and θ ∈Θ. Suppose that Assumptions 2.1, 4.1, and 4.2 hold. Further-

more, we assume

P [h(i,Xθ
i ) =Ci(X

θ
i ;θ)|Xθ

0 = x] = 0, 1≤ i≤N − 1.

Then,

∂Q0

∂xj
(x;θ) =E

[
∇Th(τ ∗,Xθ

τ∗) ·Y
j
τ∗

∣∣∣Xθ
0 = x

]
and

∂Q0

∂θ
(x;θ) =E

[
∇Th(τ ∗,Xθ

τ∗) ·Zτ∗
∣∣∣Xθ

0 = x
]
,

where τ ∗ is defined in (5).
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This theorem is a direct application of Theorem 3.1. To see the connection between these two

conclusions, be aware that τ ∗ is now the decision variable and h(i,Xθ
i ) is the performance measure

function. The theorem asserts that we can derive estimators simply by substituting τ ∗ into the

derivatives of h(i,Xθ
i ). A more rigorous proof is deferred to the Appendix.

At the end of this subsection, we need to point out that the additional assumption in Theorem

4.1 is not restrictive at all. Note that the set {x ∈ Rd+ : h(i, x) = Ci(x;θ)} is typically a (d −

1)-dimensional manifold in Rd+. Therefore, as long as the probability density of Xθ
i exists, the

probability of the event h(i,Xθ
i ) = Ci(X

θ
i ;θ) must be 0. The aforementioned vanilla put under

the GBM or VG models exemplifies the cases that satisfy this assumption. In this example, the

set of {x ∈ Rd+ : h(i, x) = Ci(x;θ)} consists of a single point. Because the underlying price follows

continuous distributions, it hits this set with probability zero.

On the basis of Theorem 4.1, we construct the following algorithm to generate the estimates of

option prices and sensitivities simultaneously.

Sensitivity Estimation Algorithm
1. Find an (approximate) optimal exercise policy τ̃ .

2. Simulate L paths of {Xθ,l
i ,0≤ i≤ τ̃ l} from (6) for 1≤ l≤L.

3. Along with each sample path, generate the derivative processes {Y j,l
i : 0≤ i≤ τ̃ , 1≤ j ≤ d}

and {Zi,l : 0≤ i≤ τ̃} according to the recursions (9) and (10).

4. Evaluate Al :=∇Th(τ̃ l,Xθ,l

τ̃ l
) ·Y j,l

τ̃ l
and Bl :=∇Th(τ̃ l,Xθ,l

τ̃ l
) ·Z l

τ̃ l
.

5. Form the price estimator by
∑L

l=1 h(τ̃ l,Xθ,l

τ̃ l
)/L and the sensitivity estimators by

∑L

l=1A
l/L

and
∑L

l=1B
l/L, respectively.

Remark 4.1 Note that this algorithm is designed only for a fixed initial position Xθ
0 . In some

applications, people may need to estimate sensitivities at another position Xθ
s with 0< s≤ t1, where

t1 is the first exercise opportunity. We can of course re-simulate a new set of sample paths starting

from Xθ
s and use the above algorithm again. However, Belomestny, Milstein, and Shoemakers

(2010) propose an innovative method to infer the sensitivities from the old sample paths without

re-simulation.

4.2. Implementation Issues and Error Analysis

Unlike the example in Section 3.2, the exercising rules of American-type options are usually not

tractable. As mentioned in Section 2, there are basically two ways to price American options

numerically in the existing literature: through approximations of either continuation values or

exercising rules. Our estimators are compatible to both of them and hence we can easily embed
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the preceding algorithm to a variety of existing pricing methods to generate sensitivities as a

by-product.

In particular, if the used pricing method can generate accurate approximations to the continua-

tion functions Ci(x;θ), we can then forge an approximation to τ ∗ by letting

τ̃ = min{i∈ {1, · · · ,N} : h(i,Xθ
i )≥ C̃i(Xθ

i ;θ)}.

Based on this exercising rule, we may proceed to use the above algorithm. For those methods in

which an approximate exercising strategy τ̃ is known in advance, substituting the obtained policy

into the algorithm will directly lead to sensitivity estimators.

We should acknowledge that the discrepancy between τ̃ and τ ∗ will introduce a new bias to the

estimators in Theorem 4.1. For completeness, it is important to analyze the impact of such bias

on the estimation quality of sensitivities. Let us consider the sensitivity with respect to x only in

this section. The discussion about the other sensitivity with respect to θ can be done in a similar

manner.

It is easy to see that the expectation of our delta estimator,
∑L

l=1A
l/L, equals

∂̃Q0

∂xj
:=E[∇Th(τ̃ ,Xθ

τ̃ ) ·Y j
τ̃ |X0 = x]. (19)

Intuitively, high-quality estimates of C̃ should lead to a good approximation τ̃ and in turn produce

a good estimate to ∂Q0/∂xj. But we find that this is not necessarily true when

P [h(i,Xθ
i ) =Ci(X

θ
i ;θ)]> 0, for some 1≤ i≤N − 1.

To see this, just consider the sample paths on which we have h(i,Xθ
i ) = Ci(X

θ
i ;θ). As long as

there exists a discrepancy between Ci and C̃i, no matter how small it is, it is always the case that

h(i,Xθ
i ) 6= C̃i(X

θ
i ;θ) on those paths. In other words, we will always misidentify the optimal stopping

time for those paths, regardless of the estimation quality of C̃. To exclude this pathological case,

we need an additional assumption:

Assumption 4.3 There exists an α> 0 such that

lim
δ↓0

P [|h(i,Xθ
i )−Ci(Xθ

i ;θ)| ≤ δ]
δα

<+∞

for all 1≤ i≤N .

From the continuity property of probability measures, this assumption essentially requires that

the probability of h(i,Xθ
i ) = Ci(X

θ
i ;θ) is zero, which is one assumption we used previously to

establish the unbiased IPA estimators in Theorem 4.1. We note that a similar condition first appears
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in Belomestny (2011) in which the author discusses the convergence rates of various nonparametric

American-option pricing algorithms. Interestingly, that paper also points out possible values of α

in different modeling contexts. For instance, one can show that α = 1 when h(i, x)− Ci(x;θ) is

smooth and has non-vanishing Jacobian in the vicinity of the exercise boundary, which are satisfied

in many practical examples.

The following theorem relates the worst-case performance of our sensitivity estimates to the

accuracy of the approximations C̃ or τ̃ .

Theorem 4.2 Suppose that the conditions of Theorem 4.1 and Assumption 4.3 both hold. In addi-

tion, assume that sup1≤i≤N E[‖Y j
i ‖2]<+∞. Then, there exists a constant K, independent of X0

and θ, such that ∣∣∣∣∣ ∂̃Q0

∂xj
− ∂Q0

∂xj

∣∣∣∣∣≤K
N−1∑
i=1

(
E[|C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|]

) α
2(1+α)

, (20)

where ∂Q0/∂xj is the true value of the delta.

Eq. (20) explicitly points out that the only source of bias of our algorithm comes from the

approximation error between C̃i and Ci. Qualitatively speaking, any pricing methods that can

produce accurate estimates of the continuation values are able to generate accurate estimates

for the sensitivities. Furthermore, the above theorem also shows that in order to improve the

overall performance of our estimators, say, the mean-squared error (MSE), in a problem where

the optimal exercising rule is not tractable, we need to increase computational effort in obtaining

better estimates to the continuation values to control the bias when we increase the number of

simulation samples to reduce the variance.

Take the celebrated Longstaff and Schwartz method as an example. As we increase the number of

basis functions, the spanned functional subspace will come closer to containing all true continuation

value functions Ci for 1 ≤ i ≤ N − 1. Hence, we can expect the bias generated by approximate

continuation value functions to diminish to zero. Glasserman and Yu (2004) and Stentoft (2004)

discuss in a greater detail the convergence of C̃i(X
θ
i ;θ) to Ci(X

θ
i ;θ) for all i. For instance, letting

M and H be the respective total numbers of the basis functions and samples used to estimate

Ci, Stentoft (2004) proves that, as long as M is increasing in H and M 3/H tends to 0, such

convergence will be guaranteed when H →+∞ under some regular conditions on the underlying

process and the used basis functions. Combining these known results in the existing literature with

Eq. (20), we know that the sensitivity estimator presented in this paper can achieve asymptotic

unbiasedness as both the number of basis functions and the number of simulated paths increase. The

numerical experiment in Section 5.3 corroborates the aforementioned observation. It is still unclear
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for us how to allocate computational effort between sample path simulation and continuation value

function estimation to achieve the optimal convergence rate of the simulation bias. We leave a more

comprehensive investigation of this issue for future research.

The requirement that M 3/H → 0 is necessary to avoid potential overfitting problems. If we

increase the number of basis functions too fast relative to the growth of the sample path number,

the fitted C̃i using the Longstaff-Schwartz regression will excessively depend on simulated sample

paths and this produces unacceptably high variability in the final outcomes. One may refer to

Tompaidis and Yang (2010) for other alternatives to overcome the overfitting problem.

We stress here that Theorem 4.2 describes the worst-case performance of our algorithm. From

its proof, we can easily see that, to achieve the upper bound given on the right-hand side of (20),

it is necessary for the option to be mistakenly exercised or left unexercised at each time period.

For this to happen, the underlying Xθ
i must be very close to the optimal exercising boundary

{x : h(i, x) = Ci(x;θ)} at every time i. However, Assumption 4.3 stipulates that the probability

of such an event is very small. Therefore, we expect that the bias magnitude of our sensitivity

estimator should be far less than the right-hand side of (20).

By the discussion in the last paragraph, Theorem 4.2 also implicitly indicates the crucial role

of the optimality of an exercising rule τ̃ on the estimation bias. The more accurate τ̃ is as an

approximation to the optimal τ ∗, the less the probability will be that the option is mistakenly

exercised or left unexercised at each time period. This will lead to a small value of the expectation

on the right-hand side of (20) and therefore accurate estimates of the sensitivities.

Finally, it is worth mentioning that similar error bounds like (20) also appear in the American-

option pricing literature. For instance, Tsitsiklis and Van Roy (1999, 2001) and Haugh and Kogan

(2004) establish that

|Q̃0−Q0| ≤K ′
N−1∑
i=1

E[|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|],

where Q̃0 is the expectation of
∑L

l=1 h(τ̃ l,Xθ,l

τ̃ l
)/L, the price estimator in our algorithm. Belomestny

(2011) significantly improves this bound.

5. Numerical Results

In this section, we undertake various numerical experiments to test the accuracy and efficiency of

the obtained estimators. The section consists of four parts. First, we demonstrate the performance

of the estimators in the contexts of different dimensionality. We find that they work robustly

from single-dimensional to high-dimensional cases. Second, we test the effects of the types of

underlying processes on their performance. The models under consideration include correlated pure

diffusions, mixed jump diffusions, and pure jump processes. The efficiency of the estimators is not
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influenced by such a wide modeling spectrum. Third, we use one example to show that our method

is asymptotically unbiased if we simultaneously increase the number of simulated sample paths

and the number of the basis functions used to estimate continuation values. Fourth, we compare

our IPA estimators with several competing methods to point out their computational benefits.

In all these experiments, we used mainly the least square regression method proposed by

Longstaff and Schwartz (2001) to obtain continuation value approximations and then to construct

the optimal exercising policy approximately. We also implemented some other alternative pricing

algorithms such as the stochastic mesh method by Broadie and Glasserman (2004) when we pre-

pared this paper. The performance of the estimators was not sensitive to the underlying pricing

methods we chose. We skip a detailed report about other methods in the interest of space. All

numerical experiments were conducted on a PC equipped with an Intel Core 2 Quad 2.66 GHz

CPU and 2.87 GB of RAM. All computing time is with respect to this configuration and measured

in seconds. In particular, we obtain numerical results by repeating our experiments over multiple

independent trials. In each trial, we re-estimate policies, option prices and sensitivities based on

a newly generated set of sample paths. The reported computing time corresponds to the average

time for one trial.

5.1. Effects of Dimensionality

Tables 1 and 2 record the numerical outcomes for a single asset and for 5 and 10 assets, respectively.

Compared to the benchmarks in the existing literature, the numerical results indicate that our

estimation method is fast and accurate, which is not influenced by the dimensionality of the

underlying problem.

Table 1 summarizes the results in a single-asset vanilla put under the GBM model. Huang,

Subrahmanyam, and Yu (1996) take an integral-equation-based approach to price the option value

in this case and provide the corresponding sensitivities in the meantime. We use their method to

generate the benchmark values, which are documented in the columns with a superscript ∗. The

“Biasprice” column reports the bias of price estimates generated by the standard Longstaff-Schwartz

method. The “BiasDelta” and “BiasV ega” columns report the sensitivities estimation biases using

our proposed estimators. We can see that the computation is very efficient: the sensitivity estimates

generated by our IPA estimators have very small biases and standard deviations.

For the continuation value approximation approach, we need to pay special attention to one

subtle issue: independence between the sample paths used to train C̃ and the sample paths used

to estimate the sensitivities. It is possible to reuse those paths generated in the training stage for

the purpose of price and sensitivity estimation. In principle, doing so will save simulation efforts

to a significant degree, but will expose us to the potential effect of “error maximization” because
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Table 1 Sensitivities for single-asset American put options with the GBM model.

In-sample
K T Price∗ BiasPrice Delta∗ BiasDelta V ega∗ BiasV ega Time
35 1/3 0.2003 -0.0003(0.00091) -0.0904 -0.0001(0.00034) 3.7526 0.0053(0.0148) 26.3
35 7/12 0.4326 -0.0015(0.0017) -0.1341 -0.0003(0.00035) 6.564 -0.017(0.0211) 32.5
40 1/3 1.5794 -0.0001(0.0023) -0.4463 0.0010(0.00052) 8.9876 0.0086(0.0145) 59.8
40 7/12 1.9901 -0.0002(0.0029) -0.4294 -0.0008(0.00063) 11.7303 -0.014(0.0167) 61.2
45 1/3 5.0837 -0.0018(0.0021) -0.8857 0.0003(0.00039) 3.9311 -0.0136(0.0075) 83.4
45 7/12 5.2661 -0.0031(0.0041) -0.7922 -0.0004(0.00041) 7.907 0.0129(0.0072) 86.7

Out-of-sample
K T Price∗ BiasPrice Delta∗ BiasDelta V ega∗ BiasV ega Time
35 1/3 0.2003 -0.0002(0.00092) -0.0904 -0.0001(0.00036) 3.7526 -0.0002(0.0153) 72.5
35 7/12 0.4326 -0.0003(0.0016) -0.1341 -0.0002(0.00037) 6.564 0.0058 (0.0209) 80.6
40 1/3 1.5794 -0.0001(0.0022) -0.4463 0.0002(0.00051) 8.9876 -0.01(0.0144) 102.9
40 7/12 1.9901 -0.0008(0.0029) -0.4294 -0.0007(0.00062) 11.7303 -0.02(0.0161) 104.8
45 1/3 5.0837 -0.0037(0.0020) -0.8857 -0.0006(0.00042) 3.9311 -0.0109(0.0059) 128.5
45 7/12 5.2661 -0.0012(0.0039) -0.7922 -0.0004(0.00044) 7.907 -0.0119(0.0075) 132.7

Note. Sensitivities for single-asset American put options with the GBM model dSt = rStdt+σStdWt. The defaulting param-
eters are S0=40, r = 0.0488, and σ = 0.2. Set the number of exercising opportunities N to be 400 between t= 0 and T . The
numbers in parentheses are the standard deviations of Monte Carlo across 1000 independent trials. In each trial, we use 0.5 million
sample paths to train the exercising boundary and reuse them to obtain the in-sample estimation. We simulate an additional
0.5 million paths to obtain the out-of-sample estimation. The following six basis functions are used: a constant and the first five
Hermite polynomials in the asset price.

of the high correlation of the samples used in the two stages. However, we do not find strong

evidence in Table 1 that this should become a serious concern. In the out-of-sample panel, the

set of paths used to obtain prices and sensitivities is different and independent of that used to

construct exercising policies. In the in-sample panel, we use the same set of sample paths for both

purposes. The numerical outcomes change very little across these two panels. This observation

applies generally for the other experiments we have done. Hence, we only report the results for

in-sample estimation in all the following experiments. This echoes a similar observation in the

American option pricing literature by Raymar and Zwecher (1997), Longstaff and Schwartz (2001),

and Broadie and Glasserman (2004), where they find that in-sample and out-of-sample estimates

for prices are almost indistinguishable.

We use max-call options written on 5 and 10 uncorrelated assets in Table 2 to exhibit the

performance of our estimators in a high-dimensional setting. The underlying dynamics is given by

dSit
Sit

= (r− δ)dt+σdW i
t , i= 1, · · · , n,

where n= 5 or 10, and {W i
t } are independent standard Brownian motions. Kaniel, Tompaidis, and

Zemlianov (2008) provide 90% confidence intervals for the estimates of prices and deltas. We use

their results as the benchmark values in Table 2; see the “Price∗” and “Delta∗” columns. The

results show that within a very small computational budget, all IPA estimates fall in the corre-

sponding confidence intervals obtained by the likelihood ratio duality (LRD) estimators developed
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in Kaniel, Tompaidis, and Zemlianov (2008). In contrast, it takes much longer for the LRD method

to achieve these confidence intervals according to that paper.

Table 2 Sensitivities for American max-call options on high-dimensional uncorrelated assets.

n= 5
S0 Price∗ PriceLS Delta∗ DeltaIPA V ega∗ V egaIPA Time
90 [16.6062,16.6568] 16.6220(0.0073) [0.17104,0.17896] 0.1732(0.00005) NA 32.6662(0.0123) 79
100 [26.0992,26.1788] 26.1228(0.0088) [0.19608,0.20892] 0.2020(0.00004) NA 37.6026(0.0119) 90
110 [36.7012,36.8148] 36.7289(0.0099) [0.21408,0.22792] 0.2186(0.00003) NA 41.1545(0.0124) 92

n= 10
S0 Price∗ PriceLS Delta∗ DeltaIPA V ega∗ V egaIPA Time
90 [26.2102,26.2868] 26.2352(0.0085) [0.11304,0.12296] 0.1162(0.00002) NA 24.9140(0.0066) 178
100 [38.2732,38.3768] 38.3134(0.0097) [0.11708,0.13292] 0.1226(0.00001) NA 28.0862(0.0068) 183
110 [50.8052,50.9308] 50.8324(0.0107) [0.11808,0.13392] 0.1232(0.00001) NA 30.8147(0.0073) 190

Note. Sensitivities for American max-call options on 5-dimensional and 10-dimensional uncorrelated assets. The defaulting parameters are
K = 100, r = 5%, δ = 10%, σ = 0.2, and T = 3. Three exercise opportunities are evenly distributed in each year. For the case of n=5, the
following 19 basis functions are used: a constant, the first five Hermite polynomials in the maximum of the values of five assets, the four values
and squares of the values of the second through fifth highest asset prices, the product of the highest and second highest, second highest and
third highest, etc., and finally, the product of all five asset values. For the case of n= 10, we use 32 basis functions in a similar specification.
For simplicity, assume that all the assets start from the same initial value S0. The numbers in parentheses are the standard deviations of Monte
Carlo across 1000 independent trials. In each trial, we use 5 million sample paths to obtain the estimates. Delta is defined as the sensitivity with
respect to the initial value of the first asset and vega is the sensitivity in the volatility of the first asset. All estimates are within their corresponding
confidence intervals provided in Kaniel, Tompaidis, and Zemlianov (2008), which are used as our benchmark values here. We cannot find a
corresponding vega estimator in that paper. According to Kaniel, Tompaidis, and Zemlianov (2008), all the calculations of benchmark confidence
intervals in this table took 1 to 2 hours using between 16 and 32 1 GHz processors in parallel.

5.2. Performance under Various Underlying Processes

Tables 3, 4, and 5 show the results under different types of underlying models. The performance of

the proposed sensitivity estimators is very stable across all the models. Whether the sample paths

are continuous has no impact on the efficiency of our method. Table 3 considers a two-correlated

GBM model such as

dS1
t = (r− δ1)S1

t dt+σ1dW
1
t

dS2
t = (r− δ2)S1

t dt+σ2[ρdW 1
t +

√
1− ρ2dW 2

t ],

where (W 1
t ,W

2
t ) are two independent standard Brownian motions. The same example is also used in

Kaniel, Tompaidis, and Zemlianov (2008). We include their confidence interval estimates of prices

and deltas in the table for reference. It is obvious that our estimators perform efficiently under a

wide range of correlation values: the estimated values of price and delta fall into the benchmark

confidence interval within a very small computational budget.
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Table 3 Sensitivities for American max-call options on correlated assets.

ρ Price∗ PriceLS Delta∗ DeltaIPA V ega∗ V egaIPA Time
-0.75 [15.4341,15.4759] 15.4482(0.0043) [0.3742,0.3998] 0.3844(0.00009) NA 53.3521(0.0141) 62
-0.5 [15.0081,15.0459] 15.0220(0.0045) [0.3672,0.3868] 0.3704(0.00009) NA 52.1823(0.0148) 60
-0.25 [14.5021,14.5379] 14.5172(0.0047) [0.3481,0.3639] 0.3513(0.00009) NA 50.5327(0.0155) 59

0 [13.8841,13.9189] 13.8985(0.0048) [0.3271,0.3379] 0.3301(0.00009) NA 48.4686(0.0161) 58
0.25 [13.0821,13.1159] 13.0925(0.0048) [0.3041,0.3199] 0.3114(0.00009) NA 45.7715(0.0162) 56
0.5 [12.1351,12.1679] 12.1422(0.0048) [0.2821,0.2979] 0.2896(0.00009) NA 42.4195(0.0159) 56
0.75 [10.8791,10.9149] 10.8941(0.0045) [0.2592,0.2798] 0.2647(0.00009) NA 37.8083(0.0151) 54

Note. The defaulting parameters are S1
0 = S2

0 = 100,K = 100, r= 5%, δ1 = δ2 = 10%, σ1 = σ2 = 0.2 and T = 3. Three exercise opportunities
are evenly distributed in each year. The columns with superscript ∗ are the 90% confidence intervals given by Kaniel, Tompaidis, and Zemlianov
(2008). The following nine basis functions are used: a constant, the first five Hermite polynomials in max(S1

t , S
2
t ), the value and square of the

values of min(S1
t , S

2
t ), and S1

t ·S2
t . The numbers in parentheses are the standard deviations of Monte Carlo across 1000 independent trials. In

each trial, we use 10 million sample paths to obtain the estimates. Delta is defined as the sensitivity with respect to S1
0 and vega is the sensitivity

in σ1. All estimates are within their corresponding confidence intervals provided in Kaniel, Tompaidis, and Zemlianov (2008), which are used as
our benchmark values here. We cannot find a corresponding vega estimator in that paper. According to Kaniel, Tompaidis, and Zemlianov (2008),
all the calculations of benchmark confidence intervals in this table took 1 to 2 hours using between 16 and 32 1 GHz processors in parallel.

In Tables 4 and 5, we investigate price processes with discontinuous sample paths. The mod-

els used in Table 4 include Merton’s normal jump diffusion (Merton (1976)) and Kou’s double-

exponential jump diffusion (Kou (2002)). They represent the class of Levy processes with compound

Poisson jumps. We can specify the models through the following log-price processes:

log

(
St
S0

)
= µt+σWt +

Nt∑
i=1

Zi,

where Nt is a Poisson process with constant intensity λ and {Zi} are i.i.d. random variables. In

Merton’s model, the jump size Z follows a normal distribution N(m,s) and Kou’s model specifies

a double exponential distribution for Z with density

p(z) = pη1e
−η1z1{z≥0}+ (1− p)η2e

−η2z1{z<0},

where η1, η2 > 0. One may refer to Section 3.5.1 of Glasserman (2004) for a detailed discussion on

how to generate paths for both processes. The benchmark values, denoted with a superscript ∗, are

computed by the implicit-explicit finite-difference solvers developed in Zhang (1997) and d’Halluin,

Forsyth, and Labahn (2004). Table 5 displays numerical results for the VG model (8). We compare

our estimates with the results from Hirsa and Madan (2003). For all these models, our method can

generate quite accurate estimates for the sensitivities in a reasonable time horizon.

5.3. Effects of Exercising Policies

As noted in Section 4, the accuracy of our sensitivity estimators is subject to the influence of the

quality of the approximating exercise policies we adopt. To achieve asymptotic unbiasedness, along

with the increment of simulation trials, we need to increase the total number of basis functions as

well to improve the estimation of continuation value functions.
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Table 4 Sensitivities for single-asset American put options under jump diffusion processes.

Merton’s Model
K T Price∗ BiasPrice Delta∗ BiasDelta V ega∗ BiasV ega Time
35 1/3 0.5439 -0.0023(0.0021) -0.139 0.0002(0.00035) 3.91 -0.071(0.0136) 62.34
35 7/12 0.9314 -0.0008(0.0027) -0.1791 -0.0004(0.00041) 6.025 0.0222(0.0179) 66.56
40 1/3 2.1191 -0.0021(0.0036) -0.4266 0.0003(0.00059) 8.3 0.0166(0.0154) 87.18
40 7/12 2.6876 -0.0047(0.0048) -0.4154 0.0007 (0.00047) 9.57 0.0091(0.0201) 88.02
45 1/3 5.3834 -0.0027(0.0049) -0.782 0.0004(0.00044) 7.805 0.0088(0.0121) 112.12
45 7/12 5.7662 -0.0049(0.0055) -0.6941 -0.0004(0.00056) 9.11 0.0258(0.0177) 108.32

Kou’s Model
K T Price∗ BiasPrice Delta∗ BiasDelta V ega∗ BiasV ega Time
35 1/3 0.5718 -0.0002(0.0019) -0.1293 0.0001(0.00041) 3.255 -0.014(0.0132) 93.34
35 7/12 0.979 -0.0043(0.0028) -0.1717 0.0006(0.00044) 5.43 -0.0143(0.0175) 100.11
40 1/3 2.0676 -0.0014(0.0039) -0.4107 -0.0001(0.00059) 7.26 0.0103 (0.0158) 121.43
40 7/12 2.6797 -0.0034(0.0052) -0.4014 -0.0002(0.00062) 9.135 -0.0031(0.0201) 126.89
45 1/3 5.2936 -0.0039(0.0051) -0.7866 -0.0004(0.00056) 5.685 -0.0035(0.0113) 156.21
45 7/12 5.7075 -0.0049(0.0058) -0.689 0.0005(0.00058) 8.68 -0.0044(0.0148) 158.66

Note. Sensitivities for single-asset American put options under compound Poisson jump diffusion processes. For Merton’s
model, the defaulting parameters are S0 = 40, r = 0.0488, σ = 0.2, λ = 3, m = −0.05, and s = 0.086. Set N to be 400
between t= 0 and T . For Kou’s model, S0 = 40, r = 0.0488, σ = 0.2, λ= 3, p= 0.3, η1 = 40, and η2 = 12. To let both
processes be martingales, choose µ= r−σ2/2 +λ(1− em+s2/2) and µ= r−σ2/2 +λ[(1− p)(η2 + 1)−1− p(η1− 1)−1],
respectively. The numbers in parentheses are the standard deviations of Monte Carlo across 1000 independent trials. In each
trial, we use 0.5 million sample paths to obtain the estimates. Delta is defined as the sensitivity with respect to S0 and vega is
the sensitivity in σ. All benchmark values are within two standard deviations of the sensitivity estimates from our method.

Table 5 Sensitivities for single-asset American put options under the variance gamma process.

Variance Gamma Model
K T Price∗ BiasPrice Delta∗ BiasDelta V ega∗ BiasV ega Time

1200 0.5616 35.5647 -0.0765(0.1221) -0.1429 0.0002(0.00039) 168.77 -0.7821(0.5822) 107.61
1280 0.5616 54.102 -0.1831(0.1432) -0.2158 0.0003(0.00043) 207.32 -1.0339(0.6991) 114.44
1360 0.5616 80.1335 -0.1434(0.1901) -0.3181 -0.0004(0.00051) 237.985 0.341(0.6104) 136.32
1400 0.5616 96.6741 -0.1123(0.2001) -0.3871 -0.0006(0.00048) 246.92 0.2802(0.6117) 145.51

Note. Sensitivities for single-asset American put options under the variance gamma process (8). The defaulting parameters are
S0 = 1369.41, r = 0.0541, q = 0.012, σ = 0.20722, θ =−0.22898, and β = 0.50215. Set N to be 400 between t= 0 and T . To
let the process be a martingale, choose µ= r− q+ log(1− θβ−σ2β/2)/β. The numbers in parentheses are the standard deviations
of Monte Carlo across 1000 independent trials. In each trial, we use 0.5 million sample paths to obtain the estimates. Delta is defined
as the sensitivity with respect to S0 and vega is the sensitivity in σ. All benchmark values are within two standard deviations of the
sensitivity estimates from our method.

In this subsection, we illustrate this effect numerically with a one-dimensional case. Consider

the American put in Table 1 with K = 40 and T = 7/12. Table 6 displays the outcomes of price

and sensitivity estimates when we simultaneously increase the numbers of basis functions and

simulation trials. Let M be the number of basis functions we use for each numerical experiment.

We change the number of sample paths H according to a rule of H = CM4, where C is a pre-

specified constant. The purpose of choosing this growth rate for the simulation effort is to avoid the

overfitting issue mentioned in Section 4.2. An immediate observation from the table is that both

prices and sensitivities become increasingly accurate, converging to the benchmark values, when

the computational effort enlarges. Such improvement is due to the fact that we can obtain higher

quality approximations for the continuation function with larger sets of basis functions and sample
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paths. Moreover, we find that the convergence rate of price estimates is faster than the convergence

rates of the sensitivities. For example, with 9 basis functions, the price estimate is already very

accurate, while there still exist small gaps between the true and the estimated sensitivity values.

Table 6 Sensitivity estimation under different sets of basis functions.

Basis Functions Price Delta V ega
LS− 3 1.9721(0.0136) -0.4363(0.00248) 11.4532(0.0704)
LS− 4 1.9876(0.0072) -0.4326(0.00139) 11.5013(0.0405)
LS− 5 1.9895(0.0048) -0.4266(0.00089) 11.7069(0.0258)
LS− 6 1.9899(0.0029) -0.4302(0.00063) 11.7263(0.0167)
LS− 7 1.9901(0.0024) -0.4301(0.00046) 11.7281(0.0132)
LS− 8 1.9901(0.0019) -0.4298(0.00041) 11.7295(0.0101)
LS− 9 1.9901(0.0015) -0.4296(0.00034) 11.7306(0.0081)

Benchmark 1.9901 -0.4294 11.7303

Note. The model setting and parameter values are the same as the in-sample estimation for
the case of K = 40 and T = 7/12 in Table 1. We perform the Longstaff-Schwartz regression
method with the rule of H = 386M4 in each row, where M is the number of basis functions
and H is the number of sample paths. For instance, to compute the row of LS-9 we use a set
of basis functions consisting of the constant and the first eight Hermite polynomials, and a
set of 2532546 sample paths.

5.4. Comparison with Some Competing Methods

In this subsection, we report the numerical outcomes by comparing our IPA sensitivity estimators

with a set of competing methods, including the finite-difference (FD) method, a direct differenti-

ation (DD) method, the LRD estimator proposed in Kaniel, Tompaidis, and Zemlianov (2008), a

heuristic point estimator (HPE) appearing in the same paper, and the modified Longstaff-Schwartz

method (MLSM) in Wang and Caflisch (2010). In particular, the details of the above five alternative

methods are as follows.

• FD. It builds up sensitivity estimators by taking value difference after a small perturbation

on the parameter of interest. That is,

DeltaFD =
Price(S0 + ∆S0)−Price(S0−∆S0)

2∆S0

and

V egaFD =
Price(σ+ ∆σ)−Price(σ−∆σ)

2∆σ
.

• DD. For a pre-specified class of basis functions {b1(x), · · · , bn(x)}, use the Longstaff-Schwartz

regression method to obtain an approximation to the continuation value function at time t1,

C1(x;θ), such that

C1(x;θ)≈ C̃1(x;θ) := c1(θ)b1(x) + · · ·+ cn(θ)bn(x),
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where ci(θ), 1≤ i≤ n, are all the regression coefficients. Then, we can form an estimator of delta

by taking differentiation on C̃1(x;θ):

delta =
d

dx
E[Q1(X1;θ)|X0 = x] =

d

dx
E[max{h(X1;θ),C1(X1;θ)}|X0 = x]

≈ d

dx
E[max{h(X1;θ), C̃1(X1;θ)}|X0 = x]

= E

[(
C̃ ′1(X1;θ)1{h(1,X1)<C1(X1;θ)}+h′(1,X1)1{h(1,X1)≥C1(X1;θ)}

)
· dX1

dx
|X0 = x

]
.

• LRD. Assume that the one-step transition density of Xθ
i at time t0 is given by

P [Xθ
1 ∈ dy|Xθ

0 = x] = g1(y;x, θ)dy.

Using the LR method in EC.3, we have

∂Q0

∂x
(x;θ) =E

[
Q1(Xθ

1 ;θ) · η
]
,

where the likelihood weight

η=
∂ lng1

∂x
(Xθ

1 ;x, θ).

The primal-dual pricing literature developed by Rogers (2002), Andersen and Broadie (2004), and

Haugh and Kogan (2004) provides estimators to obtain upper and lower bounds of Q1. Based on

this observation, Kaniel, Tompaidis, and Zemlianov (2008) find that one set of upper and lower

bounds for delta should be given by

E[1{η<0}ηU1 + 1{η≥0}ηL1]≤ delta≤E[1{η<0}ηL1 + 1{η≥0}ηU1], (21)

where we denote U1 and L1 to be the upper and lower bounds of Q1 obtained from the primal-dual

method.

• HPE. Kaniel, Tompaidis, and Zemlianov (2008) also propose HPE as a heuristic algorithm

to speed up the calculation of sensitivities; see Algorithm 4 in that paper.

• MLSM. Wang and Caflisch (2010) extends the work of Longstaff and Schwartz (2001) by

obtaining a regression equation for the option value function at the initial time. They propose to

differentiate the regression equation analytically to derive estimates for sensitivities.

We use a single-asset American put option under the geometric Brownian motion model to

assess the performance of all these methods. Table 7 shows that our IPA method demonstrates

several benefits in terms of bias, standard deviation, and computation time. Although it is biased,

many other competing methods, such as FD, DD, HPE, and MLSM, have the same problem. With

comparable computational time budgets, the IPA estimators enjoy the lowest bias. Although there

exist alternatives that provide confidence intervals for the sensitivity estimates, e.g., the LRD,
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they appear to require significant additional computation effort. Furthermore, we find that the

likelihood weight η in the LRD method, like other LR based sensitivity estimators in general, suffer

from a large simulation variance. Under the GBM assumption,

η=
Wt1

xσ∆t
.

Therefore, the variance of the weight tends to be high when the exercising frequency is larger, i.e.,

∆t is small; see also p.813 of Kaniel, Tompaidis, and Zemlianov (2008) for a related discussion

on this issue. We also find the obtained confidence intervals are very wide in some experiments in

Table 7. The reason is that both the upper and lower bounds in Eq. (21) involve the price upper

bound U1, which may suffer from a huge duality gap sometimes.

Table 7 Comparison among competing methods for single-asset American put options with the GBM model.

IPA FD
K T BiasDelta SDDelta BiasV ega SDV ega Time BiasDelta SDDelta BiasV ega SDV ega Time
40 1/3 0.0010 0.00052 0.0086 0.0145 59.8 -0.0023 0.0121 -0.0139 0.189 221.5
40 7/12 -0.0008 0.00063 -0.014 0.0167 61.2 -0.0014 0.0115 -0.026 0.201 224.6
45 1/3 0.0003 0.00039 -0.0163 0.0075 83.4 -0.0007 0.0089 0.007 0.029 331.2
45 7/12 -0.0004 0.00041 0.0129 0.0072 86.7 -0.0006 0.0096 0.0221 0.099 341.7

DD MLSM
K T BiasDelta SDDelta BiasV ega SDV ega Time BiasDelta SDDelta BiasV ega SDV ega Time
40 1/3 -0.0117 0.0365 NA NA 58.1 0.0193 0.00094 NA NA 66.1
40 7/12 0.0109 0.0379 NA NA 58.6 0.0147 0.00089 NA NA 63.6
45 1/3 0.0061 0.0137 NA NA 86.5 0.0404 0.00087 NA NA 74.6
45 7/12 0.0103 0.0117 NA NA 83.9 0.0261 0.00086 NA NA 72.4

HPE LRD
K T BiasDelta SDDelta BiasV ega SDV ega Time DeltaLower SDDeltaLower DeltaUpper SDDeltaUpper Time

40 1/3 -0.0193 0.0519 NA NA 57.5 -2.9715 0.1343 2.9519 0.0159 29981
40 7/12 0.0196 0.0527 NA NA 58.2 -4.9089 0.2107 5.4989 0.2702 30078
45 1/3 0.0134 0.0334 NA NA 84.1 -0.9045 0.2218 -0.4296 0.2226 36085
45 7/12 -0.0112 0.0338 NA NA 83.2 -2.0248 0.199 1.0917 0.2205 35471

Note. Comparison between our generalized IPA method with the five alternatives in a single-asset GBM model. The model and parameter settings are
the same as in Table 1. The biases and standard deviations of every experiment are reported in the Bias and SD columns. The upper and lower limits of
the confidence intervals obtained by the LRD method are recorded in DeltaLower and DeltaUpper , respectively. We use the same set of 6 basis functions
for all methods when we conduct regression procedures. For the FD method, we use ∆S0 = 0.001 and ∆σ = 0.0001. For the MLSM method, we use 0.5
million sample paths and specify the initial distribution strictly following the guidance in Section 3.3 of Wang and Caflisch (2010). In accordance with Kaniel,
Tompaidis, and Zemlianov (2008), we specify for the LRD method the number of sample paths in different levels of simulation as follows: 10,000 outer paths,
10,000 paths for the lower bound of the option price, 1 intermediate path, and 10,000 inner paths.

6. Concluding Remarks

In this paper, we develop an efficient IPA Monte Carlo method for estimating American option

sensitivities. As shown in the paper, this new approach demonstrates attractiveness theoretically

and numerically. It also has potential applicable implications on stochastic optimization problems

with model uncertainty. People often frame these problems to a min-max formulation to obtain a

robust solution; that is, they are looking for a best response in the most adverse situation. If we
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parameterize the set of all conceivable models relevant to the considered problem, then searching for

the robust solution is equivalent to finding the worst modeling parameter and solving a stochastic

optimization problem under it. The estimator obtained in the paper indicates a way to estimate

the gradient of the optimal value of a stochastic optimization problem under a given parameter. In

conjunction with some simulation-based optimization methods, we believe that our discovery will

help to deal with such problems.
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Fournié, E., J.-M. Lasry, J. Lebuchoux, P.-L. Lions, and N. Touzi. 1999. Applications of Malliavin calculus

to Monte Carlo methods in finance.Finance Stochastics 3 391–412.

Fu, M. 2006. Gradient estimation. In Handbook on Operations Research and Management Science: Simula-

tion, S.G. Henderson and B.L. Nelson, editors, 575–616. Elsevier.

Glasserman, P. 1991. Gradient Estimation via Perturbation Analysis. Kluwer.

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer, New York.

Glasserman, P., B. Yu. 2004. Number of paths versus number of basis functions in American option pricing.

Ann. Appl. Probab. 14 2090–2119.

Gobet, E. 2004. Revisiting the Greeks for European and American options. Proceedings of the International

Symposium on Stochastic Processes and Mathematical Finance at Ritsumeikan University, Kusatsu,

Japan, March 2003. Eds. by J. Akahori, S. Ogawa, S. Watanabe. World Scientific, 53-71.

d’Halluin, Y., P. A. Forsyth, and G. Labahn. 2004. A penalty method for American options with jump

diffusion processes. Numerische Mathematik 97(2) 321–352.

Haugh, M., L. Kogan. 2004. Pricing American options: a duality approach. Oper. Res. 52 258–270.

Hirsa, A., D. B. Madan. 2003. Pricing American options under variance gamma. J. Comp. Finance 7(2)

63-80.

Ho, Y. C., X. R. Cao. 1983. Optimization and perturbation analysis of queueing networks. Journal of

Optimization: Theory and Applications 40 559–582.

Huang, J., M. Subrahmanyam, and G. Yu. 1996. Pricing and hedging American options: a recursive integra-

tion method. Rev. Financial Stud. 9 277–300.

Hull, J. C. 2009. Options, Futures, and Other Derivatives. Pearson Prentice Hall, Upper Saddle River, New

Jersey.

Kaniel, R., S. Tompaidis, and A. Zemlianov. 2008. Efficient computation of hedging parameters for discretely

exercisable options. Oper. Res. 56 811–826.

Kou, S. G. 2002. A jump-diffusion model for option pricing. Management Sci. 48 1086–1101.



Chen and Liu: Monte Carlo and American Option Sensitivities
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

L’Ecuyer, P. 1990. A unified view of the IPA, SF, and LR gradient estimation techniques. Management Sci.

36 1364–1383.

L’Ecuyer, P. 1995. Note: On the interchange of derivative and expectation for likelihood ratio derivative

estimators. Management Sci. 36 738–748.

Liu, G., L. J. Hong. 2010. Kernel estimation of the Greeks for options with discontinuous payoffs. Oper. Res.

Forthcoming.

Longstaff, F. A., E. S. Schwartz. 2001. Valuing American options by simulation: a simple least-squares

approach. Rev. Financial Stud. 14 113–147.

Madan, D. B., P. Carr, and E. C. Chang. 1998. The variance gamma process and option pricing. Euro.

Finan. Rev. 2 79–105.

Merton, R. 1976. Option pricing when underlying stock returns are discontinuous. J. Finan. Econ. 3 125–144.

Piterbarg, V. 2003. Computing Deltas of callable Libor exotics in forward Libor models. J. Comput. Finance

7 107–144.

Piterbarg, V. 2004. Risk sensitivities of Bermuda swaptions. International Journal of Theoretical and Applied

Finance 7 465–509.

Porteus, E. 2002. Stochastic Inventory Theory. Stanford University Press, Stanford, California.

Raymar, S., M. Zwecher. 1997, A Monte Carlo valuation of American call options on the maximum of several

stocks. J. Derivatives 5 7–23.

Rogers, L. C. G. 2002, Monte Carlo valuation of American options. Math. Finance 12 271–286.

Stentoft, L. 2004. Convergence of the least square Monte Carlo approach to American option valuation.

Management Sci. 50 1193–1203.

Suri, R., M. Zazanis. 1988. Perturbation analysis gives strongly consistent estimates for the M/G/1 queue.

Management Sci. 34 39–64.

Svenstrup, M. 2005. On the suboptimality of single-factor exercise strategies for Bermudan swaptions. J.

Finan. Econ. 78 651–684.

Tsitsiklis, J. 1984. Periodic review inventory systems with continous demand and discrete order sizes. Man-

agement Sci. 30 1250–1254.

Tsitsiklis, J., B. Van Roy. 1999. Optimal stopping of Markov processes: Hilbert space theory, approximation

algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Automatic

Control 44 1840–1851.

Tsitsiklis, J., B. Van Roy. 2001. Regression methods for pricing complex American-style options. IEEE Trans.

Neural Networks 12 694–703.

Tompaidis, S., C. Yang. 2010. Pricing American-style options by Monte Carlo simulation: alternatives to

ordinary least squares. Working paper of University of Texas at Austin.



Chen and Liu: Monte Carlo and American Option Sensitivities
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Veinott, A., Jr. 1965a. Optimal policy for a multi-product, dynamic, nonstationary inventory problem. Man-

agement Sci. 12 206–222.

Veinott, A., Jr. 1965b. The optimal inventory policy for batch ordering. Oper. Res. 13 424–432.

Wang, Y., R. Caflisch. 2010. Pricing and hedging American-style options: a simple simulation-based approach.

J. Comput. Finance 13(4) 95–125.

Wang, Y., M. C. Fu, and S. I. Marcus. 2009. Sensitivity analysis for barrier options. Proc. 2009 Winter

Simulation Conf. Eds. by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls.

1272–1282.

Zhang, X. L. 1997. Numerical analysis of american option pricing in a jump-diffusion model. Math. Oper.

Res., 22 668–690.

Nan Chen is an associate professor at Dept. of Systems Engineering and Engineering Manage-

ment, Chinese University of Hong Kong. He obtained his PhD degree in Operations Research from

Columbia University in 2006. His main research interests include quantitative methods in finance,

Monte Carlo simulation, and applied probability.

Yanchu Liu is an assistant professor of finance at Lingnan (University) College, Sun Yat-sen

University, Guangzhou, China. He received his Ph.D. degree in systems engineering and engineering

management from the Chinese University of Hong Kong in 2012. His main research interests include

financial engineering and related areas.



e-companion to Chen and Liu: Monte Carlo and American Option Sensitivities ec1

Electronic Companion

This online appendix consists of the technical proofs of all statements in the main text, details

of the likelihood ratio estimators, derivation of Example 3.1, and supplementary details for Section

3.2.

EC.1. Technical Lemmas

Lemma EC.1.1 Suppose that f : Rn→ R and g : Rd→ Rn are both Lipschitz continuous. Then

the composition of these two, f(g(x)), is also Lipschitz continuous.

Proof. It is easy to see that, for any x, y ∈Rd,

|f(g(x))− f(g(y))| ≤K‖g(x)− g(y)‖ ≤KL‖x− y‖

for some constants K and L, thanks to the Lipschitz property of f and g. Therefore, f(g(x)) is

also Lipschitz continuous. �

Lemma EC.1.2 Under Assumptions 2.1, 4.1, and 4.2 in the paper, all continuation value func-

tions Ci(x;θ), 0≤ i≤N − 1, are Lipschitz continuous with respect to both x and θ.

Proof. Establish this lemma via a backward induction. First, notice that

CN−1(x;θ) =E[h(N,Xθ
N)|Xθ

N−1 = x] =E[h(N,FN(x,RN ;θ))].

Using the Lipschitz continuity of FN and h and Lemma EC.1.1, the function h(N,FN(x,RN ;θ))

should satisfy

|h(N,FN(x,RN ;θ))−h(N,FN(y,RN ;θ))| ≤ kKN(RN , θ)‖x− y‖

for any x, y ∈Rd. Therefore,

|CN−1(x;θ)−CN−1(y;θ)| ≤E[|h(N,FN(x,RN ;θ))−h(N,FN(y,RN ;θ))|]≤ kE[KN(RN , θ)] · ‖x−y‖.

The integrability of KN implies that CN−1 must be Lipschitz continuous in x. A similar argument

will lead to the conclusion that CN−1 is Lipschitz continuous in θ as well.

Now assume that Ci+1 is Lipschitz continuous. Consider the option value function Qi+1(x;θ) =

max{h(i + 1, x),Ci+1(x;θ)}. It is a composition function of h(i, x), Ci+1(x;θ), and a max func-

tion. All of them are Lipschitz continuous. By Lemma EC.1.1, we know that Qi+1(x;θ) should be

Lipschitz continuous too; that is, there exists a constant ci+1(θ) such that

|Qi+1(x;θ)−Qi+1(y;θ)| ≤ ci+1(θ) · ‖x− y‖.
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This implies

|Ci(x;θ)−Ci(y;θ)| ≤ E[|Qi+1(Fi+1(x,Ri+1;θ);θ)−Qi+1(Fi+1(y,Ri+1;θ);θ)|]

≤ ci+1(θ) ·E[‖Fi+1(x,Ri+1;θ)−Fi+1(y,Ri+1;θ)‖].

Making use of the Lipschitz continuity of Fi+1, we can easily show that Ci is Lipschitz continuous

in x. Following similar arguments, we can also show that Ci is Lipschitz continuous with respect

to θ. �

Lemma EC.1.3 Suppose that Assumption 2.1 holds. Then,

E

[
sup
θ,θ′∈Θ

‖Xθ
i −Xθ′

i ‖
|θ− θ′|

]
<+∞, for all 1≤ i≤N.

Proof. For any 1≤ i≤N , by the recursive definition of Xθ
i , we have

‖Xθ
i −Xθ′

i ‖= ‖Fi(Xθ
i−1;Ri, θ)−Fi(Xθ′

i−1;Ri, θ
′)‖

≤ ‖Fi(Xθ
i−1;Ri, θ)−Fi(Xθ

i−1;Ri, θ
′)‖+ ‖Fi(Xθ

i−1;Ri, θ
′)−Fi(Xθ′

i−1;Ri, θ
′)‖.

Using Assumption 2.1, the right hand side of the above inequality is bounded above by

Gi(X
θ
i−1,Ri)|θ− θ′|+Ki(Ri, θ

′)‖Xθ
i−1−Xθ′

i−1‖.

Therefore,

E

[
sup
θ,θ′∈Θ

‖Xθ
i −Xθ′

i ‖
|θ− θ′|

]
≤ E[sup

θ∈Θ

Gi(X
θ
i−1,Ri)] +E

[
sup
θ′∈Θ

Ki(Ri, θ
′) · sup

θ,θ′∈Θ

‖Xθ
i−1−Xθ′

i−1‖
|θ− θ′|

]

≤ E[sup
θ∈Θ

Gi(X
θ
i−1,Ri)] +E[sup

θ′∈Θ

Ki(Ri, θ
′)] ·E

[
sup
θ,θ′∈Θ

‖Xθ
i−1−Xθ′

i−1‖
|θ− θ′|

]
,

(EC.1)

where the second inequality is due to the fact that Ri is independent of Xθ
i−1 and Xθ′

i−1.

Note that

E

[
sup
θ,θ′∈Θ

‖Xθ
1 −Xθ′

1 ‖
|θ− θ′|

]
≤E

[
sup
θ,θ′∈Θ

‖F1(x;Ri, θ)−F1(x;Ri, θ
′)‖

|θ− θ′|

]
≤E[G1(x,R1)]<+∞.

It is easy to prove the lemma by induction, combining with the recursive relationship (EC.1). �

Lemma EC.1.4 Suppose the conditions of Theorem 4.1 are satisfied. Then,∣∣∣∣∣∂Q0

∂xj
− ∂̃Q0

∂xj

∣∣∣∣∣≤E
[
N−1∑
i=1

∣∣∇h(i,Xθ
i ) ·Y j

i −∇Ci(Xθ
i ;θ) ·Y j

i

∣∣1{Xθi ∈Iθi }
]
,
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where

Iθi := {x∈Rd : C̃i(x;θ)≤ h(i, x),Ci(x;θ)>h(i, x)}∪ {x∈Rd : C̃i(x;θ)>h(i, x),Ci(x;θ)≤ h(i, x)},

for 1≤ i≤N − 1.

Proof. The proof of this lemma is inspired by Belomestny (2011). Use one-dimensional cases as

an illustration for the purpose of notational simplicity. From the proof of Lemma EC.1.2, we have

C ′i(x;θ) =E

[
dQi+1

dx
(Fi+1(x,Ri+1;θ);θ)

]
= E

[(
h′(i+ 1,Xθ

i+1)1{Ci+1(Xθi+1;θ)≤h(i+1,Xθi+1)}+C ′i+1(Xθ
i+1;θ)1{Ci+1(Xθi+1;θ)>h(i+1,Xθi+1)}

) ∂Fi+1

∂x
(x,Ri+1;θ)

]
(EC.2)

for 1≤ i≤N , where we use the chain rule of differentiation in the last equality. In particular,

dQ0

dx
=
dC0

dx
=E[h′(1,Xθ

1 ) ·Y11{h(1,Xθ1 )≥C1(Xθ1 ;θ)}+C ′1(Xθ
1 ;θ) ·Y11{h(1,Xθ1 )<C1(Xθ1 ;θ)}].

Given C̃i(x;θ), 1≤ i≤N , define a new function recursively such that CN(x;θ) = 0 and

Ci(x;θ)

= E

[(
h′(i+ 1,Xθ

i+1)1{C̃i+1(Xθi+1;θ)≤h(i+1,Xθi+1)}+ Ci+1(Xθ
i+1;θ)1{C̃i+1(Xθi+1;θ)>h(i+1,Xθi+1)}

) ∂Fi+1

∂x
(x,Ri+1;θ)

]
for 1≤ i≤N − 1. In words, Ci(x;θ) is obtained when we replace C by C̃ in (EC.2). Following the

proof of Theorem 4.1, it is straightforward to establish that

d̃Q0

dx
= C0(x;θ).

On the other hand, taking a difference between C ′i and Ci, we have

C ′i(x;θ)−Ci(x;θ)

= E

[
(h′(i+ 1,Xθ

i+1)−C ′i+1(Xθ
i+1;θ)) · ∂Fi+1

∂x
(x,Ri+1;θ) · 1{h(i+1,Xθi+1)≥Ci+1(Xθi+1;θ),h(i+1,Xθi+1)<C̃i+1(Xθi+1;θ)}

]
+ E

[
(C ′i+1(Xθ

i+1;θ)−Ci+1(Xθ
i+1;θ)) · ∂Fi+1

∂x
(x,Ri+1;θ) · 1{h(i+1,Xθi+1)<Ci+1(Xθi+1;θ),h(i+1,Xθi+1)<C̃i+1(Xθi+1;θ)}

]
+ E

[
(C ′i+1(Xθ

i+1;θ)−h′(i+ 1,Xθ
i+1)) · ∂Fi+1

∂x
(x,Ri+1;θ) · 1{h(i+1,Xθi+1)<Ci+1(Xθi+1;θ),h(i+1,Xθi+1)≥C̃i+1(Xθ1 ;θ)}

]
.

This implies that

|C ′i(x;θ)−Ci(x;θ)|

≤ E

[
|h′(i+ 1,Xθ

i+1)−C ′i+1(Xθ
i+1;θ)| ·

∣∣∣∣∂Fi+1

∂x
(x,Ri+1;θ)

∣∣∣∣ · 1{Xθi+1∈I
θ
i+1}
|Xθ

i = x

]
+E

[
|C ′i+1(Xθ

i+1;θ)−Ci+1(Xθ
i+1;θ)| ·

∣∣∣∣∂Fi+1

∂x
(x,Ri+1;θ)

∣∣∣∣ · |Xθ
i = x

]
. (EC.3)
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Repeat using Eq. (EC.3) and exploiting the recursive definition of Y , we can prove that∣∣∣∣∣dQ0

dx
− d̃Q0

dx

∣∣∣∣∣≤E
[
N−1∑
i=1

|h′(i,Xθ
i ) ·Yi−C ′i(Xθ

i ;θ) ·Yi|1{Xθi ∈Iθi }

]
. �

EC.2. Proofs of Main Results

Proof of Theorem 3.1. By the definition, we have

α(θ0 + ∆θ)−α(θ0) = E[L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)]

= E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0 + ∆θ)]

+E [L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)] ,

where we add and subtract E[L(ψ∗(θ0), ξ, θ0 + ∆θ)] simultaneously on the right-hand side of the

above equality. The sub-optimality of ψ∗(θ0) when the parameter value is θ0 + ∆θ implies that

α(θ0 + ∆θ)−α(θ0)≥E [L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)] . (EC.4)

Therefore,

lim inf
∆θ↓0

α(θ0 + ∆θ)−α(θ0)

∆θ
≥ lim inf

∆θ↓0
E

[
L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

]
(EC.5)

and

limsup
∆θ↑0

α(θ0 + ∆θ)−α(θ0)

∆θ
≤ limsup

∆θ↑0
E

[
L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

]
. (EC.6)

Note that∣∣∣∣L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

∣∣∣∣≤ sup
ψ∈Ψ

sup
θ1,θ2∈Θ

|L(ψ, ξ, θ1)−L(ψ, ξ, θ2)|
|θ1− θ2|

for sufficiently small ∆θ such that θ0, θ0 + ∆θ ∈Θ. The integrability of the term on the right-hand

side by (i), together with the dominated convergence theorem, yields that

lim
∆θ→0

E

[
L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

]
= E

[
lim

∆θ→0

L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)

∆θ

]
= E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
. (EC.7)

Therefore, we can take the limits inside the expectations on the right-hand sides of both (EC.5)

and (EC.6) to obtain

lim inf
∆θ↓0

α(θ0 + ∆θ)−α(θ0)

∆θ
≥E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
, (EC.8)
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and

limsup
∆θ↑0

α(θ0 + ∆θ)−α(θ0)

∆θ
≤E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
. (EC.9)

Another way to decompose α(θ0 +∆θ)−α(θ0) is to simultaneously add and subtract E[L(ψ∗(θ0 +

∆θ), ξ, θ0)]. We have

α(θ0 + ∆θ)−α(θ0) = E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)]

+E [L(ψ∗(θ0 + ∆θ), ξ, θ0)−L(ψ∗(θ0), ξ, θ0)]

≤ E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)] ,

where we use the fact that ψ∗(θ0 + ∆θ) is a sub-optimal policy when the parameter value is θ0.

This inequality leads to

limsup
∆θ↓0

α(θ0 + ∆θ)−α(θ0)

∆θ

≤ limsup
∆θ↓0

E

[
L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)

∆θ

]
(EC.10)

and

lim inf
∆θ↑0

α(θ0 + ∆θ)−α(θ0)

∆θ

≥ lim inf
∆θ↑0

E

[
L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)

∆θ

]
. (EC.11)

Now we claim that the limits on the right-hand sides of both (EC.10) and (EC.11) equal

E

[
∂

∂θ
L(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
.

In fact, for any ψ, by the fundamental theorem of calculus,

E [L(ψ, ξ, θ0 + ∆θ)−L(ψ, ξ, θ0)] =E

[∫ θ0+∆θ

θ0

∂

∂θ
L(ψ, ξ, θ̃)dθ̃

]
=

∫ θ0+∆θ

θ0

E

[
∂

∂θ
L(ψ, ξ, θ̃)

]
dθ̃.

Substituting ψ∗(θ0 + ∆θ) and ψ∗(θ0) respectively into the above equality, we have∣∣∣∣E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)]

∆θ
− E [L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)]

∆θ

∣∣∣∣
≤ 1

∆θ

∫ θ0+∆θ

θ0

E

[∣∣∣∣ ∂∂θL(ψ∗(θ0 + ∆θ), ξ, θ̃)− ∂

∂θ
L(ψ∗(θ0), ξ, θ̃)

∣∣∣∣]dθ̃
≤ E

[
sup

θ̃∈(θ0−δ,θ0+δ)

∣∣∣∣ ∂∂θL(ψ∗(θ0 + ∆θ), ξ, θ̃)− ∂

∂θ
L(ψ∗(θ0), ξ, θ̃)

∣∣∣∣
]
→ 0,
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as ∆θ→ 0 according to condition (iii). This implies

lim
∆θ→0

E [L(ψ∗(θ0 + ∆θ), ξ, θ0 + ∆θ)−L(ψ∗(θ0 + ∆θ), ξ, θ0)]

∆θ

= lim
∆θ→0

E [L(ψ∗(θ0), ξ, θ0 + ∆θ)−L(ψ∗(θ0), ξ, θ0)]

∆θ
.

By (EC.7), we know the claim is true and

limsup
∆θ↓0

α(θ0 + ∆θ)−α(θ0)

∆θ
≤E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
, (EC.12)

and

lim inf
∆θ↑0

α(θ0 + ∆θ)−α(θ0)

∆θ
≥E

[
∂L

∂θ
(ψ, ξ, θ0)

∣∣∣
ψ=ψ∗(θ0)

]
. (EC.13)

Finally, the theorem is proved from (EC.8-EC.9) and (EC.12-EC.13). �

Proof of Theorem 4.1. We need to verify that all the technical conditions of Theorem 3.1 are

satisfied in the case of American options. To see this, we can view the payoff h(i,Xθ
i ) as a function

mapping the initial value x, the parameter θ, and the random vector {Ri,1 ≤ i ≤ N} to the

exercising value. The verification of conditions (i) and (ii) is straightforward. Take the analysis for

θ as an illustration. First, for any θ, θ′ ∈Θ,

sup
1≤i≤N

sup
θ,θ′∈Θ

|h(i,Xθ
i )−h(i,Xθ′

i )|
|θ− θ′|

≤ k
N∑
i=1

sup
θ,θ′∈Θ

‖Xθ
i −Xθ′

i ‖
|θ− θ′|

from the Lipschitz property of h. Lemma EC.1.3 shows that the right-hand side of the above is

integrable. Therefore, condition (i) is satisfied. Second, Assumption 4.2 ensures h(i,Xθ
i ) is differ-

entiable with respect to θ with probability 1.

As for the condition (iii), we know that

τ ∗(θ+ ∆θ) := min{i∈ {1,2, . . . ,N} : h(i,Xθ+∆θ
i )≥Ci(Xθ+∆θ

i ;θ+ ∆θ)}.

It is the optimal stopping time under the perturbed parameter θ + ∆θ. For any 1 ≤ i 6= j ≤ N ,

based on the fact that both h(i,Xθ
i ) and Ci(X

θ
i ;θ) are (almost surely) continuous in θ, we can

show easily that

1{τ∗(θ)=i, τ∗(θ+∆θ)=j}→ 0, a.s., (EC.14)

as ∆θ→ 0. Fix any δ > 0 such that Bδ(θ) = (θ− δ, θ+ δ)⊆Θ. We have

lim
∆θ→0

E

[
sup

θ̃∈Bδ(θ)

∣∣∣∣∣∂h∂x(τ ∗(θ+ ∆θ),X θ̃
τ∗(θ+∆θ))

∂X θ̃
τ∗(θ+∆θ)

∂θ
− ∂h
∂x

(τ ∗(θ),X θ̃
τ∗(θ))

∂X θ̃
τ∗(θ)

∂θ

∣∣∣∣∣
]

= lim
∆θ→0

N∑
i,j=1,i6=j

E

[
1{τ∗(θ)=i, τ∗(θ+∆θ)=j} sup

θ̃∈Bδ(θ)

∣∣∣∣∣
(
∂h

∂x
(j,X θ̃

j )
∂X θ̃

j

∂θ
− ∂h
∂x

(i,X θ̃
i )
∂X θ̃

i

∂θ

)∣∣∣∣∣
]
.(EC.15)
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Thanks to the Lipschitz continuity of h, |∂h/∂x| ≤ k. Therefore,

sup
θ̃∈Bδ(θ)

∣∣∣∣∣
(
∂h

∂x
(j,X θ̃

j )
∂X θ̃

j

∂θ
− ∂h
∂x

(i,X θ̃
i )
∂X θ̃

i

∂θ

)∣∣∣∣∣≤ k
(

sup
θ̃∈Bδ(θ)

∣∣∣∣∣∂X θ̃
j

∂θ

∣∣∣∣∣+ sup
θ̃∈Bδ(θ)

∣∣∣∣∣∂X θ̃
i

∂θ

∣∣∣∣∣
)
. (EC.16)

Furthermore, for any 1≤ i≤N ,

sup
θ̃∈Bδ(θ)

∣∣∣∣∣∂X θ̃
i

∂θ

∣∣∣∣∣≤ sup
θ,θ′∈Θ

‖Xθ
i −Xθ′

i ‖
|θ− θ′|

.

By Lemma EC.2 and the above inequality, we know that the right-hand side of (EC.16) is bounded

by an integrable random variable. Using the dominated convergence theorem, we take the limit

inside the expectation on the right-hand side of (EC.15) to obtain

lim
∆θ→0

E

[
sup

θ̃∈Bδ(θ)

∣∣∣∣∣∂h∂x(τ ∗(θ+ ∆θ),X θ̃
τ∗(θ+∆θ))

∂X θ̃
τ∗(θ+∆θ)

∂θ
− ∂h
∂x

(τ ∗(θ),X θ̃
τ∗(θ))

∂X θ̃
τ∗(θ)

∂θ

∣∣∣∣∣
]

≤ k
N∑

i,j=1,i6=j

E

[
lim

∆θ→0
1{τ∗(θ)=i, τ∗(θ+∆θ)=j}

(
sup

θ̃∈Bδ(θ)

∣∣∣∣∣∂X θ̃
j

∂θ

∣∣∣∣∣+ sup
θ̃∈Bδ(θ)

∣∣∣∣∣∂X θ̃
i

∂θ

∣∣∣∣∣
)]

= 0,

implied by (EC.14). �

Proof of Theorem 4.2. Still use the one-dimensional case to show the main idea of the proof. By

Lemma EC.1.4, we know that∣∣∣∣∣dQ0

dx
− d̃Q0

dx

∣∣∣∣∣≤
N−1∑
i=1

E
[
|h′(i,Xθ

i )−C ′i(Xθ
i ;θ)| ·Yi · 1{Xθi ∈Iθi }

]
, (EC.17)

where Iθi is defined as follows: for 1≤ i≤N − 1,

Iθi := {x∈Rd : C̃i(x;θ)≤ h(i, x),Ci(x;θ)>h(i, x)}∪ {x∈Rd : C̃i(x;θ)>h(i, x),Ci(x;θ)≤ h(i, x)}.

Applying the Cauchy-Schwartz inequality to the right-hand side of (EC.17) will yield

E
[
|h′(i,Xθ

i )−C ′i(Xθ
i ;θ)| · |Yi| · 1{Xθi ∈Iθi }

]
≤E1/2[|h′(i,Xθ

i )−C ′i(Xθ
i ;θ)|2 · |Yi|2] ·P 1/2[Xθ

i ∈ Iθi ].

(EC.18)

Assumption 4.1 and Lemma EC.1.2 imply that both h and Ci are Lipschitz continuous functions in

x. Therefore, their first-order derivatives should be bounded. In other words, we can find a constant

K1 such that

|h′(i,Xθ
i )−C ′i(Xθ

i ;θ)|2 ≤ |h′(i,Xθ
i )|2 + |C ′i(Xθ

i ;θ)|2 ≤K1.

By the finiteness of the second moment of Yi, it is easy to conclude that there exists another

constant K2 such that

E[|h′(i,Xθ
i )−C ′i(Xθ

i ;θ)|2 · |Yi|2]≤K2. (EC.19)
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Combining (EC.17), (EC.18), and (EC.19), we have∣∣∣∣∣∂Q0

∂xj
− ∂̃Q0

∂xj

∣∣∣∣∣≤√K2

N−1∑
i=1

(P [Xθ
i ∈ Iθi ])1/2. (EC.20)

Then we prove (20). First, we point out that the theorem holds if E|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|= 0

for all 1 ≤ i ≤N − 1. From this assumption, C̃i(X
θ
i ;θ) = Ci(X

θ
i ;θ) almost surely. It implies that

P [Xθ
i ∈ Iθi ] = 0. The error bound in the theorem holds accordingly.

Turn to the case that there exist some i such that E|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)| 6= 0. Without loss of

generality, we assume that inequality is true for all i. Note that

{Xθ
i ∈ Iθi } ⊆ {|h(i,Xθ

i )−Ci(Xθ
i ;θ)| ≤ |C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|}=: Γ.

For any ε > 0,

P [Xθ
i ∈ Iθi ]≤ P [Γ]

= P [Γ∩{|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|> ε}] +P [Γ∩{|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)| ≤ ε}]. (EC.21)

The first summand on the right hand side of (EC.21) is less than P [|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|> ε].

Using the Kolmogrov inequality on this probability, we have

P [Γ∩{|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|> ε}]≤ E|C̃i(Xθ
i ;θ)−Ci(Xθ

i ;θ)|
ε

.

As for the second summand in (EC.21), note that the event Γ ∩ {|C̃i(Xθ
i ;θ) − Ci(Xθ

i ;θ)| ≤ ε}

implies that |h(i,Xθ
i )−Ci(Xθ

i ;θ)| ≤ ε, whose probability should be less than K3ε
α for some positive

constant K3 according to Assumption 4.3. In summary,

P [Xθ
i ∈ Iθi ]≤ E|C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|

ε
+K3ε

α (EC.22)

In particular, if we let

ε=
(
E|C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|

) 1
1+α

,

in (EC.22), then

P [Xθ
i ∈ Iθi ]≤ (1 +K3)

(
E|C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|

) α
1+α

.

Combining it with (EC.20), it is easy to see that∣∣∣∣∣∂Q0

∂xj
− ∂̃Q0

∂xj

∣∣∣∣∣≤√K2(1 +K3)
N−1∑
i=1

(
E|C̃i(Xθ

i ;θ)−Ci(Xθ
i ;θ)|

) α
2(1+α)

.

We have proved the theorem. �
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EC.3. Likelihood Ratio Estimators

In contrast to the IPA method developed in the text, the LR method differentiates the probabil-

ity density of the underlying price to produce unbiased sensitivity estimators; see Glynn (1987),

Reiman and Weiss (1989), Rubinstein (1989), and Rubinstein and Shapiro (1993) for the devel-

opments of the method in the discrete-event simulation literature and Broadie and Glasserman

(1996) and Glasserman and Zhao (1999) for the applications in finance. It typically requires less

on the smoothness of the payoff functions. This feature is very appealing when we intend to derive

second-order sensitivities for American options. As one can see, when applying the IPA method

again on the first-order IPA estimators in the text, we will encounter a technical difficulty that ∇h

in almost all popularly traded options is not differentiable. For instance, for the vanilla American

put, ∇h(x) =−1{x<K}. It contains a discontinuity at x=K, which prevents us from using the IPA

method to construct second-order derivative estimators.

This section is devoted to developing LR estimators for American options, including first and

second orders for the purpose of completeness. To save notations, we consider one-dimensional

cases only. We omit the proofs of all theorems in this appendix. They are available upon request.

One can easily carry out the idea to apply for other higher dimensional problems. Assume in this

appendix that the one-step transition density of Xθ
i at y, given Xθ

i−1 = x, is known as gi(y;x, θ) for

any 1≤ i≤N , i.e.,

P [Xθ
i ∈ dy|Xθ

i−1 = x] = gi(y;x, θ)dy.

The densities satisfy

Assumption EC.3.1 Fix θ ∈Θ. The transition probability density g1(y;x, θ) is a continuous func-

tion in both y and x. The partial derivative ∂g1(y;x, θ)/∂x exists everywhere and it is continuous

with respect to y. In addition, there exists a δ > 0 such that∫
R+

sup
u∈[−δ,δ]

∣∣∣∣∂g1

∂x
(y;x+u, θ)

∣∣∣∣ · |Q1(y;θ)|dy <+∞.

Note that we can represent the option price by

Q0(x;θ) =E[Q1(Xθ
1 ;θ)|Xθ

0 = x] =

∫
R+

Q1(x1;θ) · g1(x1;x, θ)dx1. (EC.23)

Assumption EC.3.1 ensures that interchanging differentiation and integration is feasible, combining

the general results from L’Ecuyer (1990, 1995) such that

∂Q0

∂x
(x;θ) =

∫ ∞
0

Q1(x1;θ) · ∂g1

∂x
(x1;x, θ)dx1.

From this, we achieve
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Theorem EC.3.1 Under Assumption EC.3.1,

∂Q0

∂x
(x;θ) =E

[
h(τ ∗,Xθ

τ∗) ·
∂ log g1(Xθ

1 ;x, θ)

∂x

∣∣∣X0 = x

]
.

Consider the sensitivity with respect to θ now. It is easy to see from (EC.23) that the parameter

θ affects not only the one-step transition law g1(x1;x, θ) but also Q1, the option value in t1. This

structure causes a subtle difference from applying the LR method to European-type options, in

which we can shift all the dependency of θ to the probability law. To take differentiation under the

integral in (EC.23), some additional technical conditions are imposed:

Assumption EC.3.2 (i) For any 1≤ i≤N , the transition density function gi(y;x, θ) is continu-

ously differentiable with respect to y, x, and θ.

(ii) There exists an open neighborhood of θ, Υ⊆Θ, the set {θ : Ci(x;θ) = h(i, x)} ∩Υ is at most

countably infinite for any given x∈R+ and 1≤ i≤N .

(iii) For all x∈R+,

fN(x) :=

∫
R+

sup
θ∈Υ

∣∣∣∣∂gN∂θ (y;x, θ)

∣∣∣∣ ·h(N,y)dy <+∞.

Furthermore, define a sequence of functions backward from i=N − 1 to i= 1 such that

fi(x) :=

∫
R+

sup
θ∈Υ

[∣∣∣∣∂gi∂θ (y;x, θ)

∣∣∣∣ ·Qi(y;θ)

]
dy+

∫
R+

sup
θ∈Υ

gi(y;x, θ) · fi+1(y)dy.

All these functions satisfy fi(x)<+∞ for all x∈R+.

We can prove

Theorem EC.3.2 Under Assumption EC.3.2,

∂Q0

∂θ
(x;θ) =E

[
h(τ ∗,Xθ

τ∗) ·
τ∗∑
i=1

∂ log gi(X
θ
i ;Xθ

i−1, θ)

∂θ

∣∣∣X0 = x

]
.

The LR method is helpful when we develop second-order sensitivity estimators. As noted at the

beginning of this appendix, we cannot apply the IPA method again on the first-order estimators

directly due to the absence of smoothness. However, the LR method can help us to find a mixed

unbiased estimator. Take gamma under the GBM model (7) as an example. We know that

Delta =E

[
−e−rτ

∗ Sτ∗

S0

1{Sτ∗<K}

]
from Theorem 4.1. To avoid the difficulty caused by the non-continuity of the indicator function

inside the above expectation, we present it as follows:

Delta =E

[
E
[
−e−rτ∗Sτ∗1{Sτ∗<K}|St1

]
S0

]
=

∫ +∞

0

E
[
−e−rτ∗Sτ∗1{Sτ∗<K}|St1 = y

]
S0

g1(y;S0)dy,
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Table EC.1 LR and MIX estimators for single-asset American

put options.

K T Delta∗ DeltaIPA DeltaLR

35 7/12 -0.1341 -0.1344(0.00035) -0.1279(0.0053)
40 7/12 -0.4299 -0.4302(0.00063) -0.4196(0.0146)
45 7/12 -0.7922 -0.7926(0.00041) -0.8113(0.0204)
K T V ega∗ V egaIPA V egaLR

35 7/12 6.564 6.547(0.0211) 6.4134(0.1831)
40 7/12 11.7303 11.7163(0.0167) 11.1349(0.4216)
45 7/12 7.907 7.9199(0.0072) 7.0986(0.5076)
K T Gamma∗ GammaMIX Time
35 7/12 0.0364 0.0351(0.0013) 58.13
40 7/12 0.0723 0.0706(0.0022) 86.71
45 7/12 0.0799 0.0811(0.0036) 118.26

Note. We use the same modeling setting and parameters as the in-sample
estimation in Table 1. The superscript IPA indicates the estimators derived
by our IPA approach and the superscript LR indicates the likelihood ratio
estimators. Results in the column GammaMIX are given by (EC.24). The
numbers in the parentheses are the standard deviations of Monte Carlo across
1000 independent trials. In each trial, we use 0.5 million sample paths to
obtain the estimates.

where the transition probability density of St1 , given S0 = s, is

g1(y;s) =
1

sσ
√

∆t
φ

(
log(y/s)− (µ−σ2)∆t

σ
√

∆t

)
and φ is the probability density function of a standard normal distribution. Such representation

pushes out the dependency of S0 from the indicator function. Applying the LR method, we can

easily obtain an estimator such as

GammaMIX =E

[
−e−rτ

∗ Sτ∗

S2
0

1{Sτ∗<K} ·
(
Wt1

σ∆t
− 1

)]
. (EC.24)

Table EC.1 presents numerical results for the LR estimators of various sensitivities for the one-

dimensional American put option. In general, the IPA estimators of the first-order sensitivities

have smaller variances than their LR counterparts.

EC.4. Derivation of Example 3.1

By the definition of random variable ψ, we have

E[max{K −Sψ,0}] = E[(K −St1)1{St1<K}] +E[(K −St2)1{St1≥K, St2<K}]. (EC.25)

The integrand in the first summand of (EC.25), (K − St1)1{St1<K} = (K − St1)+, is Lipschitz in

St1 . Therefore, it is easy to show that

d

ds
E
[
(K −St1)1{St1<K}

]
= −E

[
dSt1
ds

1{St1<K}

]
.
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Consider the derivative of the second summand of (EC.25). Conditioning the value of St1 , we

have

E[(K −St2)1{St1≥K;St2<K}] =E[E[(K −St2)1{St2<K}|St1 ]1{St1≥K}]. (EC.26)

Treat E[(K−St2)1{St2<K}|St1 ]1{St1≥K} as a function of St1 and note that St1 depends on s through

(7). By the chain rule,

d

ds

(
E[(K −St2)1{St2<K}|St1 ]1{St1≥K}

)
=

d

dSt1
E[(K −St2)1{St2<K}|St1 ] · dSt1

ds
· 1{St1≥K}+E[(K −St2)1{St2<K}|St1 ] · δK(St1) · dSt1

ds
,

where δK(·) is the Dirac delta function such that

δK(x) =

{
+∞, x=K;
0, x 6=K

and we use the fact that the derivative of f(x) = 1{x<K} with respect to x is δK(x).

Therefore, if we take the derivative with respect to s under the expectation in (EC.26), we will

get

d

ds
E
[
(K −St2)1{St1≥K;St2<K}

]
= E

[
d

dSt1
E[(K −St2)1{St2<K}|St1 ]

dSt1
ds

1{St1≥K}

]
+E

[
E[(K −St2)1{St2<K}|St1 ]δK(St1) · dSt1

ds

]
.

(EC.27)

Using the fact that

d

dSt1
E[(K −St2)1{St2<K}|St1 ] =

d

dSt1
E[(K −St2)+|St1 ] =−E

[
dSt2
dSt1

1{St2<K}

]
,

the first summand on the right-hand side of (EC.27) equals

−E
[
dSt2
ds

1{St1≥K;St2<K}

]
.

On the other hand, the second summand on the right hand of (EC.27) equals∫ +∞

0

E[(K −St2)1{St2<K}|St1 = y] · δK(y) · dSt1
ds

g1(y;s)ds=E[(K −St2)1{St2<K}|St1 =K] · K
s
· g1(K;s),

where g1(·;s) is the transition density function of St1 , given St0 = s.

In summary, we have

d

ds
E[max{K −Sψ,0}] = −E

[
dSt1
ds

1{ψ=t1}

]
−E

[
dSt2
ds

1{ψ=t2;St2<K}

]
+E[(K −St2)+|St1 =K] · K

s
· g1(K;s).
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EC.5. Supplementary Details for Section 3.2

Under the settings of Section 3.2, we consider a continuous random demand with log-normal

distributions; that is, Di = exp(µ+Zi) for 0≤ i≤N−1, where µ is the model parameter of interest

and Z ′is are i.i.d. standard normal random variables. Two cases of the admissible order-size set U
are investigated for the sake of checking the unbiasedness of our estimator. The first case is that

the vendor can order arbitrary sizes of the product, i.e., U = R+. Veinott (1965a) and Porteus

(2002) prove that the inventory management problem (16) admits the following optimal policy in

this case. Let

S = Φ−1
D

(
cP − (1−α)c

cP + cH

)
.

The vendor should order u∗i = (S − xi)+ at the beginning of period i for all 0 ≤ i ≤ N − 1. The

other case is that each order must be in some nonnegative integral of a standard quantity q, i.e.,

U = {kq : k is an integer, k≥ 0}. This case generally occurs when the wholesale supplier of a vendor

can only deliver orders in full containers with specific sizes. Take q= 1 for instance. Veinott (1965b)

and Tsitsiklis (1984) point out that the optimal ordering policy should then be

u∗i = max{0, dS−xie},

where dxe denotes the unique integer n satisfying x≤ n< x+ 1.

No matter which case it is, we can easily verify that the conditions (i-iii) in Theorem 3.1 are

satisfied. The generalized IPA estimator for the sensitivity of the optimal cost with respect to µ is

given by

E

[
N−1∑
i=0

αi
(
cP1{xi+u∗i<Di}− cH1{xi+u∗i>Di}

)( i∑
j=0

Dj

)
+αNc

(
N−1∑
j=0

Dj

)]
. (EC.28)

The following tables illustrate the unbiasedness of the estimator presented in (EC.28). Notice that

a closed-form expression of the optimal cost is available under the case of continuum U if x0 <S.

It is equal to

Cost∗ = c(S−x0) +
α−αN+1

1−α
ceµ+ 1

2 −αNcS

+
1−αN

1−α
cH

(
SN (logS−µ)− exp

(
µ+

1

2

)
N (logS−µ− 1)

)
+

1−αN

1−α
cP

(
exp

(
µ+

1

2

)
N (µ+ 1− logS)−SN (µ− logS)

)
, (EC.29)

where N (·) denotes the cdf of a standard normal random variable.

We can compare the simulation outcomes from our estimator with the derivative of (EC.29) in

µ in this case to verify if the generalized IPA estimator is unbiased. As for the other cases, we use

the finite-difference estimators with common random numbers under a very large simulation cost

and very small parameter perturbation to produce comparison benchmarks.
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Table EC.2 Unbiased estimation for dCost/dµ in the case of U = R+.

x0 Cost∗CF Cost∗MC CostMC dCost
dµ

∗CF dCost
dµ

∗FD dCost
dµ

IPA

0.32 207.8692 207.8582 207.8585(0.2201) 209.7877 209.7711 209.7757(0.3811)
1.59 200.195 200.1795 200.1782(0.2204) 209.7877 209.7786 209.7815(0.3753)
3.2 190.6023 190.5861 190.5854(0.2204) 209.7877 209.7753 209.7896(0.3753)
3.52 NA 188.7411 188.7409(0.2196) NA 208.2365 208.2396(0.3756)
4.8 NA 182.7143 182.7165(0.2162) NA 201.4594 201.4623(0.3764)
6.4 NA 178.0232 178.0221(0.2113) NA 190.6179 190.6205(0.379)

Note. Illustration of the unbiasedness for our generalized IPA estimators in the case of U = R+. We set the
following parameter values: N = 4, α = 0.97, µ = 1.2, and cH = cP = c = 6. From these settings, we can
solve out S = 3.2. The columns Cost∗CF and dCost

dµ

∗CF
are benchmark values for the cost and the sensitivity,

respectively, based on closed-form expressions (EC.29). The column Cost∗MC is the benchmark value for the
cost based on Monte Carlo simulation with 100 million independent sample paths, while the column dCost

dµ

∗FD

is the benchmark value for the sensitivity based on the finite-difference method with a parameter perturbation
∆µ = 0.0001 and the same simulation budget with Cost∗MC . Finally, the columns CostMC and dCost

dµ

IPA

are estimates based on (16) and (EC.28), respectively, where the numbers in parentheses are the standard error
computed from 1000 independent trials each with 0.5 million independent sample paths.

Table EC.3 Unbiased estimation for dCost/dµ in the case of U = {0,1,2, · · · }.

x0 Cost∗CF Cost∗MC CostMC dCost
dµ

∗CF dCost
dµ

∗FD dCost
dµ

IPA

0.32 NA 208.5244 208.5358(0.2182) NA 181.7006 181.7110(0.3726)
1.59 NA 200.9523 200.9687(0.2174) NA 180.3691 180.3604(0.37)
3.2 NA 191.2386 191.2379(0.2181) NA 182.2775 182.2908(0.3643)
3.52 NA 189.3820 189.3977(0.2169) NA 180.7329 180.7336(0.3706)
4.8 NA 183.3176 183.3256(0.2138) NA 174.5211 174.5811(0.3718)
6.4 NA 178.5621 178.5555(0.2090) NA 165.0538 165.0639(0.3684)

Note. Illustration of the unbiasedness for our generalized IPA estimators in the case of U = {0,1,2, · · · }.
Remaining settings are the same as that in Table EC.2.
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